ON THE HESSE MATRIX OF A QUASI-HOMOGENEOUS ISOLATED SINGULARITY

by Maciej Sękalski

Abstract. We calculate the rank of the Hesse matrix of a quasi-homogeneous isolated singularity of type (w_1, \ldots, w_n) in terms of the weights w_i .

Let $f = f(x_1, \ldots, x_n) \in \mathbb{C}\{x_1, \ldots, x_n\}$ be a power series convergent near $0 \in \mathbb{C}^n$. We call f an isolated singularity at $0 \in \mathbb{C}^n$ if f(0) = 0 and $0 \in \mathbb{C}^n$ is an isolated solution of a system of equations $\frac{\partial f}{\partial x_1} = \cdots = \frac{\partial f}{\partial x_n} = 0$. Let us recall, that f is a quasi-homogeneous singularity of type (w_1, \ldots, w_n) if f is a polynomial of form

$$f = \sum_{\substack{\underline{i_1}\\w_1}+\dots+\frac{i_n}{w_n}=1} c_{i_1\dots i_n} x_1^{i_1} \cdots x_n^{i_n}$$

for some positive rationals w_1, \ldots, w_n . The number w_i is called the weight of the variable x_i .

Put $H_f(0) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(0)\right]_{\substack{i=1,\dots,n\\j=1,\dots,n}}$. The main result of the paper is

THEOREM 1. If f is an isolated, quasi-homogeneous singularity of type (w_1, w_2, \ldots, w_n) then rank $H_f(0) = 2 \cdot \#\{k : w_k < 2\} + \#\{k : w_k = 2\}.$

In order to prove the above theorem we need

LEMMA 2. If f is an isolated singularity then for any $k \in \{1, ..., n\}$ there exist an $l \in \{1, ..., n\}$ such that the monomial $x_k^a x_l$, $a \ge 1$ appears in f with a nonzero coefficient.

and

LEMMA 3. Let f be an isolated, quasi-homogeneous singularity of type (w_1, w_2, \ldots, w_n) . Let us put $A_i = \{k : w_k = w_i\}$. $A'_i = \{k : \frac{1}{w_k} + \frac{1}{w_i} = 1\}$ for $i = 1, \ldots, n$. Then for each i:

(i) if $w_i < 2$ then $\#A'_i \ge \#A_i = \operatorname{rank} \left[\frac{\partial^2 f}{\partial x_k \partial x_l}(0)\right]_{k \in A_i, l \in A'_i}$, (ii) if $w_i = 2$ then $A'_i = A_i$ and $\#A_i = \operatorname{rank} \left[\frac{\partial^2 f}{\partial x_k \partial x_l}(0)\right]_{k, l \in A_i}$.

Lemma 2 is proved in the article [1] by Saito (see Korollar 1.6), (cf. [2]).

PROOF OF LEMMA 3. First let us fix an i such that $w_i < 2$. It is easy to check that if $w_k = w_i$ for an index k then x_k does not appear in f in the power strictly greater than 1 and from Lemma 2 we see that for any $k \in A_i$ there exist $l \in A'_i$ such, that the monomial $x_k x_l$ appears in f with a nonzero coefficient. Thus f is of the form

$$f(x_1,\ldots,x_n) = \sum_{r \in A_i, s \in A'_i} c_{rs} x_r x_s + \sum_{r \notin A_i, s \notin A'_i} c_{rs} x_r x_s + b(x_1,\ldots,x_n),$$

where ord $b \ge 3$. Since the singularity is isolated then $0 \in \mathbb{C}^n$ is an isolated solution of the system of equations

$$\frac{\partial f}{\partial x_k} = \sum_{l \in A'_i} c_{kl} x_l + \frac{\partial b}{\partial x_k} = 0 \qquad \text{for } k \in A_i,$$
(1)
$$\frac{\partial f}{\partial x_l} = \sum_{k \in A_i} c_{kl} x_k + \frac{\partial b}{\partial x_l} = 0 \qquad \text{for } l \in A'_i,$$

$$\frac{\partial f}{\partial x_j} = \frac{\partial \sum_{r \notin A_i, s \notin A'_i} c_{rs} x_r x_s}{\partial x_j} + \frac{\partial b}{\partial x_j} = 0 \qquad \text{for } j \notin A_i \cup A'_i$$

The solution remains isolated if we take $x_j = 0$ for all $j \notin A_i$. Under this condition system (1) is of the form

$$\begin{aligned} \frac{\partial f}{\partial x_k} &\equiv 0 & \text{for } k \in A_i, \\ \frac{\partial f}{\partial x_l} &= \sum_{k \in A_i} c_{kl} x_k = 0 & \text{for } l \in A'_i, \\ \frac{\partial f}{\partial x_j} &\equiv 0 & \text{for } j \notin A_i \cup A'_i. \end{aligned}$$

Hence $#A'_i \ge #A_i = \operatorname{rank} \left[\frac{\partial^2 f}{\partial x_k \partial x_l}(0) \right]_{k \in A_i, l \in A_i}$.

