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THE  LOJASIEWICZ EXPONENT OF NONDEGENERATE

SINGULARITIES

by Grzegorz Oleksik

Abstract. In the article we give some estimations of the  Lojasiewicz ex-
ponent of nondegenerate singularities in terms of their Newton diagrams.
The results are stronger than Fukui inequality [3] in the case when Newton
diagram contains exceptional faces. It is also a multidimensional general-
ization of the Lenarcik theorem [5].

1. Introduction. Let f : (Cn, 0) −→ (C, 0) be a holomorphic function in
an open neighborhood of 0 ∈ Cn and

∑
ν∈Nn aνz

ν be the Taylor expansion of
f at 0. We define Γ+(f) := conv{ν+Rn

+ : aν 6= 0} ⊂ Rn and call it the Newton
diagram of f . Let u ∈ Rn

+ \ {0}. Put l(u,Γ+(f)) := inf{< u, v >: v ∈ Γ+(f)}
and ∆(u,Γ+(f)) := {v ∈ Γ+(f) :< u, v >= l(u,Γ+(f))}. We say that S ⊂ Rn

is a face of Γ+(f), if S = ∆(u,Γ+(f)) for some u ∈ Rn
+ \ {0}. The vector u is

called the primitive vector of S. It is easy to see that S is a closed and convex
set and S ⊂ Fr(Γ+(f)), where Fr(A) denotes the boundary of A. One can prove
that a face S ⊂ Γ+(f) is compact if and only if all coordinates of its primitive
vector u are positive. We call the family of all compact faces of Γ+(f) the
Newton boundary of f and denote by Γ(f). We denote by Γk(f) the set of
all compact k-dimensional faces of Γ(f), k = 0, . . . , n − 1. For every compact
face S ∈ Γ(f) we define quasihomogeneous polynomial fS :=

∑
ν∈S aνz

ν . We
say that f is nondegenerate on the face S ∈ Γ(f), if the system of equations
∂fS
∂z1

= . . . = ∂fS
∂zn

= 0 has no solution in (C∗)n, where C∗ = C \ {0}. We say
that f is nondegenerate in the Kouchnirenko’s sense if it is nondegenerate on
each face Γ(f). We say that f is a singularity if f is a nonzero holomorphic
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function in some open neighborhood of the origin and f(0) = 0, ∇f(0) = 0,
where ∇f = (f ′z1 , . . . , f

′
zn

). We say that f is an isolated singularity if f is a
singularity, which has an isolated critical point in the origin, i.e. additionally
∇f(z) 6= 0 for z 6= 0.

Let i ∈ {1, . . . , n}, n ≥ 2.

Definition 1.1. We say that S ∈ Γ1(f) ⊂ Rn is an exceptional segment
with respect to the axis Oxi if S is a segment lying in the plane Oxixj for some
j ∈ {1, . . . , n}, j 6= i, whose one end lies on Oxi axis and second one is at
distance 1 to Oxi axis (see [5]).

Figure 1. An exceptional segment with respect to the axis Oxi

Definition 1.2. We say that S ∈ Γn−1(f) ⊂ Rn is an exceptional face with
respect to the axis Oxi if its intersection with every planeOxixj , j ∈ {1, . . . , n},
j 6= i, is an exceptional segment with respect to axis Oxi.

It is easy to see that there is at most one exceptional face for each coordi-
nate axis. Denote by Ef the set of exceptional faces in Γn−1(f).

Figure 2. An exceptional face S with respect to axis Ox3
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Definition 1.3. We say that the Newton diagram of f is convenient, if it
has nonempty intersection with every coordinate axis.

Definition 1.4. We say that the Newton diagram of f is nearly convenient,
if its distance to every coordinate axis doesn’t exceed 1.

For every (n − 1)-dimensional compact face S ∈ Γ(f) we shall denote by
x1(S), . . . , xn(S) coordinates of intersection of the hyperplane determined by
face S with the coordinate axes. We define m(S) := max{x1(S), . . . , xn(S)}.
It is easy to see that

xi(S) = l(u,Γ+(f))/ui, i = 1, . . . , n,

where u is a primitive vector of S. It is easy to check that the Newton diagram
Γ+(f) of an isolated singularity f is nearly convenient. So, “nearly conve-
nience” of the Newton diagram is a neccesary condition for f to be an isolated
singularity. For a singularity f such that Γn−1(f) 6= ∅, we define

(1) m0(f) := max
S∈Γn−1(f)

m(S).

It is easy to see that in the case Γ+(f) is convenient m0(f) is equal to the
maximum of the length from the origin to the points of the intersection of the
Newton diagram and the union of all axes.

