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THE MODULAR CLASS AND ITS QUANTIZATION

– MINICOURSE

by Nicola Ciccoli

Abstract. In many of the quantum algebras studied in last years modular
automorphisms play a relevant role. Recently, in the context of deformation
quantization, Dolgushev showed how to relate the van den Bergh automor-
phism, carrying informations on duality between Hochschild homology and
cohomology, with the Poisson modular class of the semiclassical limit. We
will introduce his results and exhibit some interesting examples were trivial
and non trivial modular automorphisms can be expected.

1. Introduction

Under the name quantum geometry one usually refers to a wide variety
of techniques used to relate properties of non commutative algebras with geo-
metric issues. One of the most widely known such a topic is the orbit method
in representation theory, relating irreducible representations of the universal
enveloping algebra to coadjoint orbits of the corresponding Lie algebra.

One peculiar tract of many classes of non commutative algebras studied in
relation with quantization is the appearance of a naturally defined one param-
eter group of transformations on the algebra, related to modular properties.
Examples of such modular automorphism are Connes–Takesaki automorphisms
of von Neumann algebras, KMS automorphisms in groupoid algebras and mul-
tiplicative unitaries in compact quantum groups. At a more algebraic level we
have the Nakayama automorphism in Noetherian Hopf algebras and the van
den Bergh automorphism of general smooth algebras.

When the non commutative algebra under consideration is a deformation
quantization algebra, i.e. it is an associative deformation of a commutative
algebra, the deformation is determined by its infinitesimal datum: a Poisson
bracket. It is then natural to relate the modular automorphism of non commu-
tative algebras to a geometrical invariant of the underlying Poisson structures.
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The aim of this short course is to explain the property of this invariant, not
accidentally called the modular class of a Poisson manifold, and of its quanti-
zation.

The modular automorphism is maybe the easiest defined invariant on a
Poisson manifold, and certainly one of the few that can be explicitly computed
in most examples. It is determined by a vector field (unique only up to Hamil-
tonian vector fields) whose flow produces a one parameter group of infinitesimal
Poisson transformations. A Poisson manifold is said to be unimodular when
this modular flow can be chosen to be trivial. This property can be seen as a
type II property. In fact Poisson manifolds are naturally foliated by symplectic
manifolds, though the foliation in general fails to have constant rank. In the
case the symplectic foliation is regular and the Poisson structure unimodular
there exists a transverse measure to the foliation. In the non regular case its
full meaning is subtler and, maybe, still not exploited at its fullness.

Quite recently Dolgushev showed how these modularity issues are not just
related by analogy but indeed connected one to the other, at least in the
context of Kontsevich formal deformation quantization. As we think that many
consequences will follow from such results, and many more could be obtained in
specific examples, our plan here is to clarify the general framework surrounding
Dolgushev’s theorems. In the first section we will review the basic ingredients
of Poisson geometry. In the second one we will describe Dolgushev’s theorems.
We will also briefly touch upon the way in which modular properties should
reflect on non commutative geometry à la Connes, when applied to deformation
quantization algebras. Lastly we will describe two specific classes of Poisson
manifolds with different modular properties and we will briefly comment on
their quantizations (in which symmetry could replace formality in trying to
prove analogues of Dolgushev’s theorems).

I would like to thank the organizers of the Conference, for the warm atmo-
sphere and perfect working conditions in Kraków, and all the participants for
the numerous fruitful comments that helped me in clarifying a first version of
these notes.

2. Poisson geometry

In this section we will review some basic results of the general theory of
Poisson manifolds. Everything is quite standard and can be found in [13, 31]
(and references therein). Let M be a smooth manifold. We will denote with
X(M) the space of vector fields on M and with Xp(M) its pth-wedge power,
the space of multivector fields. We will denote with ΩqM the space of q-
differential forms. Given a p-multivector P and a p-form ω we will denote
〈ω, P 〉 the smooth function obtained by pairing them. More generally we will
use ıPω to denote the contraction of a q-form ω with a p-multivector (the



31

result being a q−p form) and, dually, ıωP will stand for the contraction of the
multivector with a form.

2.1. General theory.
Definition 2.1. Let M be a manifold and let π ∈ Γ(∧2TM) be a bivector.

We will say that (M,π) is a Poisson manifold if the bracket on C∞(M) defined
by

{f, g} = 〈π, df ∧ dg〉

is a Lie bracket.

Let us remark that the bivector requirement for π implies the Leibniz
identity

{fg, h} = f{g, h}+ g{f, h} ∀f, g, h,∈ C∞(M).

The condition that the bracket (2.1) is a Lie bracket can be expressed in
compact form once the Schouten–Nijenhuis bracket between multivectors is
introduced. Such bracket is just the extension of the usual Lie bracket of vector
fields to a graded derivation of the whole Grassmann algebra of multivector
fields X•(M), which means that

[X,Y ∧ Z] = [X,Y ] ∧ Z + Y ∧ [X,Z] ∀X,Y, Z ∈ X(M ).

Using such bracket (2.1) is easily summarized as:

[π, π] = 0 ,

since

〈[π, π], df ∧ dg ∧ dh〉 = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} .

For any smooth function f ∈ C∞(M), the vector field

Xf (g) = {f, g} = 〈ıdfπ, dg〉 ∀g ∈ C∞(M)

is called a Hamiltonian vector field of Hamiltonian function f . Using more
generally 1-forms, rather than exact ones, one can define the so-called sharp
map:

]π : Ω1M → X(M); α 7→ iαπ .

In particular, on exact forms, ]π(df) = Xf . Since any 1-form is locally exact,
vector fields in the image of the sharp map are called locally Hamiltonian vector
fields. It is not difficult to show that, from an algebraic point of view, locally
Hamiltonian vector fields are exactly those derivations of C∞(M), which are
at the same derivations of the Poisson bracket (2.1):

X{f, g} = {Xf, g}+ {f,Xg} ∀f, g ∈ C∞(M).
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Hamiltonian vector fields span an involutive non regular1 distribution which
is integrable. Any Poisson manifold is therefore equipped with a canonical non
regular foliation. Two points on each leaf may be connected by a chain of
locally defined integral paths of Hamiltonian fields. Furthermore each leaf car-
ries a well defined symplectic form induced by the Poisson tensor. These data
together constitutes what is called the symplectic foliation of (M,π).

