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Abstract. Let (Mn, g) be a closed, connected, oriented, C∞, Riemann-
ian, n-manifold with a transversely oriented, codimension-2 foliation F.
Suppose the transverse volume form µ is basic and {X,Y } are basic vec-
tor fields, so µ(X,Y ) = 1. Then the leaf component of [X,Y ], V[X,Y ], is
globally defined on M and is independent of the basic pair of vector fields
{X,Y } satisfying the above equation as observed by Cairns in [5]. Using
the Bochner technique, we show under appropriate assumptions on coho-
mology and on the Ricci curvature of the leaves of the foliation F, that
the distribution orthogonal to that of the leaves, H, is integrable and the
leaves of this new foliation are minimal surfaces of M . Using results from
Milnor [26] and Gray [19], we apply this theorem to give a necessary and
sufficient condition for certain principal bundles to admit a flat connection
(Corollary 1.6). In the second section we provide some analogous results
for the special case when F is a Riemannian foliation.

Section 1. Throughout this paper all maps, functions and morphisms
are assumed to be at least of class C∞. On a closed connected oriented C∞

Riemannian manifold (Mn, g), let F be a transversely oriented foliation of leaf
dimension p and codimension q = n−p. Let V denote the distribution tangent
to the foliation F, and H the distribution orthogonal to V in TM determined
by the metric g. If E is a vector field on M , VE and HE will denote the
projections of E onto the distributions V and H, respectively. Call the vector
field E vertical if VE = E. Call E horizontal if HE = E.
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In general a C∞ foliation of codimension-q on an n-dimensional manifold M
can be defined is a maximal family of C∞ submersions fα : Uα → fα(Uα) ⊂ Rq

where {Uα}α∈Λ is an open cover of M and where for each α, β ∈ Λ and each
x ∈ Uα ∩ Uβ, there exists a local diffeomorphism φxβα of Rq so fβ = φxβ,α ◦ fα
in some neighborhood Ux of x (see [24], pp. 2–3).

A horizontal vector field Z defined on some open set U where U ⊂ Uα is called
fα- basic provided fα∗Z is a well defined vector field on fα(U). As pointed out
in [12] (for any metric g), if U ⊂ Uβ, then Z is also fβ- basic, so one can speak
of Z as a local basic vector field. We sometimes drop the word “local.” Let
i(W ) and θ(W ) denote the interior product and the Lie derivative with respect
to a vector field W . A differential form φ is called basic provided i(W )φ = 0
and θ(W )φ = 0 for all vertical vector fields W ([37], p. 118). We follow
the conventions of [1] for the formalism of differential forms and their exterior
derivatives. Observe, if φ is basic of degree q, where q is the codimension of F,
then φ is closed.

D will denote the Levi–Civita connection on M and, following [15], we intro-
duce the tensors T and A as follows. For vector fields E and F on M ,

TEF = VDVEHF +HDVEVF, and(1.1)

AEF = VDHEHF +HDHEVF.(1.2)

Then T and A are tensors of type (1, 2). These tensors satisfy the usual
properties outlined in [15]. We note that if X and Y are horizontal,

(1.3) AXY 6= −AYX, in general,

unless the foliation F is bundle-like with respect to the metric g (see [21],
Lemma (1.2)) that is, if X is a basic vector field, Wg(X,X) = 0 for every
vertical vector field W . Note this means that the defining submersions fα of
the foliation F above are Riemannian submersions in the sense of [29].
If {V1, V2, V3, . . . , Vp} is a local orthonormal frame tangent to the foliation, we
define the mean curvature one-form κ as follows:

(1.4) κ(E) =
p∑
i=1

g(E, TViVi) = g(E,
p∑
i=1

TViVi).

Here τ =
∑p

i=1 TViVi is the mean-curvature vector field of the leaves of F.
(Following the now standard practice in foliations ([37, 38]), we suppress the
factor (1/p).) Call κ horizontally closed if d κ(Z1, Z2) = 0 for any horizontal
fields Z1, Z2.
Following [37], page 65–66, let χF denote the characteristic form for the folia-
tion F. Then with {V1, . . . , Vp} as above and for vector fields {E1, . . . , Ep} on
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Mn, we have:

(1.5) χF(E1, E2,..., Ep) = det(g(Ei, Vj)).

This characteristic differential form (see [38], p. 37) is independent of the local
orthonormal frame, {V1, . . . , Vp}. When restricted to a leaf of F, χF represents
the canonical volume form for that leaf, as observed on page 37 of [38]. If any
one of the arguments Ei is horizontal, then the left hand side of (1.5) vanishes.
This fact will be used repeatedly in the computations below.

A foliation F is taut provided there exists a Riemannian metric g on M for
so that all of the leaves of F are minimal submanifolds of M . The foliation,
F, on (M, g) is then called a minimal foliation as in [4] and [39]. A minimal
foliation is also called a harmonic foliation by some authors (see [38], p. 27 or
[6], p. 261).

