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ITERATIVE METHODS FOR HYPERBOLIC DIFFERENTIAL
FUNCTIONAL EQUATIONS

BY ADRIAN KARPOWICZ

Abstract. We deal with the Darboux problem for the hyperbolic partial
functional-differential equation

2

%(m,y) = f(m,y,u<z,y>, g—g(x,y), g—Z(m,y)) a.e. in [0,a] x [0, 9],
u(z,y) = Y(z,y) on [—ao,a] X [—bo,b]\(0,a] x (0,],

where the function u(, ) : [~ao, 0]x[~bo, 0] — R” is defined by w(, 4 (s, t) =

u(s + z,t +y) for (s,t) € [—ao,0] X [—bo,0]. We study the existence and

uniqueness of Carathéodory solutions of this problem by means of the it-

erative methods.

1. Introduction. Put I = [0,a] x [0,b] , D = [—ap,0] x [=bo,0] , [* =
[—ag,a] x [=bo,b] , Ip = I*\I. We always assume that a,b > 0 and ag, by €
R,, where Ry = [0,+00). The inequality + < y in R¥ means that z; <
y; for each i € {1,... k}. Similarly for “>” “>” and “<”. The function
f:IxC(D,RF) x R¥ x R¥ — RF of the variables (z,y,w,u,v) is said to
be nondecreasing with respect to the functional argument w if the inequality
w1 < we implies that f(x,y,wi, u,v) < f(x,y,ws, u,v). Here wy < wo means
that wi(s,t) < wsa(s,t) for all (s,t) € D. Furthermore, (u1) < (ug) means that
up < ug, duy/0x < Oug/0zr and Juy /0y < Oug/dy. In this paper we shall
discuss Carathéodory solutions of the following Darboux problem:

9%u

(1) Oxdy (.CE,y) = f(xu:%u(m,y)? %('xay)a %;(xvy)> a.e. in I,
U(l’,y) = w(xa y) on I07
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where f : IxC(D, R¥)xRFxR* — RF and ¢ : Iy — R are given functions. We
define u, ) : D — R¥ by the formula u, (s, t) = u(s+z,t+y) for (s,t) € D.
In order to define this solutions we need an appropriately definition of an
absolutely continuous function of two variables. For this purpose, we first
introduce suitable notation. Given a rectangle J = [a1, as] X [b1, ba] contained
inlandwu:I—R,let

Aj(u) =u(ay,br) —u(az, b1) — u(ay, ba) + u(ag, ba).

A rectangle is called a subrectangle of I if its sides are parallel to the coordinate
axes. Let m denote the Lebesgue measure on R?. We say that u : I — R is
absolutely continuous if the following two conditions are satisfied:

(a) Given € > 0, there exists ¢ > 0 such that

Z |As(u)] < e

JeJ

whenever 7 is a finite collection of pairwise non-overlapping subrectan-
gles of I with

Z m(J) < 4.
Jeg
(b) The marginal functions u(-,b) and u(a, -) are absolutely continuous func-
tions of a single variable on [0, a] and |0, b], respectively.
We denote by

(a) C(I,R*) the space of continuous functions from I into R* with the usual
supremum norm.

(b) AC(I,RF) the space of absolutely continuous functions from I into R,

(c) C(I,R¥) the space of functions v of the variables (z,y) defined on
I, continuous in = € [0,a] for almost all y € [0,b] and measurable in
y € [0,b] for all z € [0, a] and such that

b
Il = [ ma o) ldy < .
0 z€[0,q]

(d) Cy,(I,R¥) the space of functions p of the variables (z,y) defined on
I, continuous in y € [0,b] for almost all z € [0,a] and measurable in
x € [0,a] for all y € [0,b] and such that

a

Wy = max |u(z,y)|dr < oo.
lilly = | i e )

(e) L'(I,R) the space of Lebesgue integrable functions from I into R.
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In [1I] we can find that the following statements are equivalent:

(a) ue AC(I,R).
(b) There exist g € AC([0,a],R), h € AC(]0,b],R) and L € L*(I,R) such

that
u(z,y) = / / (s,t)dsdt.