Through the sharp map it is also possible to define a Lie bracket between
1-forms:

[α, β] = L]π(α)β − L]π(β)(α)− dπ(α, β) ∀α, β ∈ Ω1M .

This bracket is relevant in that it shows that the cotangent bundle of any
Poisson manifold T ∗M , endowed with this bracket between its sections and
the sharp map is an example of what is called a Lie algebroid. Much of what
follows holds true for more general Lie algebroids.

2.2. Cohomology and homology.
On the vector spaces of multivector fields on a Poisson manifold (M,π) we

can define, by mean of the Schouten–Nijenhuis bracket, the following degree 1
operator:

dπ : Xk(M)→ Xk+1(M); dπ(P ) = [π, P ] .

From the graded Jacobi identity for the Schouten bracket one easily gets that
d2
π = 0. The cohomology of the complex (Xk(M), dπ) (first introduced in [25])

is called the (Lichnerowicz)–Poisson cohomology of M and will be denoted as
Hk
π(M).

This cohomology has a (well founded) reputation for being quite hard to
compute. This is due to the fact that it depends both on the topology of the
foliation and on the variation of the symplectic form from leaf to leaf. Some
interesting examples on linear spaces were explicitly computed recently (see
[1, 28, 29]).

Let us try to understand it a little bit better by having, as usual, a closer
look at the meaning of low-dimensional cohomology groups. If we take a 0-
cochain f ∈ C∞(M), then dπ(f) = Xf . The 0-th cohomology group can be
therefore described as the set of those functions such that Xf = 0. Such func-
tions are called Casimir functions on the Poisson manifold and are constant
along the leaves of the symplectic foliation.

1By non regular we man that its local dimension is non globally constant but it is only
a lower semicontinuous function on M . Integrability of the distribution does not follow from
the Frobenius theorem, though involutivity holds, but requires the subtler Stefan–Sussmann
theorem (see [6, 13, 31] for more details).
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Examples.

• Let M = R2n+1, with coordinates pi, qi, t, i = 1, . . . n and with the
canonical Poisson brackets having as only nontrivial commutators:

{pi, qj} = δi,j .

Then H0(M) is isomorphic to C∞(R), identified with functions on M
depending only on t. In this case the symplectic leaves coincide with
the level sets of the Casimir function t.
• Let π = (x2+y2)∂x∧∂y on R2. Then a non constant function f ∈ H0

π(M)
if and only if (x2 + y2)f ≡ 0. This implies f = 0 on R2 \ {(0, 0)} and,
by continuity, f ≡ 0. Thus H0(M) ' R and the Poisson manifold has
no nonconstant Casimirs. Remark that this may happen even if the
foliation is non trivial (hence leaves do no always coincide with level
sets of Casimirs).

Let’s now take a 1-cochain X ∈ X1(M). Then dπX = 0 if and only if
X ∈ Der(C∞(M), {, }) is also a derivation of the Poisson bracket. Such a
vector field is called a Poisson vector field and, as said, is locally Hamiltonian.
Therefore H1

π(M) is the space of Poisson vector fields modulo Hamiltonian
vector fields. A rephrasing of this statement is to say that the first Poisson
cohomology group is the space of Poisson derivations modulo inner Poisson
derivations. Our main invariant, the modular class, sit inside this cohomology
groups and we will not need the higher order ones. A way of distinguishing
locally Hamiltonian vector fields from Hamiltonian ones is the following: while
the flow of Hamiltonian vector fields preserve, by definition, the symplectic
foliation, the flow of locally Hamiltonian vector fields can move points from
one leaf to another.

In the special case of a symplectic manifold M the sharp map is an isomor-
phism of vector spaces. At the level of 1-chains the sharp map sends closed
1-forms isomorphically onto Poisson vector fields and exact 1-forms isomorphi-
cally onto Hamiltonian vector fields. Its linear graded extension to the whole
Grassmann algebras of differential forms and multivector fields is an isomor-
phism of cochain complexes, since it commutes with coboundary operators,
and thus Hk

π(M) ' Hk
deR(M).

On Poisson manifolds it is possible also to give an homology theory, using
differential forms, which is to a certain extent dual to the previous one. In
fact, this duality problem together with how it is reflected in quantization is
the core of these notes. On the space of smooth k-forms ΩkM we can define a
homology operator ∂π as the graded commutator

∂π : ΩkM → Ωk−1M ; ∂π = [d, iπ] .
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It can be checked (the computation being not so trivially easy) that ∂2
π = 0.

The corresponding homology (introduced by Brylinski in [5]) will be called the
Poisson homology of M and denoted Hπ

k (M).
Let us consider, as before, the simplest low-dimensional case. Let α = fdg

be a generic 1-form on M . Then:

∂π(fdg) = diπ(fdg)− iπ(df ∧ dg) = −{f, g} .

Therefore
Hπ

0 (M) = C∞(M)/{C∞(M), C∞(M)} .
2.3. The modular class.
Let, from now on, M be orientable of dimension n (this hypothesis is not,

strictly speaking, necessary, but will simplify things a little bit). Let Ω be
a volume form on M . Take any f ∈ C∞(M). Due to dimension reasons,
the Lie derivative of the volume form Ω in the direction of the Hamiltonian
vector field Xf is proportional to Ω itself, thus there exists a smooth function
φΩ(f) ∈ C∞(M) such that:

LXfΩ = φΩ(f)Ω .

We have the following facts (which follows through a straightforward check
from definitions):

1. the map φΩ : f 7→ φΩ(f) is a derivation of C∞(M), thus a vector field;
2. the map φΩ is a derivation of {−,−}, thus a Poisson vector field;
3. let Ω′ = aΩ be another volume form on M , a ∈ C∞(M), a(x) 6= 0,
∀x ∈M ; then

φΩ′ = φΩ +X−log|a| .

These three facts together imply that the vector field φΩ defines a Poisson
cohomology class [φΩ] ∈ H1

π(M) which does not depend on M .2 This class is
called the Poisson modular class and, as everyone may have guessed by now,
is the main character entering our story.