Lemma 1.1.

(a) Let (Mn, g) be a connected, oriented, C∞ Riemannian n-manifold with a
transversely oriented codimension-q foliation F, with q ≥ 2. Suppose X
and Y are basic vector fields. Then V[X,Y ] has vanishing leaf divergence
if and only if κ is horizontally closed.

(b) Let F be a transversely oriented codimension-2 foliation on a closed, ori-
ented, Riemannian manifold (Mn, g) which admits a transverse volume
form µ. Let {X,Y } be a pair of basic vector fields so µ(X,Y ) = 1 and con-
sider the globally defined vector field V[X,Y ] on Mn. Then divFV[X,Y ] =
divMV[X,Y ]. Hence in this case, if κ is horizontally closed, divMV[X,Y ] =
0.

Proof. (a) As noted in [3], (a) follows immediately from formula (3) of
[15] which can be expressed this way:

(1.6) dκ(X,Y ) = −divFV[X,Y ] = −Σp
i=1g(DViV[X,Y ], Vi),

where the right hand side denotes the divergence of V[X,Y ] along a leaf of F.

The proof of (b) goes this way. Let {X1, X2} be two orthonormal horizon-
tal vector fields (not necessarily basic, since the foliation F is not necessarily
bundle-like with respect to g). As Grant Cairns pointed out in his thesis
[5], if {X,Y } are two basic vector fields so µ(X,Y ) = 1, then V[X,Y ] is a
globally defined vector field on M , independent of the basic pair {X ′, Y ′} so
µ(X ′, Y ′) = 1. Thus, V[X,Y ] = V[X ′, Y ′] for any two such pairs of basic
vector fields because any element of SL(2,R) has determinant 1. If µ is ba-
sic, then µ is closed, because µ is of degree q = 2 as observed above. Then
κ⊥ = 0 by Theorem 6.32 on page 71 of [37], so the vector field dual to κ⊥,
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τ⊥ = Σ2
i=1AXiXi = 0. Using the properties of the tensor A (but not the al-

ternating property, that is, AXY = −AYX for horizontal X,Y), it follows that
Σ2
i=1g(DXiV[X,Y ], Xi) = 0, so divFV[X,Y ] = divMV[X,Y ], as claimed. The

rest of the lemma follows from part (a).

The form κ∧ χF plays an important role in the work of Kamber and Tondeur
on Riemannian foliations ([37], pp. 121 and 152, [38], pp. 39 and 82). It turns
out that when this form is closed, the following pleasant property obtains for
arbitrary foliations on Riemannian manifolds of codimension q ≥ 2. The result
proven in [3] illustrates once more the tie between cohomology and geometry.
Indeed, the form κ ∧ χF will play a role in Theorems 1.5, 1.7, 2.1 and 2.2, so
one can think of the form κ∧ χF as the differential form that keeps on giving.

Theorem 1.2. Let (Mn, g) be a closed, connected, oriented, C∞ Riemann-
ian n-manifold with a transversely oriented codimension-q foliation F. Suppose
X and Y are basic vector fields. Then V[X,Y ] has vanishing leaf divergence
(equivalently κ is horizontally closed) whenever κ ∧ χF is a closed (possibly
zero) de Rham cohomology (p + 1)-form. In fact, if the codimension of F,
q = 2, then κ is horizontally closed if and only if κ ∧ χF is closed.

The key formula developed in [3] is

(1.7) d(κ ∧ χF)(V1, V2, . . . , Vp, X, Y ) = dκ(X,Y ).

This means in the case of Lemma 1.1 (b),
(1.8)
d(κ ∧ χF)(V1, V2, . . . , Vp, X, Y ) = dκ(X,Y ) = −divFV[X,Y ] = −divMV[X,Y ].

The following simple result may be useful. It holds for any foliation on a
Riemannian manifold with codimension q ≥ 1.

Proposition 1.3. Let (Mn, g) be any oriented Riemannian manifold that
admits a foliation F with mean curvature one-form, κ. Then κ is closed pro-
vided κ is basic and κ ∧ χF is closed. If the codimension of the foliation is 2,
κ is closed if and only if κ is basic and κ ∧ χF is closed.

Proof. If X is basic and V is vertical, then κ is basic if and only if
dκ(X,V ) = 0 as pointed out in [15]. If κ ∧ χF is closed, then dκ(X,Y ) = 0
for basic {X,Y }, by 1.7. The proof in the special case when q = 1 is easy and
hence omitted.