Note that if u € AC(I,R) then du/dz, Ou/dy and d*u/dzdy exist almost
everywhere on /. Furthermore, du/0z € Cy(I,R) and 0u/0dy € Cy(I,R). Now,
we are able to define the solution of problem . Namely, by the solution of
this problem we mean a function u : I* — R¥ continuous on I* and absolutely
continuous on I which satisfies the differential equation almost everywhere on
I and the initial condition everywhere on Iy. Let |-| denote the maximum norm
in R¥. Moreover, ||w||o denotes the usual supremum norm of w € C(D,RF).
As in [7] we can verify that || - ||4, || - ||, are norms and (C,(I,R¥),|[| - ||.),
(Cy(I,R¥), || - ||,) are Banach spaces. Moreover, for (z,y) € I, we define

[lw]|®¥) = max |w(s, t)],

)

t€(0,y]
Yy
HyH(xx’y) = max |v(s,t)|dt,
0 s€[0,x]

(@y) — /rr max |u(s,t)|ds.
Il = [ max s o)

Section 2] is devoted to the study of existence and uniqueness of solutions to
problem (|1)) by means of the monotone iterative method. In [9] we considered
a simpler Darboux problem, where f was independent of du/dz and Ou/dy.
Similar problem, but with classical solutions of this problem has been studied
by Brzychczy and Janus in [2}, [3] and by Lakshmikantham in [I1]. Section
is dedicated to the Newton method for problem , where f is independent of
Ou/0x and Ou/dy. In this method the convergence that we get is quadratic.
The Newton method for hyperbolic equations have been studied by Czlapinski
[5, ©6]. Moreover, this method has been applied by Czernous [4] to the first
order partial differential equations.

2. Monotone iterative technique. Let [; € L'(I,Ry) for i = {1,2,3},
c1, c2, c3 € Ry. Define r: I — R by the formula

(2) r(w,y) = eV,

where

3 z oy
H(z,y) = Z/{) /0 li(s,t)dsdt + c3x + cay.
i=1
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Now, we prove some useful lemma.

LEMMA 1. The function r satisfy inequality
x Y 1
/ / li(s,t)r(s,t)dsdt < ﬁr(ﬂs,y) for (z,y) € I.
0 0

PRrROOF. We integrate by parts the left-hand side of obtain

(3) 12/036 /Oy /01t zl(s,z)dz<g/os li(z,t)dz—l—cz)r(s,t)dtds
:/x /yll(s,z)dz r(s,y)ds—/z /yll(s,t)r(s,t)dtds.

From (3)) and the fact that ls,l3 € L'(I,R,), c3 € Ry we get

//llst 5tdtds<//llszdzrsy)d

/(Z/ (5,2)0 + a Jr(su)ds = 15 (r(e) = r0.9)) < (o)

O
REMARK 1. An easy computation shows that the function r satisfy in-
equalities
/ <03 +/ lg(s,t)dt>r(s,y)ds < —r(z,y),
0 0 12
y x 1
/ <02 —I—/ lg(s,t)ds>r(:n,t)dt < —r(z,y),
0 0 12
for (z,y) € 1.

In this section we shall discuss Carathéodory solutions for the following Dar-
boux problem:

Sy (09) = flul(@,v) + glul(w,y)  ae in T,
0xdy
W { u(z,y) = $(,y) on o,
where f[u], g[u] are defined by

ou ou >

fh4($7y):::j?($7y’quy)’£kE(x7y)7é%/(xay)
0 0
g[U](l',y) = g<x7y>u(x,y)? %(xv y)v 8;(x7y)>

Moreover, f,g : I x C(D,R¥) x R¥ x R¥ — R¥ and ¢ : Iy — RF are given
functions.
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ASSUMPTION 1. Suppose that v°,w® € C(I*,RF) N AC(I,RF), (v°) < (wV)
on I and v°,w° are coupled lower and upper solution of , that s,

gzgy( ,y) < fl00)(z,y) + glw)(z, y) ae. inl,

( y) < P(x,y) on Iy,

B2 (2,0) < G5 (x,0), %5(0,9) < 35(0,y)  forx € [0,a], y € [0,1],
%(w,y) > flw’](z,y) + g[v°](z,y) a.e. in I,
w'(z,y) > P(z,y) on I,