A Poisson manifold (M,π) such that [φΩ] = 0 will be called unimodular.
1. Let M be symplectic of dimension 2m; then M is unimodular (use the

symplectic volume Ω = ωm

m! ).
2. Let M = g∗ be the dual of a Lie algebra with the linear Poisson struc-

ture. In this case the modular class coincides with the Lie algebra coho-
mology class defined by the adjoint character X 7→ tr(adX). Therefore
M is unimodular as a Poisson manifold if and only if g is unimodular
as a Lie algebra.

2In the algebraic setting which will be mentioned in the next section some additional
care is needed; the appearance of a logarithm in the above formula forces to work with the
subtler notion of log-Hamiltonian vector fields.
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3. Let M be regularly foliated by symplectic manifolds. Then one can
prove that there exists an injection H1(M) ↪→ H1

π(M) sending the Reeb
class of the foliation to the Poisson modular class. In this case, therefore,
Poisson unimodularity is equivalent to vanishing of the Reeb class.

Let us consider a fixed (M,π) and the volume form Ω. Then the following
chain of equalities holds:∫

M
{f, g}Ω =

∫
M

(
LXf g

)
Ω

=
∫
M
LXf (gΩ)− gLXfΩ

=
∫
M

(
dıXf gΩ

)
+ ıXfd (gΩ)− gLXfΩ

= −
∫
M
gφΩ(f)Ω ∀f, g ∈ C∞(M) .

The equality between the first and last line of this chain is called Poisson KMS
condition. Considering the integral w.r. to Ω as a trace trΩ on the associative
algebra C∞(M)(M) the above condition states that in general such trace fails
to be also a trace at the Poisson algebra level, since

trΩ({f, g}) = −trΩ(φΩ(f)g)

and the modular class measures this failure.
In case (M,π) is a unimodular Poisson manifold the volume form Ω can

be chosen in such a way that φΩ = 0. Then from the Poisson KMS condition
we get: ∫

M
{f, g}Ω = 0 ∀f, g ∈ C∞(M).

This means that there is a choice of volume form such that
∫
M Ω = trΩ is a

Poisson trace on the Poisson algebra C∞(M). The existence of a Poisson trace
is a non trivial fact (and examples of Poisson manifolds having no Poisson
traces are easily produced). Let us remark that in general the space of Poisson
traces can be seen as dual to the 0-dimensional Poisson homology Hπ

0 (M).
Another point of view on the same property is the following. The Poisson

boundary of a volume form can be expressed through the simpler formula

∂πΩ = −ıφΩ
Ω

therefore (M,π) is Poisson unimodular if and only if there exists a volume form
Ω such that ∂πΩ = 0. This means that such volume form defines a non trivial
cycle for the higher Poisson homology and therefore implies Hπ

n (M) 6= 0.
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2.4. Duality.
To express correctly the duality between Poisson cohomology and homology

we need their version with coefficients. Coefficients can be thought either,
algebraically, as Poisson modules or, more geometrically, as being a vector
bundle with a flat “connection.” The right idea of connection in this context
is that of contravariant connection

Definition 2.2. Let E →M be a vector bundle on the Poisson manifold
M . A flat contravariant connection on M is a linear map

D : Ω1M ⊗ Γ(E)→ Γ(E); (α, s) 7→ Dαs

such that:

1. Dα(fs) = fDαs+ (]π(α)f)s, ∀α ∈ Ω1M, s ∈ Γ(E), f ∈ C∞(M);
2. Dfαs = fDαs, ∀α ∈ Ω1M, s ∈ Γ(E), f ∈ C∞(M);
3. [Dα, Dβ] = D[α, β]π, ∀α, β ∈ Ω1M (flatness condition).

As we were mentioning this notion admits other interpretations. We can
say that the space of sections has a C∞(M)-Poisson module structure3 given by
f ·s = Ddfs, or that the Poisson Lie algebroid (T ∗M, [.], ]π) has a Lie algebroid
representation on E.

We will just need the easiest possible example: let L→M be a trivial line
bundle on M . Any Poisson vector field X ∈ X(M) defines a flat contravariant
connection on L as:

Dfdgh = fDdgh = f [{g, h}+ (Xg)h]

and, in fact, any flat contravariant connection on L arises in this way, consid-
ering the Poisson vector field given by Xg = Ddg1.

Examples.

1. Let M be a symplectic manifold and let E →M be a flat vector bundle
over M with flat connection ∇. Then Ddf = ∇]π(df) = ∇Xf defines a
flat contravariant connection on E.

2. In case M is Poisson and orientable we can consider the canonical line
bundle ∧nT ∗M , together with the trivialization defined by the choice of
a volume form Ω. This determines a Poisson vector field φΩ. The corre-
sponding flat contravariant connection on ∧nT ∗M is called the canonical
Poisson line bundle. In this language saying that a Poisson manifold is
unimodular is tantamount to saying that its canonical Poisson line bun-
dle is Poisson trivial.

3The defining properties of a Poisson module can then be derived just by rewriting
1.-2.-3. in this notation.
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The key point now is that both Poisson homology and Poisson cohomology
can be defined with coefficients in any Poisson vector bundle.4 We will not give
the exact definition here, which will take us too far away from our purposes.
We just remark that in case in which M is symplectic the flat contravariant
connection is just an ordinary flat connection and the Poisson cohomology with
coefficients turns out to be exactly the de Rham cohomology with coefficients
in a flat bundle (see [3] for more on the subject).

In the easiest possible case, that of trivial line bundles L→M carrying a
flat contravariant connection defined by a Poisson vector field X, the twisted
Poisson cohomology with coefficients in L is given by the explicit coboundary
operator

dπ,LP = [π, P ] +X ∧ P ∀P ∈ Xp(M) .

Dually, the Poisson homology with coefficients in L is given by the boundary
operator

∂π,Lω = ∂πω − ıXω ∀ω ∈ ΩpM .

We are now ready to state our duality result ([14] is the first paper in
which a simpler version of this result was obtained; for more on the subject
look at [13] and references therein; complete results expressed in the language
of Lie algebroids can be found in [19]).