For most of the rest of this paper we assume the foliation, F, has codi-
mension q = 2 and that F admits a basic transverse volume form µ. Note, the
condition that µ is basic is weaker than the condition that the foliation F be
bundle-like with respect to the Riemannian metric, g, since when the metric is
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bundle-like, the transverse volume form can be computed explicitly in terms
of the metric. Later, we will sketch how this is done.
Let β be the one-form on M dual to V[X,Y ] with respect to the metric g.
Then for any vector field E on M ,

(1.9) β(E) = g(V[X,Y ], E).

Note, β is independent of the choice of basic vector fields {X,Y } so that
µ(X,Y ) = 1.
The following property of β is as elementary as it is striking.

Proposition 1.4. Let F be a transversely oriented codimension-2 folia-
tion on a closed, oriented, Riemannian manifold (Mn, g) which admits a basic
transverse volume form µ. Then β is co-closed on each of the leaves of F or
on M if and only if κ ∧ χF is closed on M .

Remark. This means that the existence of a cohomology (p+1) form,
namely κ ∧ χF , encodes the co-closedness of β.

Proof. β is co-closed on the leaves of F provided its dual vector field has
zero divergence along a leaf, that is provided −divFV[X,Y ] = 0 by [33], page
168. Likewise, β is co-closed on M , provided −divMV[X,Y ] = 0. Each of
these occurs if and only if κ∧χF is closed by equation (1.8). Specifically, if δβ
denotes the codifferential of β, then

d(κ ∧ χF)(V1, V2, . . . , Vp, X, Y ) = dκ(X,Y ) = −divFV[X,Y ]

= −divMV[X,Y ] = δβ.
(1.10)

We now come to one of the main result of the paper, Theorem 1.5. Note, in
this section, we do not assume that F is bundle like with respect to the metric
g. The result appears to be pleasant because three key conditions force the con-
clusion: two involve cohomology and one involves Ricci curvature. Note, if β
itself is closed then, for {X,Y }, above, dβ(X,Y ) = −g(V[X,Y ],V[X,Y ]) = 0,
and H is integrable. A weaker condition which only requires that the pullback
of β to the leaves of F be closed, suffices to establish the integrability of H in
the presence of appropriate conditions ( and one hopes pleasing conditions) on
the Ricci curvature of the leaves of F.
Recall the Ricci curvature of a manifold is quasi-positive provided it is positive
semi-definite everywhere and positive definite at a point. The Ricci curvature is
quasi-negative on a manifold if it is negative semi-definite everywhere negative
definite at a point. The results below can be viewed as a companion to results
of earlier papers, like [12, 13] and [7]. The author learned about quasi-positive
Ricci curvature and quasi-negative Ricci curvature from Wu’s article [40], and
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the special beauty of codimension-2 foliations admitting a basic transverse
volume form from [5]. He became interested in κ ∧ χF as a result of [38].
Other authors have looked at minimal foliations and Ricci curvature and have
obtained beautiful results like those of [4] and [39]. The interested reader
might also profit from [26, 28] and [20]. Related but different results that
recently came to the author’s attention appear in [9].

If L is a leaf of F, then iL : L → M denotes the inclusion map. iL(L) is
always an immersed submanifold of M , following Definition 3.7.7 of [10], page
93 (see also page 18). If iL is a homeomorphism from L onto iL(L), then iL(L)
is called an imbedded submanifold of M as in [10].

Remark. The next two results highlight the utility of having all the leaves
of the codimension-2 foliation F possess either quasi-positive or quasi-negative
Ricci curvature.

Theorem 1.5. Let F be a transversely oriented codimension-2 foliation on
a closed, oriented, Riemannian manifold (Mn, g) which admits a basic trans-
verse volume form µ. Suppose the following two conditions obtain.

(i) Restricted to each leaf L of F, β is a closed one-form, that is, i∗Lβ is
closed on L.

(ii) κ ∧ χF is closed on M .
If the Ricci curvature of each leaf L of F , RicL, is quasi-positive on L, then
H is integrable and the leaves of H are minimal surfaces of M .

Proof. Set f = (1/2)g(V[X,Y ],V[X,Y ]). Then f attains a maximum at
some p ∈ M , since M is compact. Let L be the leaf of F containing p ∈ M .
Now β is closed on L by (i) and is co-closed on L by (ii) and Proposition 1.4.
Since the gradient of divLV[X,Y ] (divFV[X,Y ]) is zero by formula (1.9), one
of the terms in part 3 of Proposition 3.3 on page 175 of [31] vanishes. Observe
that ∇ in [31] is replaced below by D̃, the covariant derivative on L induced
from D on M . Then that formula of [31] yields the following equation for the
Laplacian of f on L, 4Lf .

(1.11) 4L f = |D̃V[X,Y ]|2L +RicL(V[X,Y ],V[X,Y ]) ≥ 0.