0
o (2,0) > 34(2,0), 22(0,y) > 5E(0,y)  for z € [0,a], y €[0,b].
ASSUMPTION 2. Suppose that functions f,g : I x C(D,RF) x R¥ x R¥ — RF
of the variables (x,y,w, u,v) are such that

(A1) f,9(,w,pu,v) : I — RF are measurable for all fized (w,u,v) €
(C(D,RF),RF RF).

(A2) There are functions l; € L*(I,Ry) for i € {1,2,3} and constants cz,
cs3 € Ry such that

|f(x,y,d),ﬂ,z7) - f(:r,y,w,u,y)\ < ll(x’y ’@ _WHO

)|
+<CQ+/xl2(8,y)d$>ﬂ—M+<03+/ I3(x,t)d )yu—u\,

l9(x,y,0, i1, 7) — g(x,y,w, u,v)| < li(z,y)||@ — wllo

< lgsy)ds>,u ,u+<03—|— lgxt )]V—V\,
) -

el wJJGC(DRk) I, fi, v, I/E]Rkandv( y Sw
92 (2,) < p, i < B (), & (:cy)<v,1/§8§‘;(w,y)-

for (z,y

]

| /\

z,y)’

ASSUMPTION 3. Suppose that the function 1 : Iy — RF is such that ¢ €
C(IOaRk); 77/}(70) € AC([O,CLLR’C) and 77/}(07 ) € AC([Ovb]7Rk)

In the paper [8] we develop the theory of linear and nonlinear inequalities

for the problem . In this paper we shall not use this theorems. We only use
of following simple remark.

REMARK 2. Suppose that « is a function continuous on I* and absolute
continuous on I. Furthermore,

9%u

m(m,y) >0 a.e. in I,

@(O,y) >0 on [0, b].

0
U(.ﬁU,y) >0 on I()v 7u P}
Y

9 (z,0) > 0 on [0,a],
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Then

ou ou
> . > — > .
u(z,y) >0, 8x(x’ y) >0, By (r,y) >0on [

Now, we give a constructive method for obtaining the solutions of the
problem . Firstly, we note that problem is equivalent to a problem:

u(z,y) = ¥(z,0) +¢(0,y) = ¥(0,0)

(5) + Jo J& (flul(s,t) + glul(s,t))dsdt  in I,
(xay) _w(l‘>y) on IO‘
Differentiating (5)) with respect to x or y we respectively get
Ge(z,y) = gx (z,0)
(6) + J (flul(z,t) + glu](x,t))dt  for all y € [0,b] and a.e. x € (0,4,
({L’,y) —1/’(3?79) on IO7
Su(x,y) = 52(0,y)
(7) + Jo (flul(s,y) + g[ul(s,y))ds for all x € [0,a] and a.c. y € [0,b],
u(z,y) = P(z,y) on Io.

Now, we define the sequences {v"} and {w"} by

(8) {8;%21 (x,y) = fl[v"](z,y) + g[w"](z,y) a.e. in I,
v (2, y) = P(z, y) on o,
and
ag;gﬂ( y) = flw")(z,y) + g[v"](x,y) a.e. in I,
Y { "z, y) = ¥(a,y) on 1o,
forn=0,1,2,....

THEOREM 1. Suppose that Assumptions[1H3 are satisﬁed fis nondecreas—

ing and g is nonincreasing in w, p and v for (z,y) € I and v( ) <w< w(x W)

8” ~(z,y) < p < 85‘3’6 (z,y), %”y (r,y) < v < ‘9“; (z,y). Moreover the se-
quences {v"}, {w"} are defined by (§) and (9), respectively. Then v" — u
and w" — u in C(I, ]Rk), where u is the unique solution of the problem (l)
such that (v°) < (u) < (w°) on I.