Remark 1.5. A definition of m0(f) for all singularities (even for Γn−1(f) =
∅) can be found in [3]. In the case Γn−1(f) 6= ∅ both definitions are equivalent.

Let f = (f1, . . . , fn) : (Cn, 0) −→ (Cn, 0) be a holomorphic mapping having
an isolated zero at the origin. We define a number

(2) l0(f) := inf{α ∈ R+ : ∃C>0∃r>0∀‖z‖<r‖f(z)‖ ≥ C‖z‖α}
and call it the  Lojasiewicz exponent of the mapping f. There are formulas and
estimations of the number l0(f) under some nondegeneracy conditions of f
(see [1]).

Let f : (Cn, 0) −→ (C, 0) be an isolated singularity. We define a number
£0(f) := l0(∇f) and call it the  Lojasiewicz exponent of singularity f. Now we
give some important known properities of the  Lojasiewicz exponent (see [6]):

(a) £0(f) is a rational number.
(b) £0(f) = sup{ord∇f(z(t))

ord z(t) : 0 6= z(t) ∈ C{t}n, z(0) = 0}.
(c) The infimum in the definition of the  Lojasiewicz exponent is attained

for α = £0(f).
(d) s(f) = [£0(f)] + 1, where s(f) is the degree of C0-sufficiency of f [2].
Lenarcik gave in [5] the formula for the  Lojasiewicz exponent for singular-

ities of two variables, nondegenerate in Kouchnirenko’s sense, in terms of its
Newton diagram.
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Theorem 1.6 ([5]). Let f : (C2, 0) −→ (C, 0) be an isolated singularity
and nondegenerate in Kouchnirenko’s sense and Γ1(f) \ Ef 6= ∅. Then

(3) £0(f) = max
S∈Γ1(f)\Ef

m(S)− 1.

Remark 1.7. In two-dimensional case one can prove that for isolated sin-
gularities such that Γ1(f) \ Ef = ∅, i.e. Γ1(f) consist of only exceptional
segments, we have £0(f) = 1.

In multidimensional case we have only an upper estimation, which was
given by T. Fukui in 1991.

Theorem 1.8 ([3]). Let f : (Cn, 0) −→ (C, 0) be an isolated singularity
and nondegenerate in Kouchnirenko’s sense. Then

(4) £0(f) ≤ m0(f)− 1.

We give now the main result, which is the improvement of the above the-
orem in the case Ef 6= ∅.

Theorem 1.9. Let f : (Cn, 0) −→ (C, 0) , n ≥ 2, be an isolated singularity
and nondegenerate in Kouchnirenko’s sense and Γn−1(f) \ Ef 6= ∅. Then

(5) £0(f) ≤ max
S∈Γn−1(f)\Ef

m(S)− 1.

Remark 1.10. For n=2 if Γn−1(f)\Ef =∅ see Remark 1.7. One can prove
that for singularities of n-variables, n > 2, if Ef 6= ∅, then Γn−1(f) \ Ef 6= ∅.

2. Proof of the main theorem. We give now some lemmas used in the
proof of the main theorem.

Lemma 2.1. Let f : (Cn, 0) −→ (C, 0) , n ≥ 3, be a holomorphic function
in an open neighborhood of 0 ∈ Cn and g(z1, . . . , zk) := f(z1, . . . , zk, 0, . . . , 0) 6=
0, k ≥ 2. Then

(6) Γ(g) = {S ∈ Γ(f) : S ⊂ {xk+1 = . . . = xn = 0}}.
Proof. “⊂”. Let S ∈ Γ(g), so S = ∆(u,Γ+(g)) for some u ∈ (R+ \ {0})k.

Of course S ⊂ Γ+(f)∩{xk+1 = . . . =xn=0}. Set u′ = (u1, . . . , uk, l(u,Γ+(g))+
1, . . . , l(u,Γ+(g)) + 1) ∈ Rn. We show that S = ∆(u′,Γ+(f)). By definition of
u′ we have that l(u′,Γ+(f)) can be realised only for v ∈ Γ+(f) ∩ {xk+1 =
. . . = xn = 0}. But it is easy to check that Γ+(f) ∩ {xk+1 = . . . = xn = 0} =
Γ+(g). So we get l(u′,Γ+(f)) = l(u,Γ+(g)) and ∆(u′,Γ+(f)) = ∆(u,Γ+(g)).
Reasumming S = ∆(u′,Γ+(f)), it is in Γ(f).
“⊂” Let S ∈ Γ(f) i S ⊂ {xk+1 = . . . = xn = 0}. Then S = ∆(u,Γ+(f)) for
some u ∈ (R+ \ {0})n and as we observed above Γ+(f) ∩ {xk+1 = . . . = xn =
0} = Γ+(g). So l(u,Γ+(f)) = l(u′,Γ+(g)), where u′ = (u1, . . . , uk). It follows
that ∆(u′,Γ+(g)) = ∆(u,Γ+(f)) and S ∈ Γ(g). That concludes the proof.
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Lemma 2.2. Let f : (Cn, 0) −→ (C, 0) , n ≥ 2, be a singularity and ∇f◦Φ =
0 for some Φ = (φ1, . . . , φn) ∈ C{t}n, Φ(0) = 0, φi 6= 0, i = 1, . . . , n. Then
there is S ∈ Γ(f) such that ∇fS ◦ in Φ = 0, so f is degenerate on face S.

