THE ŁOJASIEWICZ EXPONENT OF NONDEGENERATE SINGULARITIES

BY GRZEGORZ OLEKSIK

Abstract. In the article we give some estimations of the Lojasiewicz exponent of nondegenerate singularities in terms of their Newton diagrams. The results are stronger than Fukui inequality [**3**] in the case when Newton diagram contains exceptional faces. It is also a multidimensional generalization of the Lenarcik theorem [**5**].

1. Introduction. Let $f: (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$ be a holomorphic function in an open neighborhood of $0 \in \mathbb{C}^n$ and $\sum_{\nu \in \mathbb{N}^n} a_\nu z^\nu$ be the Taylor expansion of f at 0. We define $\Gamma_+(f) := \operatorname{conv}\{\nu + \mathbb{R}^n_+ : a_\nu \neq 0\} \subset \mathbb{R}^n$ and call it the Newton diagram of f. Let $u \in \mathbb{R}^n_+ \setminus \{0\}$. Put $l(u, \Gamma_+(f)) := \inf\{\langle u, v \rangle : v \in \Gamma_+(f)\}$ and $\Delta(u, \Gamma_+(f)) := \{v \in \Gamma_+(f) : \langle u, v \rangle = l(u, \Gamma_+(f))\}$. We say that $S \subset \mathbb{R}^n$ is a face of $\Gamma_+(f)$, if $S = \Delta(u, \Gamma_+(f))$ for some $u \in \mathbb{R}^n_+ \setminus \{0\}$. The vector u is called the primitive vector of S. It is easy to see that S is a closed and convex set and $S \subset \operatorname{Fr}(\Gamma_+(f))$, where $\operatorname{Fr}(A)$ denotes the boundary of A. One can prove that a face $S \subset \Gamma_+(f)$ is compact if and only if all coordinates of its primitive vector u are positive. We call the family of all compact faces of $\Gamma_+(f)$ the Newton boundary of f and denote by $\Gamma(f)$. We denote by $\Gamma^k(f)$ the set of all compact k-dimensional faces of $\Gamma(f), k = 0, \ldots, n - 1$. For every compact face $S \in \Gamma(f)$ we define quasihomogeneous polynomial $f_S := \sum_{\nu \in S} a_\nu z^\nu$. We say that f is nondegenerate on the face $S \in \Gamma(f)$, if the system of equations $\frac{\partial f_S}{\partial z_1} = \ldots = \frac{\partial f_S}{\partial z_n} = 0$ has no solution in $(\mathbb{C}^*)^n$, where $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. We say that f is nondegenerate in the Kouchnirenko's sense if it is nondegenerate on each face $\Gamma(f)$. We say that f is a singularity if f is a nonzero holomorphic

¹⁹⁹¹ Mathematics Subject Classification. 32S05.

Key words and phrases. Lojasiewicz exponent, isolated singularity, nondegeneracy in the Kouchnirenko's sense, degree of C^0 sufficiency.

function in some open neighborhood of the origin and f(0) = 0, $\nabla f(0) = 0$, where $\nabla f = (f'_{z_1}, \ldots, f'_{z_n})$. We say that f is an isolated singularity if f is a singularity, which has an isolated critical point in the origin, i.e. additionally $\nabla f(z) \neq 0$ for $z \neq 0$.

Let $i \in \{1, ..., n\}, n \ge 2$.

DEFINITION 1.1. We say that $S \in \Gamma^1(f) \subset \mathbb{R}^n$ is an exceptional segment with respect to the axis Ox_i if S is a segment lying in the plane Ox_ix_j for some $j \in \{1, \ldots, n\}, j \neq i$, whose one end lies on Ox_i axis and second one is at distance 1 to Ox_i axis (see [5]).

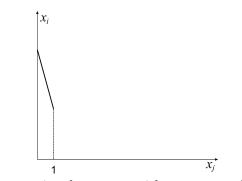


FIGURE 1. An exceptional segment with respect to the axis Ox_i

DEFINITION 1.2. We say that $S \in \Gamma^{n-1}(f) \subset \mathbb{R}^n$ is an exceptional face with respect to the axis Ox_i if its intersection with every plane $Ox_ix_j, j \in \{1, \ldots, n\}, j \neq i$, is an exceptional segment with respect to axis Ox_i .