Theorem 2.3. Let (M,π) be an orientable Poisson manifold and let E be a
Poisson vector bundle on M . The following Poincaré duality between Poisson
homology and cohomology holds true

Hk
π(M ;E ⊗ ∧nT ∗M) ' Hπ

n−k(M ;E) .

In particular, if (M,π) is unimodular:

Hk
π(M) ' Hπ

n−k(M) .

3. Quantum modular class

In this section we will explain results quite recently obtained by Dolgushev
in [11], settling down the problem of quantization of the modular class in the
formal case.

3.1. Deformation quantization.
Let (M,π0) be an orientable Poisson manifold.5 Let A~ be a deformation

quantization of this manifold. This basically means that A~ is a topologically
free C[[~]]-associative algebra (topologically free means Hausdorff and complete

4In the Lie algebroid setting we are dealing with Lie algebroid (co)homology with coef-
ficients in a representation, a natural generalization of what is usually done for Lie algebras.

5The setting in which Dolgushev’s results are obtained is that of a smooth affine variety
over C with trivial canonical bundle.
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in the ~-adic topology and torsion free with respect to ~; this is equivalent to the
existence of a vector space isomorphism A~ ' A[[~]]) such that, furthermore:

A~
~A~

' F(M);
[f1, f2]

~
mod ~ = {f1, f2} .

Here by F(M) we will mean an algebra of functions on the manifold such that
its characters allow to reconstruct the point set M . It can be, depending on
the context, the algebra of regular function on a smooth affine variety, the
algebra of smooth functions on a manifold and so on.

The renowned Kontsevich formality theorem (see [20]) implies that for any
Poisson manifold such a deformation quantization exists. Furthermore any de-
formation quantization is uniquely determined by the so called Kontsevich
class, which is a formal Poisson bivector, i.e. π ∈ ~Γ(∧2TX)[[~]], such that
π = ~π0 + O(~2) and [π, π] = 0. Most of what was said in the previous chap-
ters about Poisson manifolds keeps being true for formal Poisson manifolds,
where we will just allow formal power series of functions, vectors, multivectors,
differential forms and so on.

Let us remark, in particular, that if a formal Poisson bivector is unimodular
then also its 0-order term π0, which is again a Poisson bivector, is unimodular.
If X is a formal Poisson vector field for π, i.e. an element of Ξ(M)[[~]] which is
a derivation of the formal Lie bracket defined by π, then its lower order term
X0 is a Poisson vector field for π0.

Our aim here is to give an answer to the following questions:
1. Does the quantization of unimodular Poisson manifolds carry special

features?
2. Can the modular vector field be lifted to a quantization?
To address such questions we will first address a seemingly unrelated alge-

braic duality.
3.2. The van den Bergh duality.
The van den Bergh duality theorem is a purely algebraic results which clari-

fies the extent to which Hochschild homology and cohomology of an associative
algebra are dual.

We do not attempt to provide full definitions here (the standard refer-
ence being [26]); we just remark that Hochschild (co)homology is the natural
homology theory arising in the category of unital associative algebras,6 rul-
ing, for example, associative algebra deformations. When the associative al-
gebra is C∞(M) (and similar results hold true for other function algebras) the
Hochschild homology (resp. cohomology) with coefficients in the algebra itself,
seen as a bimodule by left and right multiplication, is isomorphic to Ω∗M (resp.
to X(M)). This result is known as Hochschild–Kostant–Rosenberg theorem;

6They can be shortly defined, for example, in terms of Ext and Tor functors, which is
not very helpful for someone unfamiliar with this language, see [22].
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we will call HKR map the map on chains descending to this vector space
isomorphism.

Let B be any complex associative algebra and Bop the opposite algebra
a ·op b = b · a; let us denote with Be = B ⊗ Bop the associative envelope of
B. This space carries a natural B-bimodule structure, given by left and right
multiplication in B. Let us define dimB as the projective dimension7 of the
algebra. The algebra B is said to be smooth whenever dimB < ∞. With
HHk(B;M) (resp. HHk(B;M)) we will denote the Hochschild cohomology
(resp. homology) with coefficients in a B-bimodule M ([26] for general defini-
tions).

The next proposition appears, at first, as a very specialized assertion on
this algebraic cohomology theory. It is our purpose to show how it is intimately
related to the Poisson modular class when the algebra under investigation is a
deformation quantization algebra. Let us recall that a B-bimodule M is called
invertible if there exists another B-bimodule, denoted M−1, such that:

M ⊗B M−1 ' B; M−1 ⊗B M ' B,
where ' stands for B-bimodule isomoprhism.

Theorem 3.1 (van den Bergh). Let B be a smooth algebra. Suppose that
there exist n ∈ N and an invertible bimodule ωB such that:

HHk(B,Be) =
{
ωB k = n
0 k 6= n

then
1. n = dimB;
2. HHk(B,ωB ⊗B M) ' HHn−k(B,M) for any B-bimodule M .

In this case ωB is called the dualizing bimodule of B.
What does this theorem tell us in the classical case, B = C∞(M)? In that

case an invertible projective B-bimodule is equivalent to8 a line bundle L on
M , such that there exists another line bundle for which L⊗L−1 and L−1 ⊗L
are the trivial line bundle. The bundle ωB, in the orientable case, is nothing
but the canonical line bundle (with non zero sections given by volume form)
and the van den Bergh duality, in that case, is nothing but a different avatar
of the usual Poincaré duality appears.

Let us now move to deformation quantization algebras. A special family
of B-bimodules we need to consider in the non commutative case is given by
algebra automorphisms ν ∈ Aut(B). Any such automorphisms defines two
B-bimodule structure on B itself, to be denoted, respectively, by νB and Bν
given by:

7This means the length of a projective resolution of B in the category of finitely generated
B-bimodules.

8Think at the projective bimodule as the space of sections of the bundle.
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1. (b ·ν b1) ·ν b2 = ν(b)b1b2, ∀b, b1, b2 ∈ B;
2. (b�ν b1)�ν b2 = bb1ν(b2), ∀b, b1, b2 ∈ B.