Proof. Denote di :=ordφi>0, w := (d1, . . . , dn) and set S :=∆(w,Γ+(f)).
Since all coordinates of w are positive, S is a compact face of Γ+(f). Expand
f according to the weights system w we have f = inw f + . . . . We have the
following cases:
(a) S 6⊂ {(x1, . . . , xn) ∈ Rn : xi = 0}, i = 1, . . . , n. Then for all i ∈ {1, . . . , n}
we can find a monomial in inw f in which the variable zi appears. Hence
(inw f)′zi

= inw f ′zi
, i = 1, . . . , n. By assumption f ′zi

◦ Φ = 0, i = 1, . . . , n, so

(7) 0 = inw f ′zi
◦ in Φ = (inw f)′zi

◦ in Φ = (fS)′zi
◦ in Φ, i = 1, . . . , n.

It follows that ∇fS ◦ in Φ = 0, hence f is degenerate on face S.
(b) S ⊂ {(x1, . . . , xn) ∈ Rn : xi0 = 0} for some i0 ∈ {1, . . . , n}. Set

(8) J := {j ∈ {1, . . . , n} : S ⊂ {(x1, . . . , xn) ∈ Rn : xj = 0}}.

Then for i 6∈ J we can find a monomial in inw f in which the variable zi appears.
Hence for i 6∈ J we get (inw f)′zi

= inw f ′zi
. So we have

(9) 0 = inw f ′zi
◦ in Φ = (inw f)′zi

◦ in Φ = (fS)′zi
◦ in Φ.

On the other hand (fS)′zi
◦ in Φ = 0, for i ∈ J.

Reasumming ∇fS ◦ in Φ = 0, thus f is degenerate on S.

Lemma 2.3 ([8, Lemma 1.4]). Let f=(f1, . . ., fn), g=(g1, . . ., gn): (Cn, 0)→
(Cn, 0) be holomorphic maps in an open neighborhood of zero and let f has an
isolated zero at the origin. If ord(g − f) > l0(f), then g has an isolated zero
and l0(g) = l0(f).

We can go to the proof of the main theorem.

Proof of Theorem 1.9. Note in the beginning that if Ef = ∅, then our
theorem is an immediate consequence of Theorem 1.8. So it can be assumed
that Ef 6= ∅. Without lost of generality we can suppose that Ef = {S1, . . . , Sk},
for some k ∈ {1, . . . , n} and Si is exceptional face with respect to axis Oxi, i =
1, ..., k. First note that m(Si) = xi(Si), i = 1, . . . , k. Set

(10) J := {j ∈ {1, . . . , k} : max
S∈Γn−1(f)\Ef

m(S) < xj(Sj)}.

If J = ∅ then

(11) max
S∈Γn−1(f)\Ef

m(S) = max
S∈Γn−1(f)

m(S)
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and our theorem is an immediate consequence of Theorem 1.8. So it can be
assumed that J 6= ∅. Without lost of generality we can suppose J = {1, . . . , l}
for some l ≤ k. Put

(12) g(z1, . . . , zn) := f(z1, . . . , zn)−
l∑

i=1

f(0, . . . , 0, zi, 0, . . . , 0).

Of course g(0) = 0, ∇g(0) = 0, so g is a singularity. Denote by Swj the family
of all S ∈ Γ(f), such that S ⊂ Sj and S includes at least one exceptional
segment with respect to axis Oxj . It is easy to check Γ(g) = Γ(f) \

∑l
i=1 S

w
i ,

so g is a nondegenerate in Kouchnirenko’s sense. We show that g is an isolated
singularity. Suppose to the contrary that g is not isolated singularity. It follows
that there exists a nonzero parametrization Φ = (φ1, . . . , φn) ∈ C{t}n, Φ(0) =
0 such that ∇g ◦ Φ = 0. We have the following cases:

(a) φi 6= 0, i = 1, . . . , n. Then from Lemma 2.2 we get that there is S ∈ Γ(g),
on which g is degenerate, a contradiction.