It is easy to see that there is at most one exceptional face for each coordinate axis. Denote by E_f the set of exceptional faces in $\Gamma^{n-1}(f)$.

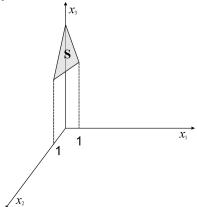


FIGURE 2. An exceptional face S with respect to axis Ox_3

DEFINITION 1.3. We say that the Newton diagram of f is *convenient*, if it has nonempty intersection with every coordinate axis.

DEFINITION 1.4. We say that the Newton diagram of f is *nearly convenient*, if its distance to every coordinate axis doesn't exceed 1.

For every (n-1)-dimensional compact face $S \in \Gamma(f)$ we shall denote by $x_1(S), \ldots, x_n(S)$ coordinates of intersection of the hyperplane determined by face S with the coordinate axes. We define $m(S) := \max\{x_1(S), \ldots, x_n(S)\}$. It is easy to see that

$$x_i(S) = l(u, \Gamma_+(f))/u_i, i = 1, \dots, n,$$

where u is a primitive vector of S. It is easy to check that the Newton diagram $\Gamma_+(f)$ of an isolated singularity f is nearly convenient. So, "nearly convenience" of the Newton diagram is a neccessary condition for f to be an isolated singularity. For a singularity f such that $\Gamma^{n-1}(f) \neq \emptyset$, we define

(1)
$$m_0(f) := \max_{S \in \Gamma^{n-1}(f)} m(S).$$

It is easy to see that in the case $\Gamma_+(f)$ is convenient $m_0(f)$ is equal to the maximum of the length from the origin to the points of the intersection of the Newton diagram and the union of all axes.

REMARK 1.5. A definition of $m_0(f)$ for all singularities (even for $\Gamma^{n-1}(f) = \emptyset$) can be found in [3]. In the case $\Gamma^{n-1}(f) \neq \emptyset$ both definitions are equivalent.

Let $f = (f_1, \ldots, f_n) : (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}^n, 0)$ be a holomorphic mapping having an isolated zero at the origin. We define a number

(2)
$$l_0(f) := \inf\{\alpha \in \mathbb{R}_+ : \exists_{C>0} \exists_{r>0} \forall_{\|z\| < r} \|f(z)\| \ge C \|z\|^{\alpha}\}$$

and call it the Lojasiewicz exponent of the mapping f. There are formulas and estimations of the number $l_0(f)$ under some nondegeneracy conditions of f (see [1]).

Let $f : (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$ be an isolated singularity. We define a number $\mathcal{L}_0(f) := l_0(\nabla f)$ and call it the Lojasiewicz exponent of singularity f. Now we give some important known properities of the Lojasiewicz exponent (see [6]):

- (a) $\pounds_0(f)$ is a rational number.
- (b) $\mathcal{L}_0(f) = \sup\{\frac{\operatorname{ord} \nabla f(z(t))}{\operatorname{ord} z(t)} : 0 \neq z(t) \in \mathbb{C}\{t\}^n, \ z(0) = 0\}.$
- (c) The infimum in the definition of the Lojasiewicz exponent is attained for $\alpha = \pounds_0(f)$.

(d)
$$s(f) = [\pounds_0(f)] + 1$$
, where $s(f)$ is the degree of C^0 -sufficiency of f [2].

Lenarcik gave in [5] the formula for the Lojasiewicz exponent for singularities of two variables, nondegenerate in Kouchnirenko's sense, in terms of its Newton diagram. THEOREM 1.6 ([5]). Let $f : (\mathbb{C}^2, 0) \longrightarrow (\mathbb{C}, 0)$ be an isolated singularity and nondegenerate in Kouchnirenko's sense and $\Gamma^1(f) \setminus E_f \neq \emptyset$. Then

(3)
$$\pounds_0(f) = \max_{S \in \Gamma^1(f) \setminus E_f} m(S) - 1$$

REMARK 1.7. In two-dimensional case one can prove that for isolated singularities such that $\Gamma^1(f) \setminus E_f = \emptyset$, i.e. $\Gamma^1(f)$ consist of only exceptional segments, we have $\pounds_0(f) = 1$.