Proposition 3.2. Let A~ be a deformation quantization of the Poisson
manifold (M,π). Then A~ satisfies the hypothesis of van den Bergh theorem.
Furthermore dimA~ = dimM and the dualizing bimodule ωA~ is isomorphic
to A~ν, where ν ∈ Aut(A~), ν = Id mod ~.

Let us remark that the last equality means that the automorphism ν equals
the identity at order 0, i.e. for any a ∈ A~ we have that (ν(a)− a) ∈ ~A~.

Let us consider the trivial case of a manifold with zero Poisson structure
and its obvious deformation quantization, which is nothing but its C[[~]]-linear
extension. Then this proposition recovers the usual Poincaré duality with
ν = Id, i.e. the dualizing bimodule is a trivial rank 1 projective bimodule, the
space of sections of a trivial line bundle.

In the general case this proposition, as mentioned in the introduction,
states that any deformation quantization algebra comes equipped with a dis-
tinguished automorphism ν. To be precise, ν is not unique; it is uniquely
defined only up to inner automorphisms of A~ (i.e. conjugation by elements of
A~). Any such automorphism will be called a modular automorphism of A~.

It is also worth mentioning that the statement above does not apply only to
Kontsevich’s deformation quantization but to any deformation quantization,
in the loose sense specified at the beginning of this section.

We would like to relate this natural modular automorphism with the Pois-
son modular flow of the undeformed algebra. Since in the following we will need
formality theorems (for the deformed algebra and for its Hochschild (co)chains)
we will restrict ourselves to Kontsevich’s deformation quantizations.

Theorem 3.3 (Dolgushev). The van den Bergh dualizing bimodule of A~
is isomorphic to A~ (thus ν is inner) iff π is unimodular.

Sketch of proof. Let us first suppose that ωB ' A~ as a bimodule.
Then van den Bergh theorem implies that there is an isomorphism:

V : HH0(A~,A~)→ HHn(A~,A~) .

The formality theorems for chains and cochains (see [12]) guarantee the exis-
tence of isomorphisms

(3.1) µ1 : HH0(A~,A~)→ H0
π(M); µ2 : HHn(A~,A~)→ Hπ

n (M) .

Let us now consider [1] ∈ H0
π(M). Then µ2 ◦ V ◦ µ−1

1 [1] = [ω], where ω ∈
ΩnM [[~]] is such that ∂πω = 0; if we prove that ω is a volume form (i.e.
nowhere vanishing) on M then we are done (see remark 2 after the definition
of the modular class). Let ω = ω0 +O(~). Dolgushev shows that ω is a volume
form iff ω0 is. To prove that ω0 never vanishes it is enough to use the map V0
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(the ~ = 0 term of the van den Bergh isomorphism) and Hochschild–Kostant–
Rosenberg theorem.
Let us now start from π being unimodular. Then there exists a volume form
ω ∈ ΩnM [[~]]such that ∂πω = 0 and ω0 is a volume form. Now van den Bergh
theorem establishes an isomorphism

Ṽ : HHn(A~,A~)→ HH0(A~, ν
−1A~).

Let us consider Ṽ (µ−1
2 [ω]). This is represented by an invertible b ∈ A~ which

is a twisted 0-cocycle, i.e.:

ν−1(a) ? b− b ? a = 0 , ∀a ∈ A~.

Thus ν−1(a) = b ? a ? b−1, which means that ν is an inner automorphism and
therefore A~ν ' A~ as A~-bimodules.

In general an associative algebra such that the van den Bergh dualizing
bimodule is isomorphic to the algebra itself is sometimes called a Calabi–Yau
algebra [16]. In this language the theorem states that a deformation quanti-
zation algebra is Calabi–Yau if and only if the underlying Poisson bivector is
unimodular.

We would like to remark here that the proof of this theorem does not really
need formality theorems in their full form. What is really needed is the exis-
tence of the isomorphisms given in (3.1). In specific cases such isomorphisms
can be obtained without relying on the ∞-algebra’s approach (e.g. through
spectral sequences, as we will see for quantum groups).

3.3. Quantization of Poisson vector fields.
Let X ∈ X(M)[[~]] be a formal vector field. How does this quantize?

Certainly any derivation D ∈ Der(A~) has a lower order term D0
9 which is

a derivation on functions, thus a vector field on M . We would like to build a
section of this map, at least for Poisson vector fields (at the formal level).

Proposition 3.4. There exists a C[[~]]-linear map

(3.2) X[[~]] ∩Ker dπ → Der(A~);X 7→ DX

such that:
1. DX = X mod (~);
2. [DX , DY ] = D[X,Y ] + J , where J is an inner derivation of A~.

Let us remark that if X ∈ X[[~]] ∩ Ker dπ then its lower order term X0

is a π0-Poisson vector field. Let us also stress the point that this map is
nothing but a lifting at the level of cycles of the isomorphism µ : H1

π(M) '
HH1(A~,A~) provided by formality for Hochschild chains. The existence of
such map can be expressed by saying that all Poisson vector fields can be
quantized as derivations of the quantum algebra. We do not know, apart

9Say D ∈ ~nDer(A~) but D 6∈ ~n−1Der(A~); then D0 = D/~n mod ~.
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from a bunch of examples, results of this kind which do not rely on formality
techniques.

Take now φΩ to be a modular vector field for (M,π). Recall that the Kont-
sevich class of the quantization is π = ~π0 + O(~2), thus φΩ ∈ ~Γ(TM)[[~]] ∩
Ker dπ, i.e. φΩ = 0 mod ~. Then the quantization of the modular vector field
via (3.2) verifies DφΩ

= 0 mod ~. This allows to define an automorphism of
A~ by formal exponentiation:

exp(DφΩ
) =

∑
n≥0

~n
Dn
φΩ

n!
.

In the next section we will see that this automoprhism can be identified with
the modular one.

3.4. Main theorem.
Theorem 3.5 (Dolgushev). Let A~ be a deformation quantization of (M,π0)

and let π be a representative of the Kontsevich class, with modular vector field
φΩ w.r. to a formal volume form Ω ∈ Γ(∧nT ∗M)[[~]]. Consider the corre-
sponding derivation DφΩ

∈ Der(A~). Then the modular automorphism of A~
is

ν = exp(DφΩ
)

modulo inner automorphisms.