318

Now, let $w_i = 2$. Then obviously $A_i = A'_i$. We can write

$$f(x_1,\ldots,x_n) = \sum_{r,s \in A_i} c_{rs} x_r x_s + \sum_{r,s \notin A_i} c_{rs} x_r x_s + b(x_1,\ldots,x_n),$$

with ord $b \ge 3$. Taking in (1) $x_j = 0$ for all $j \notin A_i$ we get

$$\frac{\partial f}{\partial x_k} = \sum_{l \in A_i} c_{kl} x_l = 0 \qquad \text{for } k \in A_i = A'_i,$$
$$\frac{\partial f}{\partial x_j} \equiv 0 \qquad \text{for } j \notin A_i = A'_i,$$

hence $#A_i = #A'_i = \operatorname{rank} \left[\frac{\partial^2 f}{\partial x_k \partial x_l}(0) \right]_{k,l \in A_i = A'_i}$. This completes the proof of Lemma 3.

PROOF OF THEOREM 1. Of course, if all weights $w_i > 2$ then rank $H_f(0) = 0$. Indeed, this is because if a monomial $x_k x_l$, $k, l \in \{1, \ldots, n\}$ appears in f with a nonzero coefficient then $\frac{1}{w_k} + \frac{1}{w_l} = 1$, what is impossible when $w_k > 2$ and $w_l > 2$.

Now let us suppose that $w_1 \leq \cdots \leq w_n$. Take a sequence $w_{i_1}, w_{i_2}, \ldots, w_{i_s}$ such that

$$\{w_{i_1}, w_{i_2}, \dots, w_{i_s}\} = \{w_i : w_i \le 2\},\$$
$$w_{i_1} < w_{i_2} < \dots < w_{i_s} \le 2.$$

We easily see that the sets A_{i_j} , $j = 1, \ldots, s$ are pairwise disjoint and also the sets A'_{i_j} , $j = 1, \ldots, s$. Let $H_j = \left[\frac{\partial^2 f}{\partial x_k \partial x_l}(0)\right]_{k \in A_{i_j}, l \in A'_{i_j}}$ for $j = 1, \ldots, s$. Then $H_f(0)$ is of the form

$$H_f(0) = \begin{bmatrix} 0 & & \cdots & & 0 & 0 & 0 & H_1 & 0 \\ 0 & & \cdots & & 0 & H_2 & 0 & 0 & 0 \\ 0 & & \cdots & & 0 & 0 & 0 & 0 & 0 \\ 0 & & \cdots & & 0 & 0 & 0 & 0 & 0 \\ \vdots & & & \ddots & & & \vdots \\ 0 & 0 & 0 & H_s & 0 & \cdots & & 0 \\ \vdots & & \ddots & & & & \vdots \\ 0 & 0 & 0 & & \cdots & & & 0 \\ 0 & H_2^* & 0 & & \cdots & & & 0 \\ 0 & 0 & 0 & & \cdots & & & 0 \\ H_1^* & 0 & 0 & & \cdots & & & 0 \\ 0 & 0 & 0 & & \cdots & & & 0 \end{bmatrix},$$

where H_j^* means H_j transposed.

Hence rank $H_f(0) = 2 \cdot \sum_{j=1}^{s-1} \operatorname{rank} H_j + \operatorname{rank} H_s$. By Lemma 3 $\sum_{i=1}^{s-1} \operatorname{rank} H_i = \sum_{i=1}^{s-1} \#A_{i_j} = \#\{k : w_k < 2\},$

$$\sum_{j=1} \operatorname{rank} H_i = \sum_{j=1} \# A_{i_j} = \# \{k : w_k < 2\}$$
$$\operatorname{rank} H_s = \# A_{i_s} = \# \{k : w_k = 2\}$$

and Theorem 1 follows.

References

- Saito K., Quasihomogene isolierte Singularitäten von Hyperflächen, Inventiones Math., 14 (1971), Springer-Verlag, 123–142.
- Sękalski M., On the multiplicity of a quasi-homogeneous isolated singularity, Univ. Iagel. Acta Math., XLVI (2008), 95–97.

Received November 30, 2009

Department of Mathematics Technical University Al. 1000 L PP 7 25-314 Kielce, Poland *e-mail*: matms@tu.kielce.pl

320