(b) There exists i ∈ {1, . . . , n} such that φi = 0. Since f is an isolated singular-
ity, then by the form of g we easily check that φi1 6= 0 for some i1 ∈ {1, . . . l}.
Since Si1 ∈ Γ(f), so g′zk

(0, . . . , 0, φi1 , 0, . . . , 0) 6= 0 for every k 6= i1, so φi2 6= 0
for some i2 6= i1. Let {i1, . . . , in} be permutation of set {1, . . . , n} such that
φi1 , . . . , φim 6= 0, and φim+1 , . . . , φin = 0. Write now the function g in the form

g(z1, . . . , zn) = h(zi1 , . . . , zim)+zim+1hm+1(z1, . . . , zn)+ . . .+zinhn(z1, . . . , zn),

m ≥ 2. By the form of g we conclude that h is a singularity and
∇h(φi1 , . . . , φim) = 0. Hence from Lemma 2.2 there exists S ∈ Γ(h) such
that ∇hS(inφi1 , . . . , inφim) = 0, so h is degenerate on S. From Lemma 2.1
we have that S ∈ Γ(g). Of course gS = hS . Define the parametrization
Ψ = (ψ1, . . . , ψn), ψi : = inφi for i = i1, . . . , im, ψi : = t for remaining i. Note
that ψi 6= 0 for i = 1, . . . , n. Since gS = hS and ∇hS(inφi1 , . . . , inφim) = 0,
then

(13) (gS)′zi
(Ψ) = 0, i = i1, . . . , im.

On the other hand S ⊂ {(x1, . . . , xn) ∈ Rn : xim+1 = . . . = xin = 0}, so
(gS)′zi

≡ 0 for i = im+1, . . . in. Reasumming ∇gS ◦ Ψ = 0. It follows that g
is degenerate on face S, a contradiction. Hence g is an isolated and nonde-
generate in Kouchnirenko’s sense singularity. By Theorem 1.8 we have that
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£0(g) ≤ m0(g) − 1. We easily get g′zi
= f ′zi

, i = l + 1, . . . , n and g′zi
= f ′zi

−
f ′zi

(0, . . ., 0, zi, 0, . . ., 0), i=1, . . ., l. Note further that ord f(0, . . ., 0, zi, 0, . . ., 0)
= xi(Si), i = 1, . . . , l. Then

ord(∇g −∇f) =
n

min
i=1

[ord(g′zi
− f ′zi

)] =
l

min
i=1

[ord(g′zi
− f ′zi

)]

=
l

min
i=1

[ord f ′zi
(0, . . . , 0, zi, 0, . . . 0)] =

l
min
i=1

[xi(Si)]− 1 > m0(g)− 1 ≥ £0(g),

so ord(∇g−∇f) > £0(g). Hence from Lemma 2.3 we get that £0(f) = £0(g).
Note that

(14) xi(Si) > max
S∈Γn−1(f)\Ef

{m(S)} ≥ xj(Sj), i = 1, . . . , l, j = l + 1, . . . , n.

Reasumming

£0(f) = £0(g) ≤ m0(g)− 1 = max{m(S) : S ∈ Γn−1(f) \ {S1, . . . , Sl}} − 1

= max{m(S) : S ∈ Γn−1(f) \ Ef} − 1,

which finishes the proof.

Example 2.4. Let f(z1, z2, z3) := z20
3 + z2

1 + z2
2 + z4

3z1 + z4
3z2. It is easy to

check that f is an isolated singularity and nondegenerate in Kouchnirenko’s
sense. It is easy to check that Γ2(f) consists of two faces. One of them
S = conv{(1, 0, 4), (0, 1, 4), (0, 0, 20)} is exceptional with respect to Ox3 axis
and m0(f) = 20. By Theorem 1.8 we get £0(f) ≤ m0(f)− 1 = 19, and by the
main theorem we have

(15) £0(f) ≤ max
S∈Γ2(f)\{S}

{m(S)} − 1 = 8− 1 = 7.

Hence this estimation is really better. It can be shown by result of paper [4]
and Lemma 2.3 that we have £0(f) = 7. Hence the obtained estimation is
optimal.

Note that for n = 2 immediate corollary from the theorem above is in-
equality “in one side” in Theorem 1.6.

Corollary 2.5. Let f : (C2, 0) −→ (C, 0) be an isolated singularity and
nondegenerate in Kouchnirenko’s sense and let Γ1(f) \ Ef 6= ∅. Then

(16) £0(f) ≤ max
S∈Γ1(f)\Ef

{m(S)} − 1.

Problem. How to define an exceptional face to get an equality in Theo-
rem 1.9?
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