In another language the same results can be expressed by saying that the
semiclassical limit of the v.d. Bergh dualizing bimodule of A~ is the canonical
flat contravariant connection on M .

Hints on the proof. Let σ = exp(DφΩ
). Define on A~[t, t−1] the asso-

ciative product
(atn) · (btm) = a ? σn(b)tn+m

this product extend to a star product on A[t, t−1][[~]] which is a deformation
quantization of

π0 + t∂t ∧ φΩ .

This last bivector is always Poisson and unimodular10 on M × C∗. We can
now apply Theorem 3.3 to this deformation quantization and conclude that its
v.d. Bergh dualizing bimodule is isomorphic to the algebra itself.

At this point the missing (more technical) step is relating the Hochschild
(co)homology A[t, t−1][[~]] to the one of A~. We will refrain from discussing it
here.

10This kind of Poisson bivectors are called also Poisson–Ore extensions; in particular
this is called the standard unimodular extension in [7].
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Remark. What Dolgushev proves, in passing, is that an Ore extension of
A~ defined by an automorphism (thus: no twisted derivation) is the Kontsevich
quantization of the corresponding Poisson–Ore extension M ×C∗. It would be
interesting to understand whether such a result still holds true for general Ore
extensions admitting non trivial twisted derivations.

3.5. Applications to NC geometry.
In non commutative geometry à la Connes the key notion is that of a

spectral triple, the axiomatic set of data that should generalize the concept
of a spin manifold. The objects in a spectral triple (A, H,D) are a non com-
mutative algebra A, an Hilbert space H and an operator D; having in mind
the triple A = C∞(M), H = L2(M ;S) the space of L2-sections of the spin
bundle S, D a Dirac operator on S. In [18] the author made an attempt to
understand what can be said when, in the spectral triple, the algebra is a de-
formation quantization A~. Spectral triples verify a long list of axioms which
would take us too far away to describe here. One whose role seems, however,
fundamental, concerns the existence of a noncommutative trace. In fact if M
is a spin manifold, it is orientable and integration with respect to a volume
form defines a linear map on C∞(M)c which is trivially a trace. For this rea-
son it is reasonable to expect that non commutative integration is given by a
non commutative trace. This axiom is strictly connected to non triviality of a
suitable Hochschild homology group, the so called dimension axiom.

Proposition 3.6. Let (M,π) be a Poisson manifold with a fixed volume
form Ω and let A~ be any deformation quantization of (M,π). If there exists
a trace on A~ such that

∫
M
fΩ = τ(f̄) mod ~ ,

where f = f̄ mod ~, then φΩ = 0, i.e. (M,π) is unimodular.

This can be seen as a simplified version of Dolgushev theorem (3.3) holding
true for any deformation quantization. It tells us that if we insist on using
traces as a non commutative version of integration then we are forced to restrict
ourselves to the quantization of unimodular Poisson manifolds.

On the other hand for spectral triples, as we said, indeed a trace is neces-
sary. This simple proposition shows that it is unreasonable to expect a spectral
triple if you start with a non unimodular Poisson manifolds.

From another point of view the orientability and dimension axioms of spec-
tral triples together implies that HHn(A~,A~) 6= 0; a non trivial cohomology
class in this space can be seen as a quantized volume form. But then formality
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for chains11 imply that Hπ
n (M) 6= 0 with a volume form having non zero class.

This is exactly, as we said, Poisson unimodularity in disguise.
Thus, whenever we are quantizing a non unimodular Poisson manifold, we

should expect that the deformed algebra has smaller cohomological dimension
than its semiclassical limit. This is exactly what happens, for example, with
compact quantum groups, where a phenomenon known as dimension drop in
Hochschild homology (see [17]) makes its appearance.

To recover the correct cohomological dimension in those cases the use of
twisted traces was proposed. From the point of view of our notes this is no
surprise since twisted Hochschild homology can be seen as a quantization of
Poisson homology with coefficients in a line bundle, precisely the canonical
Poisson line bundle. From this point of view the introduction of so-called
type III spectral triples (see [9]) provides the most natural setting for standard
quantum groups (and in general for quantization of non unimodular Poisson
manifolds).

Unluckily, since standard quantum groups are not known to be ismorphic to
the Kontsevich deformation quantization of underlying Poisson–Lie groups the
previous argument is not a theorem. What one misses here is the isomorphism
between Poisson homology and Hochschild homology of the deformed algebra.
We will further comment on this point in the last section.

4. Group manifolds

In this section we will consider some special cases of Poisson manifolds
carrying a large set of symmetries. This will result in a wide class of examples
of unimodular and non unimodular Poisson manifolds on which the modular
flow is pretty well understood.

4.1. Poisson–Lie groups.
The aim of this last lecture is to describe in more detail what happens when

the Poisson manifold is, in fact, a Lie group and all the structures considered up
to now are compatible with the multiplication. Let, from now on, then G be a
Lie group and g its Lie algebra. Let us denote by lg (resp rg) the left translation
diffeomorphism h 7→ gh) (resp. the right translation diffeomorphism h 7→ hg).
We will denote with lg,∗ and rg,∗ the corresponding tangent maps between
vector spaces, and also their square wedge powers.

11The already invoked formality for Hochschild chains is a statement about the existence
of a specific quasi isomorphism certain of L∞-modules. Rather than trying to explain it,
even vaguely, which would bring us quite far from this discussion we recall its main corollary:
Hochschild (co)homology of Kontsevich’s deformation quantization A~ is given by formal
power series in the Poisson (co)homology of the Kontsevich’s representative π (a formal
Poisson bivector).
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Definition 4.1. Let G be a Lie group. A Poisson structure π on G is said
to be multiplicative (and (G, π) is then called a Poisson–Lie group) if

π(gh) = lg,∗π(h) + rh,∗π(g) ∀h, g ∈ G .