In multidimensional case we have only an upper estimation, which was given by T. Fukui in 1991.

THEOREM 1.8 ([3]). Let $f : (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$ be an isolated singularity and nondegenerate in Kouchnirenko's sense. Then

(4)
$$\pounds_0(f) \le m_0(f) - 1.$$

We give now the main result, which is the improvement of the above theorem in the case $E_f \neq \emptyset$.

THEOREM 1.9. Let $f : (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$, $n \ge 2$, be an isolated singularity and nondegenerate in Kouchnirenko's sense and $\Gamma^{n-1}(f) \setminus E_f \neq \emptyset$. Then

(5)
$$\pounds_0(f) \le \max_{S \in \Gamma^{n-1}(f) \setminus E_f} m(S) - 1.$$

REMARK 1.10. For n=2 if $\Gamma^{n-1}(f) \setminus E_f = \emptyset$ see Remark 1.7. One can prove that for singularities of *n*-variables, n > 2, if $E_f \neq \emptyset$, then $\Gamma^{n-1}(f) \setminus E_f \neq \emptyset$.

2. Proof of the main theorem. We give now some lemmas used in the proof of the main theorem.

LEMMA 2.1. Let $f : (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0), n \ge 3$, be a holomorphic function in an open neighborhood of $0 \in \mathbb{C}^n$ and $g(z_1, \ldots, z_k) := f(z_1, \ldots, z_k, 0, \ldots, 0) \ne 0, k \ge 2$. Then

(6)
$$\Gamma(g) = \{ S \in \Gamma(f) : S \subset \{ x_{k+1} = \ldots = x_n = 0 \} \}$$

PROOF. "C". Let $S \in \Gamma(g)$, so $S = \Delta(u, \Gamma_+(g))$ for some $u \in (\mathbb{R}_+ \setminus \{0\})^k$. Of course $S \subset \Gamma_+(f) \cap \{x_{k+1} = \ldots = x_n = 0\}$. Set $u' = (u_1, \ldots, u_k, l(u, \Gamma_+(g)) + 1, \ldots, l(u, \Gamma_+(g)) + 1) \in \mathbb{R}^n$. We show that $S = \Delta(u', \Gamma_+(f))$. By definition of u' we have that $l(u', \Gamma_+(f))$ can be realised only for $v \in \Gamma_+(f) \cap \{x_{k+1} = \ldots = x_n = 0\}$. But it is easy to check that $\Gamma_+(f) \cap \{x_{k+1} = \ldots = x_n = 0\} = \Gamma_+(g)$. So we get $l(u', \Gamma_+(f)) = l(u, \Gamma_+(g))$ and $\Delta(u', \Gamma_+(f)) = \Delta(u, \Gamma_+(g))$. Reasumming $S = \Delta(u', \Gamma_+(f))$, it is in $\Gamma(f)$. "C" Let $S \in \Gamma(f)$ i $S \subset \{x_{k+1} = \ldots = x_n = 0\}$. Then $S = \Delta(u, \Gamma_+(f))$ for

some $u \in (\mathbb{R}_+ \setminus \{0\})^n$ and as we observed above $\Gamma_+(f) \cap \{x_{k+1} = \ldots = x_n = 0\}$ and $x_{k+1} = \ldots = x_n = 0\} = \Gamma_+(g)$. So $l(u, \Gamma_+(f)) = l(u', \Gamma_+(g))$, where $u' = (u_1, \ldots, u_k)$. It follows that $\Delta(u', \Gamma_+(g)) = \Delta(u, \Gamma_+(f))$ and $S \in \Gamma(g)$. That concludes the proof. \Box

LEMMA 2.2. Let $f : (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$, $n \ge 2$, be a singularity and $\nabla f \circ \Phi = 0$ for some $\Phi = (\phi_1, \ldots, \phi_n) \in \mathbb{C}\{t\}^n$, $\Phi(0) = 0$, $\phi_i \ne 0$, $i = 1, \ldots, n$. Then there is $S \in \Gamma(f)$ such that $\nabla f_S \circ in \Phi = 0$, so f is degenerate on face S.