PROOF. It is easily seen that v", w™ € AC(I,R¥) for all n are the unique
solutions of , @D, respectively. We shall show that

(10) (0%) < (v') < (w') < (w’) on I.
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Put p = v! — Y, then
0?p

52y @Y = F°)@y) + gle’)(.y) = F°)(y) = glu')(zy) = O e, in 1.

p(z,y) > Y(z,y) — Y(x,y) =0 on .
Similarly, we get

0 0
a—i(az, 0) > 0 on [0, d, (75
From the above and Remark [2| we get that (p) > 0 on [ and this implies
(v%) < (v') on I. Analogously we get (w') < (w®) on I.
Now, put p = w' —v!. From monotone of f and g in w, p, v and the assumption
(0%) < (w°) we get

(0,) > 0 on [0,0].

82
oo = fl0l(e ) + gl](e0) 0% wn) — glu)z) 2 0. in 1.
Furthermore
0 0
p(x,y) =0 on Iy, 8—5(1‘,0) =0on [0,a], a—z(o,y) =0 on [0, b].

Therefore from Remarkwe get that (p) > 0 on I and this implies (v!) < (w?)
on I, and the proof of is complete.
We shall show that if for some n > 0,

(1) W) < (") < W) < ()

then

(12) (") < (") < (W) < ().

Let p = v™*! — o™ then it is easily seen that %(m,y) >0on I, p(z,y) =0

on Iy, g—i’(:c, 0) =0 on [0,q], %(O,y) =0 on [0,b]. From this and Remarkwe
get that (v") < (v"*1) on I. Similar consideration apply to (w"!) < (w™),
(vt < (w™ 1) on I, which completes the proof of the implication : (12).
Hence by induction we get for all n =1,2, ...

13) ) <@ < <) <) << w') < () on I

Now we show that

1
(14) [|w™ — v™|| @) < (@),
15) O™ _% (z,y) _ i ( )
ox ox v Q"T Y
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(I,y)
< 2n

ow™ o™

1 _
(16) 9 oy

r(z,y)

forn=1,2,..., (z,y) € I and r is defined by , where

Ox Ox

dy Oy

(a,b) 0 0
WOz, )~ (2, y), \ ou” o

(a,b) }

€] = max< max
(zy)el”

Estimates . will be proved by induction on n.
In order to show that estimates . ) hold for n = 1, we note that

/ / (5282 By (5, £), (5, £)) — F (5,8 ey (s, 2), (s, £)) | disdl

= /0 /0 [ll(svtm@(s,t) — wWspllo+ <c2 + /OS lQ(Z,t)dz> (5.8) — (s, 1)
+ <cs + /t l3(s, z)dz) |D(s,t) — y(s’t)|:| dsdt
/ / L(s, ll@s,0) = wsynllodsdt
17 /0 _(02 —l—/o la(s,t) ds)/ |(s,t) (S,t)Ids]dt

T T Yy Y
+/ <C3+/ lg(s,t)dt>/ \ﬁ(s,t)—u(s,t)]dt]ds

0 L 0 0
T ry y x
< [ [ 15,0020~ wponllodsd + | [( + [t t>ds) 1 - ur|§ﬁt>] at
0J0 0 0

zr y
+/ <03+/ lg(s,t)dt>|]17—I/HZ(,f’y)}ds,

0 L 0

where (w,u,), (@,f1,7) € C(I*,RF) x C,(I,R¥) x C,,(I, R¥). Similar arguments
to those above show that

/ / ’g 37t7w s,t) (3 t) (3 t)) g(s,t,w(&t),,u(s,t),I/(s,t))|dsdt

/ / 1y (5,8) |20y — (o, odsdt + / K+ / la(s,t)ds>llﬁ—uHS"t)]dt
0
—I—/ |:<63—|-/ l3(s, t)dt>||1/ Z/H;E’y}ds.
0 0
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By the above, f and the inequality = < €%, it is easily seen that
oy
1 1 0 0
ot =109 <2 [ [T Gs.lfuf, = of, g lodsc
x