As a Poisson manifold a non trivial Poisson–Lie group is always non regular;
as an exercise the reader can easily show that π(e) = 0. Let us now consider
the following maps:

η : g 7→ lg−1,∗π(g); η : G→ ∧2g

δ : X 7→ d

dt
η(exp(tX))

∣∣
t=0

; δ : g→ ∧2g

The two properties of being multiplicative and of being Poisson for π can be
rewritten as corresponding properties of the linear map δ. They respectively
turn out to be the fact that δ is a 1-cocycle in Lie algebra cohomology with
values in ∧2g, and that its transpose map tδ : ∧2g∗ → g∗ is a Lie bracket on
g∗.

A Lie algebra endowed with a map δ with such properties is called a Lie
bialgebra.

The Lie algebra g∗ integrates to a unique connected simply connected Lie
group G∗. This group turns out to be Poisson–Lie as well (this notion is
self-dual) and will be called the Poisson dual of G.

Let us consider the case in which G is compact. Say that GC is the con-
nected, simply connected, semisimple Lie group that integrates the complexi-
fied Lie algebra gC, so that G is its (unique up to inner automorphisms of GC)
compact real form. Let h be a Cartan subalgebra of gC, such that h ∩ g = t is
the Lie algebra of the maximal torus of G, and choose a basis α1, ..., αn ∈ h∗

of simple roots. Let X±i and Hi (i = 1, . . . , n) be the Chevalley generators
corresponding to the simple roots. Denote with Xα and Hα the Chevalley
generators corresponding to generic roots.

The standard Poisson–Lie group structure on the compact group G is de-
termined by the (coboundary) Lie bialgebra δ(X) = adX r, where

r =
∑
α>0

X−α ∧Xα ∈ ∧2g .

This is the Poisson structure underlying compact quantum groups; its sym-
plectic foliation resembles more a stratification (it is highly singular); leaves
are connected to the Bruhat cells.

4.2. Poisson homogeneous spaces and θ-manifolds.
Let (G, π) be a Poisson–Lie group and let M be a G-homogeneous space

endowed with a Poisson bivector πM . Denote with φ : G×M →M the action
and consider the orbit maps:

φg : x 7→ φ(g, x); φx : g 7→ φ(g, x),
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where g ∈ G and x ∈ M . As before with φg,∗ and φx,∗ we will denote the
tangent maps and their wedge powers. The Poisson manifold (M,πM ) is called
a Poisson homogeneous space if

πM (φ(g, x)) = φg,∗πM (x) + φx,∗πG(g) ∀g ∈ G, x ∈M .

If πG = 0 then πM is called a G-invariant Poisson structure.
Examples of Poisson homogeneous spaces are given by quotients by Poisson–

Lie subgroups (i.e. subgroups such that the Poisson bivector is tangent to
them). However, such case is far from exhaustive.

Let πrG now be simply a right invariant Poisson structure on G (i.e. lg,∗πrG =
πrG, ∀g ∈ G). An easy way to produce such πrG is to start with an element r ∈
∧2g satisfying the classical Yang–Baxter equation [r, r] = 0, and to consider the
corresponding right invariant tensor πrG(g) = rg,∗(r). Let P be a G-manifold,
with a G-invariant Poisson structure πP ;12 and consider G × P as a product
Poisson manifold with Poisson bivector πG⊕πP . The natural diagonal G action
g · (h, x) = (hg−1, gx) preserves this Poisson structure and therefore it induces
a Poisson structure on the quotient (G× P )/G ' P , which is just the sum of
πP with the image of r via the wedge square of the infinitesimal G-action.

In the case in which G ' Tn and πrG has maximal rank, one has that πrG
is determined by the choice of an antisymmetric matrix θ. The corresponding
projected Poisson structure πθ on P , where πP = 0, is called a Poisson θ-
manifold.

Let us now consider the specific example in which P = G, and the left
action is simply given by left multiplication. Fix any element r ∈ ∧2g satisfying
CYBE, let πrG(g) = rg,∗r and take as left invariant Poisson structure just
πP (g) = lg,∗r. Then the projected Poisson structure is the sum of this two
bivectors and turns out to be a Poisson–Lie structure. This also works if
r ∈ ∧2h, where h is a Lie subalgebra of g. In the special case in which G
is compact and h is the Lie algebra of a maximal torus, the CYBE equation
turns out to be trivially satisfied. With this procedure any antisymmetric
matrix θ ∈ ∧2h provides a Poisson–Lie structure πθ on G which is always
different from the standard structure πstd. It can be proved that any Poisson–
Lie structure on a compact G is a linear combination πstd + λπθ, λ ∈ R (the
proof relies on the celebrated Belavin Drinfel’d theorem: see [21]).

4.3. Poisson modular class computations.
Let G be a Poisson–Lie group. Let Ω be a right invariant volume form

on the group. Let x0 be the modular character of g∗, i.e. x0(ξ) = tr ad∗ξ and
let ξ0 be the modular character of the Lie algebra g. Let us denote with xL0
(resp. xR0 ) the left (resp. right) invariant vector field on G such that its value
at the identity is x0. Similarly for ξL0 and ξR0 (which are read as right invariant

12 It is always possible to chose πP = 0.
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1-forms on G). Then Evens–Lu–Weinstein ([14]) proved, with a rather direct
computation, that the modular class with respect to a right invariant volume
form is:

(4.1) φΩ =
1
2
(
xL0 + xR0 − ]π(ξr0)

)
.

A similar formula can be proven for Poisson homogeneous spaces, in full
generality [27]; however, since explaining it here would require some (not so
relevant) additional complications we will stick to the simpler case in which the
homogeneous space is the quotient of a Poisson–Lie subgroup. In that case,
once a G-invariant volume form on the quotient is chosen, the correspoinding
modular vector field on G/H is simply the projection of the one on G.

I would like to use this computation to describe to large classes of Poisson
manifolds “with symmetries,” one of them being unimodular and the other
one being not. The unimodular ones will be Poisson θ-manifolds, the non
unimodular will be standard Poisson–Lie groups and their homogeneous spaces.
In the last section I will comment about their quantizations.