PROOF. Denote $d_i := \operatorname{ord} \phi_i > 0$, $w := (d_1, \ldots, d_n)$ and set $S := \Delta(w, \Gamma_+(f))$. Since all coordinates of w are positive, S is a compact face of $\Gamma_+(f)$. Expand f according to the weights system w we have $f = \operatorname{in}_w f + \ldots$. We have the following cases:

(a) $S \not\subset \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i = 0\}, i = 1, \ldots, n$. Then for all $i \in \{1, \ldots, n\}$ we can find a monomial in $\inf_w f$ in which the variable z_i appears. Hence $(\inf_w f)'_{z_i} = \inf_w f'_{z_i}, i = 1, \ldots, n$. By assumption $f'_{z_i} \circ \Phi = 0, i = 1, \ldots, n$, so

(7) $0 = \operatorname{in}_{w} f'_{z_{i}} \circ \operatorname{in} \Phi = (\operatorname{in}_{w} f)'_{z_{i}} \circ \operatorname{in} \Phi = (f_{S})'_{z_{i}} \circ \operatorname{in} \Phi, \quad i = 1, \dots, n.$

It follows that $\nabla f_S \circ in \Phi = 0$, hence f is degenerate on face S. (b) $S \subset \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_{i_0} = 0\}$ for some $i_0 \in \{1, \ldots, n\}$. Set

(8)
$$J := \{ j \in \{1, \dots, n\} : S \subset \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_j = 0 \} \}.$$

Then for $i \notin J$ we can find a monomial in $\operatorname{in}_w f$ in which the variable z_i appears. Hence for $i \notin J$ we get $(\operatorname{in}_w f)'_{z_i} = \operatorname{in}_w f'_{z_i}$. So we have

(9)
$$0 = \operatorname{in}_w f'_{z_i} \circ \operatorname{in} \Phi = (\operatorname{in}_w f)'_{z_i} \circ \operatorname{in} \Phi = (f_S)'_{z_i} \circ \operatorname{in} \Phi.$$

On the other hand $(f_S)'_{z_i} \circ in \Phi = 0$, for $i \in J$.

Reasumming $\nabla f_S \circ in \Phi = 0$, thus f is degenerate on S.

LEMMA 2.3 ([8, Lemma 1.4]). Let $f = (f_1, \ldots, f_n)$, $g = (g_1, \ldots, g_n)$: $(\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ be holomorphic maps in an open neighborhood of zero and let f has an isolated zero at the origin. If $\operatorname{ord}(g - f) > l_0(f)$, then g has an isolated zero and $l_0(g) = l_0(f)$.

We can go to the proof of the main theorem.

PROOF OF THEOREM 1.9. Note in the beginning that if $E_f = \emptyset$, then our theorem is an immediate consequence of Theorem 1.8. So it can be assumed that $E_f \neq \emptyset$. Without lost of generality we can suppose that $E_f = \{S_1, \ldots, S_k\}$, for some $k \in \{1, \ldots, n\}$ and S_i is exceptional face with respect to axis Ox_i , $i = 1, \ldots, k$. First note that $m(S_i) = x_i(S_i)$, $i = 1, \ldots, k$. Set

(10)
$$J := \{ j \in \{1, \dots, k\} : \max_{S \in \Gamma^{n-1}(f) \setminus E_f} m(S) < x_j(S_j) \}.$$

If $J = \emptyset$ then

(11)
$$\max_{S \in \Gamma^{n-1}(f) \setminus E_f} m(S) = \max_{S \in \Gamma^{n-1}(f)} m(S)$$

and our theorem is an immediate consequence of Theorem 1.8. So it can be assumed that $J \neq \emptyset$. Without lost of generality we can suppose $J = \{1, \ldots, l\}$ for some $l \leq k$. Put

(12)
$$g(z_1, \ldots, z_n) := f(z_1, \ldots, z_n) - \sum_{i=1}^l f(0, \ldots, 0, z_i, 0, \ldots, 0).$$