(z,t)
&

y ow’ ol
2 -
+ /0 [(@ —|—/0 lz(s,t)ds>‘ pe oz ||,
x ) aw0 8,00 (Svy)
2 -
+ / [(Cg +/ I3(s, t)dt)‘ a9 a9 ]ds
<2c1</ / llstdsdt+czy+/ / la(s, t)dsdt
+ c3x —|—/ / lg(s,t)dsdt> < fr(x,y),
o Jo 2

Hw! vl (z.y)
' — — < 2/ / ll S t HUJ(St) /U(St)HOdet

ox ox
Y (z,t)
+2/ <CQ—|—/ lgSt >‘aw—60 :|dt
0 Ox ox ||,
(s:9) 1
Jas < 5o

z ow’  nO
+2/ <c +/l s,tdt)'—
0 I 3 0 3( ) ay 8y .

ow'  out ||
'U}_’U <2/ / ll 8 t |w(st st HOdet

oy Oy
Y owd 9O (1)
2 Io(s,t)ds ||| = — = dt
w2 _<C2+/0 2(5:1) )‘ or oz, }
(S’y) 1
Jas < 5

rr ow’ (%0
+2/ <c +/ I3(s,t dt)' —
0o L ’ 0 3( ) ay 8y 2

so that estimates f hold for n = 1.
Now, we note that if w = © on Iy then by we have

/ / (st Doy (5 ), (5, 1)) — (5.1 weys s, £), (5, 1)) | dsdt

Yy T
/ / l1 Hw w||(5td8dt—i—/ |:<CQ+/ ZQ(S’t)dS)Hﬂ—MHg(f’t)]dt
0 0
Yy
+/ [<03+/ lg(s,t)dt>HD—nyjﬂ)]ds,
0 0
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T [y } 3 )
/0 /0 |g(87t)w(s,t)nu’(87t)aV(svt)) - g(s7taw(s,t)7/~’é(57t)uV(S’t))|d8dt
T ry B : Y T .
s/ / 11 (8, 1)]|@(s 1) —w(s iy || >dsdt+/ [<C2+/ lg(S,t)ds> i — gl >} dt
0 J0o 0 0

Y
+/ [<C3+/ lg(s,t)dt)Hﬁ—1/|]§C5’y)]ds.
0 0

By the above and f, it is easily seen that for n > 1 we have
Ty
w1t — || @) < 2/ / (s, t)||w"™ — v™||Ddsdt
0o Jo

Y v ow" v ||
(18) + 2/0 [(02 + /0 lg(s,t)ds> H o B ) ]dt
z Y Ow™ o™ (s,9)
+2/ [(C +/ l s,tdt)H - — ]ds,
0 ’ 0 (s:1) Ay oy |l

(ac,y) T Yy
< 2/ / L (s, )l — v"||Ddsdt
0 0

n+1 n+1
ow ov

ox ox Y
Y x n n || ()
(19) +2/ [(624—/ l2(s,t)ds> ’8“’ o }dt
0 0 ox ox y
v Y ouw™ o ||Y
+2/ [(C —I—/ l s,tdt)H - ]ds,
0 - (1) dy Oy ||,

(z,y) Ty
< 2/ / I (s, 0)||w™ — o™ | D dsdt
0 0

dy oy

n+1 n+1
ow ov
x

Y v ow™  gun||®H
(20) + 2/0 [((:2 + /0 la(s, t)ds) H 5 Or ) }dt
I Y ow™ o™ (s:y)
+2/ [(c —|—/ l s,tdt)H - — ]ds.
0 o 3(5:1) oy Oy |,

Now we assume that estimates f hold for n > 1. Then by Lemma
and Remark [1] obtain

/w /yz (5,8)][w" — 0" || D dsdt < - —r(a, y)
0 0 185 - 12 9n ' Y)s

/Oy [(62 + /0 I (s, t)ds> (2.0

1 1
< - .
}dt <75 Qnr(a:,y),

or Oz

‘ ow™ o™
y
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r(z,y).