Let us now consider the case of Poisson θ-manifolds. Let ρ : tn → M
be an infinitesimal action of a torus on a manifold, and let θ ∈ ∧2t, so that
πθ(x) = ρ∧2(θ)(x). Now ρ∧2(θ) =

∑
i<j θi,jξi∧ξj , with θi,j ∈ R. Let Ω be a left

invariant volume form on M . If we prove that ∂πθΩ =
∑

i<j θijdiξi∧ξjΩ is zero
then we’ve proven that θ-manifolds are unimodular. Now take into account
that tn is commutative. Therefore [ξi, ξj ] = 0, ∀i, j. Hence:

0 = i[ξi,ξj ]Ω = (Lξiiξj − iξjLξi)Ω = −diξi∧ξjΩ.

In the case of Poisson–Lie θ-groups one can perform a completely analogous
computation.13

Thus also Poisson–Lie θ-groups are unimodular.
Let us move to the standard compact case.

Proposition 4.2. Let (G, πstd) be a standard compact Poisson–Lie group
and Ω be an invariant volume form. Let us denote with Hρ the Cartan element
corresponding to the semisum ρ of all positive roots. This element can be
identified to an element in t∗ via the Killing form, and therefore to an invariant
vector field on G. Then

φΩ = 2iHρ

and (G, πstd) is non unimodular.

13The same proof holds true whenever M carries an invariant G-form, regardless of
abelianity and compactness of the group G in our special case. We stuck to the special case
of torus actions as it was the one raising some interest, in last years, in the context of quanti-
zation issues (e.g. [8, 30]). On the other hand Rn-actions may well provide nonunimodular
Poisson θ-manifolds. A family of interesting such manifolds is currently under investigation
in [2].
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Proof. The computation of the modular vector field is simply an appli-
cation of formula (4.1), once the explicit form of the Poisson–Lie bivector is
given. Remark that being in the G-compact case, the Lie algebra g is unimod-
ular and therefore its modular characters provides no contribution in formula
(4.1), i.e.:

φΩ = −1
2
]π(ξl0) .

Knowing that φΩ 6= 0 for a single volume form is, of course, not enough to check
unimodularity. We need to know here whether its cohomology class is zero.
The point here is that even without computing the full Poisson cohomology of
G (which is not known14 we can conclude that [φΩ] 6= 0. In fact φΩ is tangent
to the maximal torus T having as Lie algebra t the imaginary part of Cartan
root vectors. The restriction of its flow on this torus is not trivial. On the
other hand πstd = 0 when restricted to this torus. Hence the flow of φΩ does
not take place on symplectic leaves but rather moves one 0-leaf to another.
This is possible (basically by definition) exactly if φΩ is a Poisson derivation
which is not Hamiltonian, therefore [φΩ] 6= 0 in H1

π(G).
4.4. Quantization.
Let us consider first Poisson θ-manifolds and groups. Much is known about

their quantizations, approached from many possible points of view. Just think
of the easiest example: invariant symplectic structures on the 2-torus, which
quantize to the quantum torus. Deformation quantization (also in the strict
sense), non commutative algebra by generators and relations, C∗-algebraic
closure, spectral triples, even the connection with geometric quantization via
symplectic groupoids were developed. No non trivial modular flow appears in
such quantizations. Non commutative traces and spectral triples can be explic-
itly built up (see [8]) and the Hochschild dimension coincide with the classical
one. This is in perfect agreement with Dolgushev’s results, though we do not
know, as usual, whether such quantizations are equivalent to Kontsevich’s one.
It is tempting to say that an analogue of Theorems 3.3 and 3.5 should hold
true in the context of strict deformation quantization; they certainly hold for
this class of algebras.

Let us move, now, to standard quantum groups. In this case quantization
has been studied mainly from the algebraic point of view. It is well known
since the work of Woronowicz on Haar’s measures that, as we may expect from
Poisson geometry, non trivial modular automorphisms appear. To prove the
relation between the classical and semiclassical pictures, what we are tempted
to call exact quantization properties, one should try to use the rich symmetries
of this case.

14But upcoming new results on it have been recently announced in [27].
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Using spectral sequences Feng–Tsygan ([15]) showed, in fact, that for the
the standard compact Poisson–Lie group G the Hochschild homology of, re-
spectively, the quantized algebra of formal functions Ch(G) and of quantized
regular functions Ch[G] are given by:

HHn(Ch(G)) = Ωn
f (H)⊗ C((~)),

HHn(Ch[G]) = Ωn(N(H))⊗ C((~)),

where Ωn
f (H) represents the space of formal differential n-forms of degree n

on the Cartan subgroup H and Ωn(N(H)) the space of regular differential n-
forms on the normalizer of H. It would be interesting to understand whether
an extension of these results to cohomology (eventually with coefficients) could
allow to prove directly an analogue of Dolgushev’s results for standard quan-
tizations. This, in principle, should allow to recover by different means (and
maybe to obtain explicit formulas for it) the Nakayama automorphism studied
in [4] from a purely algebraic point of view.

Feng–Tsygan results were extended to a specific subclass of compact Pois-
son homogeneous spaces by [10]. Since quite explicit results on its quantization
were recently given in [23], one could consider this as another interesting test
case.
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in Math., 242, Basel 2005.

14. Evens S., Lu J.–H., Weinstein A., Transverse measures, the modular class and cohomology
pairing for Lie algebroids, Quart. J. Math. Oxford, 50 (1999), 417–436.

15. Feng P., Tsygan B., Hochschild and cyclic homology of quantum groups, Comm. Math.
Phys., 140 (1990), 481–521.

16. Ginzburg V., Calabi–Yau algebras, available at arXive math.QA/0612139.
17. Hadfield T., Krähmer U., On the Hochschild homology of quantum SL(N), C.R.Acad.

Sci. Paris, 343 (2006), 9–13.
18. Hawkins E., Noncommutative rigidity, Commun. Math. Phys., 246 (2004), 211–235.
19. Huebschmann J., Duality for Lie–Rinehart algebras and the modular class, J. Reine

Angew. Math., 510 (1999), 103–159.
20. Kontsevich M., Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66

(2003), 157–216.
21. Korogodskii V., Soibelman J., The algebra of functions on quantum groups I, Math. Surv.

and Monographs 56, American Mathematical Society 1998.
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