Of course g(0) = 0, $\nabla g(0) = 0$, so g is a singularity. Denote by S_j^w the family of all $S \in \Gamma(f)$, such that $S \subset S_j$ and S includes at least one exceptional segment with respect to axis Ox_j . It is easy to check $\Gamma(g) = \Gamma(f) \setminus \sum_{i=1}^l S_i^w$, so g is a nondegenerate in Kouchnirenko's sense. We show that g is an isolated singularity. Suppose to the contrary that g is not isolated singularity. It follows that there exists a nonzero parametrization $\Phi = (\phi_1, \ldots, \phi_n) \in \mathbb{C}\{t\}^n, \Phi(0) =$ 0 such that $\nabla g \circ \Phi = 0$. We have the following cases:

(a) $\phi_i \neq 0, i = 1, ..., n$. Then from Lemma 2.2 we get that there is $S \in \Gamma(g)$, on which g is degenerate, a contradiction.

(b) There exists $i \in \{1, ..., n\}$ such that $\phi_i = 0$. Since f is an isolated singularity, then by the form of g we easily check that $\phi_{i_1} \neq 0$ for some $i_1 \in \{1, ..., l\}$. Since $S_{i_1} \in \Gamma(f)$, so $g'_{z_k}(0, ..., 0, \phi_{i_1}, 0, ..., 0) \neq 0$ for every $k \neq i_1$, so $\phi_{i_2} \neq 0$ for some $i_2 \neq i_1$. Let $\{i_1, ..., i_n\}$ be permutation of set $\{1, ..., n\}$ such that $\phi_{i_1}, \ldots, \phi_{i_m} \neq 0$, and $\phi_{i_{m+1}}, \ldots, \phi_{i_n} = 0$. Write now the function g in the form

$$g(z_1, \dots, z_n) = h(z_{i_1}, \dots, z_{i_m}) + z_{i_{m+1}}h_{m+1}(z_1, \dots, z_n) + \dots + z_{i_n}h_n(z_1, \dots, z_n),$$

 $m \geq 2$. By the form of g we conclude that h is a singularity and $\nabla h(\phi_{i_1}, \ldots, \phi_{i_m}) = 0$. Hence from Lemma 2.2 there exists $S \in \Gamma(h)$ such that $\nabla h_S(\inf \phi_{i_1}, \ldots, \inf \phi_{i_m}) = 0$, so h is degenerate on S. From Lemma 2.1 we have that $S \in \Gamma(g)$. Of course $g_S = h_S$. Define the parametrization $\Psi = (\psi_1, \ldots, \psi_n), \psi_i := \inf \phi_i$ for $i = i_1, \ldots, i_m, \psi_i := t$ for remaining i. Note that $\psi_i \neq 0$ for $i = 1, \ldots, n$. Since $g_S = h_S$ and $\nabla h_S(\inf \phi_{i_1}, \ldots, \inf \phi_{i_m}) = 0$, then

(13)
$$(g_S)'_{z_i}(\Psi) = 0, \ i = i_1, \dots, i_m.$$

On the other hand $S \subset \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_{i_{m+1}} = \ldots = x_{i_n} = 0\}$, so $(g_S)'_{z_i} \equiv 0$ for $i = i_{m+1}, \ldots i_n$. Reasumming $\nabla g_S \circ \Psi = 0$. It follows that g is degenerate on face S, a contradiction. Hence g is an isolated and nondegenerate in Kouchnirenko's sense singularity. By Theorem 1.8 we have that

 $\pounds_0(g) \leq m_0(g) - 1$. We easily get $g'_{z_i} = f'_{z_i}$, i = l + 1, ..., n and $g'_{z_i} = f'_{z_i} - f'_{z_i}(0, ..., 0, z_i, 0, ..., 0)$, i = 1, ..., l. Note further that ord $f(0, ..., 0, z_i, 0, ..., 0) = x_i(S_i)$, i = 1, ..., l. Then

$$\operatorname{ord}(\nabla g - \nabla f) = \min_{i=1}^{n} [\operatorname{ord}(g'_{z_i} - f'_{z_i})] = \min_{i=1}^{l} [\operatorname{ord}(g'_{z_i} - f'_{z_i})]$$
$$= \min_{i=1}^{l} [\operatorname{ord} f'_{z_i}(0, \dots, 0, z_i, 0, \dots 0)] = \min_{i=1}^{l} [x_i(S_i)] - 1 > m_0(g) - 1 \ge \pounds_0(g),$$

so $\operatorname{ord}(\nabla g - \nabla f) > \pounds_0(g)$. Hence from Lemma 2.3 we get that $\pounds_0(f) = \pounds_0(g)$. Note that