(s,y) 1 1
< .
]ds =12 on

* y ow™ o™
c3 + I3(s,t)dt - —
/0 [(3 /0 3(5:8) )H gy Oy

By the above and estimates f we see

11 1
Hwn+1_vn+1H(Iyy <6 -— 771( 7y) 2n+1 (.I' y)

12 2n
awn-i-l a,un—i-l (z,y) 1 1 1
_ <6. .
H B Oz <6 g5 @) = g y),
awn—i-l 87)n+1 (z,y) 1 1
_ <6 — . —
‘ dy ay ||, 12 on " (@9) = et (@, y),

hold for n + 1. Hence, by virtue of the induction the proof of estimates

is complete. From this estimates and . we see that that sequences
{( " 85’;, agy )} { (w, 85”;, 85‘; )} are convergent in C(I,R¥) x Cy(I,R¥) x
Co(I,R¥) and

so that if estimates f hold for some n > 1 then estimates 1)
(14)-

ov" ov" ow™ ow™
ningo(v’ﬁx’ﬁy) nggo(w’ax’(?y)

We note that from and the monotone character of f, g we have

F10%)z,y) + glw’)(z, y) < fl"](2,y) + glw")(,y) < flw’) (@, y) + g[v")(z,y),

F10%)z,y) + glw’)(z, y) < flw"](2,y) + g[v")(x,y) < flw’)(z,y) + g[v°)(z,y),
where n = 0, 1, ... Moreover, from assumption and we have that
F°) (@, y) + g[w’](z,y) € L'(I,R¥) and flu’](z,y) + g[v°)(z,y) € L' (1, R¥).
From the above, assumption and Lebesgue theorem on dominated con-
vergence we see that the function u defined by

w(z,y) = lim o"(z,y) = lim w"(z,y)

is the solution of problem such that (v%) < (u) < (w%) on I. In order to
prove that u is the unique solution of such that (v°) < (u) < (w°) on I.
Assume that @ is solution of (4] such that (v°) < (u) < (w°) on I. If for some
n > 0 we have v" < u < w" and p = w™t! — @ then from monotone of f and
g we get
0?p - -
5oy B ) = flw'l(@,y) + glv"|(z,y) — flal(z,y) - gla](z, y) > 0.
oy
Moreover, p = 0 on Iy and dp/dx(x,0) = dp/dy(0,y) = 0 for x € [0,a] and
€ [0,8]. Therefore w™*! < @ on I. Analogously, we get v"*1 > @ on I.
Therefore u is the unique solution of (@) such that (v°) < (u) < (W) onI. O
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3. The Newton method. Let (X, || -||x) be a Banach space and S =
{ue X :|lu—wulx < 0}, where up € X and § > 0 are arbitrary. Let
F : S — X be a given operator such that F'(u) exists for u € S. We consider
the equation

(21) F(u) =0
and the Newton sequence {u"} defined by
(22) W =uy i W =" — [F(u")]) P F (™) for n > 0.

We now state Kantorovich theorem and some lemmas that will be of use later.

THEOREM 2. Suppose that F : S — X and

1°) The Fréchet derivative F'(u) exists for u € S.
2°) There exists A € Ry such that

| F (u) — F'(@)||« < Allu —1l|x foru, aesS.
3°) The operator F'(ug) has a inverse and there is B € Ry such that
[F (uo)] ]« < B.
4°) For ug the estimate ||[F(uo)] = F (uo)||x < n holds.
5°) The constants A, B, n fulfil h = ABn < %
6°) For § > 0 we have

1—+v1—-2h
——F—n<0.
h
Then

a) There exists the solution of .
b) The Newton sequence exists and there is u* such that u* = lim u".

c) F(u*) =0 and the following estimate holds

Ju" — u*||x < (2h)*" 19, for n > 0.

on—1
The above theorem can be found in [10].