(14)
$$x_i(S_i) > \max_{S \in \Gamma^{n-1}(f) \setminus E_f} \{m(S)\} \ge x_j(S_j), i = 1, \dots, l, j = l+1, \dots, n.$$

Reasumming

$$\pounds_0(f) = \pounds_0(g) \le m_0(g) - 1 = \max\{m(S) \colon S \in \Gamma^{n-1}(f) \setminus \{S_1, \dots, S_l\}\} - 1$$

= max{m(S): S \in \Gamma^{n-1}(f) \ E_f} - 1,

which finishes the proof.

EXAMPLE 2.4. Let $f(z_1, z_2, z_3) := z_3^{20} + z_1^2 + z_2^2 + z_3^4 z_1 + z_3^4 z_2$. It is easy to check that f is an isolated singularity and nondegenerate in Kouchnirenko's sense. It is easy to check that $\Gamma^2(f)$ consists of two faces. One of them $S = \operatorname{conv}\{(1, 0, 4), (0, 1, 4), (0, 0, 20)\}$ is exceptional with respect to Ox_3 axis and $m_0(f) = 20$. By Theorem 1.8 we get $\pounds_0(f) \leq m_0(f) - 1 = 19$, and by the main theorem we have

(15)
$$\pounds_0(f) \le \max_{S \in \Gamma^2(f) \setminus \{S\}} \{m(S)\} - 1 = 8 - 1 = 7.$$

Hence this estimation is really better. It can be shown by result of paper [4] and Lemma 2.3 that we have $\pounds_0(f) = 7$. Hence the obtained estimation is optimal.

Note that for n = 2 immediate corollary from the theorem above is inequality "in one side" in Theorem 1.6.

COROLLARY 2.5. Let $f : (\mathbb{C}^2, 0) \longrightarrow (\mathbb{C}, 0)$ be an isolated singularity and nondegenerate in Kouchnirenko's sense and let $\Gamma^1(f) \setminus E_f \neq \emptyset$. Then

(16)
$$\pounds_0(f) \le \max_{S \in \Gamma^1(f) \setminus E_f} \{m(S)\} - 1.$$

Problem. How to define an exceptional face to get an equality in Theorem 1.9?

References

- Bivia-Ausina C., Lojasiewicz exponents, the integral closure of ideals and Newton polyhedra, J. Math. Soc. Japan, 55 (2003), 655–668.
- Chang S. S., Lu Y. C., A converse of the Kuiper-Kuo theorem, Lectures Notes in Math., 192 (1971), 254–261.
- Fukui T., Lojasiewicz type inequalities and Newton Diagrams, Proc. Amer. Math. Soc., 112 (1991), 1169–1183.
- Krasiński T., Oleksik G., Płoski A., The Lojasiewicz exponent of an isolated weighted homogeneous surface singularity, Proc. Amer. Math. Soc., 137 (2009), 3387–3397.
- 5. Lenarcik A., On the Lojasiewicz exponent of the gradient of a holomorphic function, Banach Center Publications, 44 (1998), 149–166.
- Lejeune-Jalabert M., Teissier B., Clôture intégrale des idéaux et équisingularité, Centre de Mathématiques, École Polytechnique, 1974.
- 7. Lojasiewicz S., Introduction to complex analytic geometry, Birkhäuser, Basel 1991.
- Płoski A., Sur l'exposant d'une application analytique II, Bull. Polish Acad. Sci Math., 33 (1985), 123–127.
- Płoski A., Puiseux series, the Newton diagrams and holomorphic maps in C², Materiały X Konferencji Szkoleniowej z Teorii Zagadnień Ekstremalnych, Łódź (1989), 74–99 (in Polish).

Received November 19, 2009

Faculty of Mathematics and Computer Science University of Łódź Banacha 22 90-238 Łódź, Poland *e-mail*: oleksig@math.uni.lodz.pl