LEMMA 2. Let A : X — X be the bounded operator such that ||A||« < 1
then E— A : X — X is a bijection, (E — A)™1 is bounded and

1
E-A)7Y,<—F—,
I8 =AMl < T

where E is identity mapping.
LEMMA 3. Letl € L*(I,Ry). Then

xT Yy 1
/ / (s, )" D dsdt < - <e4H (@) — 1) for (z,y) €1,
0 0
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where

H(z,y) = /0 /Oyl(s,t)dsdt.

PRrROOF. We integrate by parts the left-hand side of obtain

T Y s t
4/ / / l(z,t)dz/ I(s, z)dze* D dtds
o Jo Jo 0
@ t t=y Yy
(23) —/ {[/ I(s, z)dze4H(8t)] —/ I(s,t) 4H(S’y)dt}ds
t=
y
/ / s, 2)dze V) g — / 1(s,t)e () dsdt.
0o Jo

From (23)) and the fact that [ € L'(I,R,) we get

/ / s, t 4H(St)d$d7f </ / s, Z dZ€4H sy)d ( 4H (z,y) 1)‘

We consider the problem

(24) {aajay (x,y) = f(x,vy, u(x7y)) a.e. in I,

(z,y) = (. y) on Io,
where f: I x C(D,R) — R. Problem is equivalent to the equation
(25) Flul(z,y) =0 for (z,y) € I',
where
(26)  Flul(z,y) = u(z,y) —(x,0) = ¥(0,y) +1(0,0)

/ / f(s,t,u(sp))dsdt for (z,y) € 1,

27)  Flul(z,y) =u(z,y) — ¢(z,y) for (z,y) € Io.

We note that

/ Crvof
(28) (F'lulv)(z,y) =v(z,y) — o 3y (5 b W)V pdsdt for (z,y) €1,
(29) (F'[u]v)(z,y) =v(z,y) for (z,y) € Io.
We define the function ug : I* — R by

uo(z,y) = Y(z,y) for (z,y) € I,
7 P(2,0) +¢(0,y) —9(0,0)  for (z,y) € 1.
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We note that if v satisfies Assumption [3| then uy is continuous on I* and
absolutely continuous on I. Obviously we can choose ug as an arbitrary con-
tinuous function on I'* such that ug(z,y) = ¥ (z,y) for (x,y) € Iy. The Newton
sequence for has the form

u®(,y) = uo(z,y) a.c. in I*,
0 {u"+1<:c,y> = () ~ [P ) ) e in T

hence
(31)  (FuM " (a,y) = (F (@) (z,y) = Fu")(z,y) ae. inl".
From and we get that is equivalent to the equation

U +1(x,y)—/0 /0 %(S,t,u(&t))u(sﬁdsdt

=u"(x,y) — /0 /0 %(s,t,u"st Jugs pdsdt — u"(z, y)
+ ¢ (z,0) + (0,y) — 1(0,0) //fstust )dsdt,
for (z,y) € I. Hence
u" () = 9(x,0) +9(0,y) = 9(0,0)

of n n n
/ / [ St ulsyy) + %(S,t, u(&t))(u(s% — “(s,t))] dsdt.
From and (| we get that (| is equivalent to the equation

U"“(w, y) = ¥(z,y)
for (x,y) € Iy. Hence {u"} defined by has the form
u®(x,y) = ug(z,y) a.e. in I*,
w2, y) = P(x,0) + (0, y) — (0,0
+ 5 ST f (s tu st))—i—af)(s tuf, ))(u’(zsg—u?&t))]dsdt in 1,
w2, y) = Y(z,y) on Io.
Note that problem is equivalent to the problem

(32)

US(%?J) = up(7,y) a.e. in I*,
n+1 o .
S (w,y) = [y, ) + Ly uf, Dl —uf ) e in 1,
un-l—l(x’ y) = T/J(IE,y) on Io.

ASSUMPTION 4. Suppose that the function f : I x C(D,R) — R of the
variables (x,y,w) is such that
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Al) f(- ,w): I — R is measurable for all w € C(D,R) and
f(z,y,-): C(D,R) — R is continuous for a.e. (x,y) € I.
A2) There is m € L'(I,R,) such that

|f (2,9, (W) (zg))] < m(z,y) for ae (z,y) €.

A3) Fora.e. (z,y) € I Frechet derivative g—i(az, y,w) exists and is continuous

linear operator for w € C(D,R). Moreover %(x,y,-) s continuous
operator.
A4) There is a function | € L*(I,Ry) such that
0
(33) L @,y wpul < 16,9l
of - N
(34) H @90) = L0 <itwp)llo sl

for a.e. (x,y) €I and w, ©, u € C(D,R).
REMARK 3. From the mean value theorem and we get that
1f (2, y,w) = f2,y,0)l| <z, y)llw —wflo forae (z,y) €l
and w,w,u € C(D,R).
By the above, it follows that if w™ — w in C(I,R) then
flz,y,w") — f(z,y,w) for a.e. (z,y) € 1.

THEOREM 3. Suppose that assumptions |5 and[{] are satisfied. Moreover
(35)

a rb 1 T Py
sinh(2H (a, b))/ / m(x,y)dzdy < 2 where  H(z,y) = / / (s, t)dsdt.
0 Jo 0 JO

Then

a) There exists the solution of for (z,y) € I*.
b) The Newton sequence exists and there is u* such that v* = lim u"

on I*. o
c) (F(u*))(xz,y) =0 and the following estimate holds

< 27?:1 (2r)*"'n  formn >0,

[Ju” =

where

a b
(36) C = 2ed) - — / / m(z,y)dzdy, h = sinh(2H (a,b))n.
o Jo
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PRrROOF. We consider the Banach space (C(I*,R), || -||1), where

[lulli = max HuH(fﬁy)e%H(x,y)_
(wy)el

Note that
(37) [|ul

e @) < |y, so |Jul| < Culli,

where C is defined by . Now, we will show that assumptions of theorem
Kantorovich are satisfied. From |[(A3)[ we get that the Fréchet derivative of the
operator F exists. Moreover it follows from and that

(F'lulv)(@,y) = (E — Alu])v)(z,y),
where FE is identity mapping and
(38) (Alu]v)(z,y) = /Ox /Oy gi(s,t,u(&t))v(svt)dsdt for (z,y) € 1,
(Alu]v)(z,y) =0 for (z,y) € Ilo.

Let us estimate the norm of A. For (z,y) € I we get

|of

(%

T Yy
S/ / l(s,t)|"U||(S7t)6_2H(57t)€2H(8’t)d8dt
0o Jo
<llell [ [ 1o 02Dt < 3ol
0o Jo

The right side of the above inequality is nondecreasing in x and y. Therefore

[(Alu]v)(z,y)| < (s,t, U(s,t))U(sﬂg)e_ZH(s’t)eQH(s’t) dsdt

1
1Af]olls < Slfvll1

Thus ||A[u]||ls < 2 <1 and Consequently from and Lemma [2| we see that
[F']71 exists with H[]-"’}*lH* < 2. From (34) and Lemma [3| we get that

0 -
< S t u St)) a({; (S)tuu(s,t)>v(s7t)

< / / 1<s,t>|\u<s,t)—ms,tmouv\

/ / s, t Hust) _Ust)Hoe 2H (s,t) HUH st H(s,t) 4H(st)d8dt

< Yl — ally]olls / / (s, 1)1 Ddsdt < 7l[u — ol (419 1)
0Jo0

|(F'[u] — (z,y)] < dsdt
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Therefore

_ —9H(x 1 _ .
|(F'[u]o — F'lifv) (a, y)le ) < 3 llw = all[[v][1 sinh(2H (z, ).

Whence
1P~ ol < SR g,
that is
1P - Fal)l, < SRCH@) ), gy,

Let 7 > 0 be a constant defined by . Then

a b
(39) HM—WMSALAU@%WMWMMWSW
From it follows that

h = sinh(2H (a,b))n <

| =

Moreover from we get that
F [ FLal)h = [Jut =l < 9.

Let
1—+v1-2h
5 == f”.
Then from Theorem |2|and inequality we get the assertion of our theorem.
O
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