Thus, f is subharmonic on L. This means f is constant on L by the maximum
principle of E. Hopf. (A nice proof of this principle appears in Matsushima
[25], pages 296–299). Hence, 4Lf ≡ 0. If f 6≡ 0 on L, then by the above
f ≡ c > 0 on L. Then at the x ∈ L where RicL is positive definite , 4Lf > 0,
which is a contradiction. Hence, f ≡ 0 on L, and, in particular, f(p) = 0. Since
f attained its maximum on M at p ∈ L, f ≡ 0 on M . Hence by definition
of f , V[X,Y ] ≡ 0 on M and H is integrable by the Frobenius Theorem. As
observed earlier, since µ is basic and of degree q = 2, µ is closed. Hence, by
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Theorem 6.32 on page 71 of [37], the leaves of H are minimal surfaces of M ,
since then κ⊥ = 0, and in our context κ⊥ is the mean curvature one-form of
our now integrable H. This proves the Theorem 1.5.

Example.

(a) For n ≥ 4, Sn−2 × T 2, the direct product of the (n− 2) sphere of radius 1
and a flat 2-torus, illustrates Theorem 1.5.

(b) Our second application of Theorem 1.5 is somewhat surprising. Unhappily,
it seems only to work for certain principal bundles over connected, closed
surfaces.
Let G be a Lie group admitting a biinvariant metric 〈 , 〉 which unlike [19]
we require to be positive definite. Then by section 5 of [19], the principal
bundle, G → P → B with bundle map π : P → B has the structure
of a Riemannian submersion. The leaves of the foliation are the inverse
images π−1(b) for b ∈ B. As above, V is the distribution tangent to the
leaves of the foliation, and H, the distribution orthogonal to V induced by
the submersion metric. This metric on P Gray calls the natural metric,
denoted by < E,F > for vector fields E and F on P . We will call the
connection H on P , the Gray connection. Recall from [22], page 51, a
vertical vector field A∗ on a principal bundle P is called a fundamental
vector field provided A∗ = σ(A) where A ∈ g where g is the Lie algebra of
G and σ is the homomorphism from g to χ(P ), the Lie algebra of vector
fields on P . According to Corollary 7.7 of [26], a Lie group with compact
universal covering admits a biinvariant metric of constant Ricci curvature
1. When G is a Lie Group with this structure we will say the Lie group G
is of special Milnor type.

Corollary 1.6. Let B, be a connected, closed oriented surface, and let
G → P → B be a principal bundle over B where G is a Lie group of special
Milnor type above. Then the Gray connection H determined by its natural
metric is flat if and only if for any two local orthonormal basic vector fields
{X,Y }, the globally defined vector field V[X,Y ] is a fundamental vector field
on P.

Proof. It is easy to see that P is connected. The connection H is flat if
and only if Ω(X,Y ) = 0 for any basic orthonormal pair {X,Y }, where Ω is
the curvature of the connection. By (5.6) of [19] this occurs if and only if in
our notation above, AXY = (1/2)V[X,Y ] = 0. Now the zero vector field is
a fundamental vector field so the condition on V[X,Y ] is necessary. We need
to show that the condition is sufficient. This will be the case if we can apply
Theorem 1.5. We need to show that restricted to a leaf of the foliation by the
fibers of π ,β, the one form dual to V[X,Y ] is closed, that is if i∗Lβ is closed.
As noted on page 167 of [33], this will occur when given fundamental vector
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fields A∗ and B∗ on P , one has:

(1.12) 〈DA∗V[X,Y ], B∗〉 − 〈A∗, DB∗V[X,Y ]〉 = 0,

where D is the Levi–Civita connection on the leaf of π. Note, since T = 0
by equation (5.2) of [19], the induced connection on the leaves of π and the
connection D on P coincide. But then, by equation (5.3) of [19], DA∗B

∗ =
(1/2)[A∗, B∗]. If X is basic and A∗ is a fundamental vector field, then [X,A∗] =
0, as pointed out in (5.1) of [19]. Moreover, the Jacobi identity for vector
fields, yields that if X and Y are basic, then [[X,Y ], A∗] = 0. In fact, for
Riemannian submersions, H[X,Y ] is basic when X and Y are basic [29], so
[H[X,Y ], A∗] = 0. It follows easily that [V[X,Y ], A∗] = 0. Thus, if V[X,Y ] is
a fundamental vector field, one can exploit equation (1.12) above and i∗Lβ is
indeed closed.

Since, as already noted, T = 0, κ ∧ χF vanishes on M by equation (1.4)
above. Theorem 1.5 above applies. Thus, H is integrable, that is, V[X,Y ] = 0
and the Gray connection on P is flat. Pages 304–305 of [30] is a nice companion
to [19].

Recall a foliation F on a Riemannian manifold (Mn, g) is totally umbilic
provided there exists a horizontal vector field N so that for all vectors {U, V }
tangent to the leaves of F one has TUV = g(U, V )N , where T is the tensor
defined in (1.1) above. If {X,Y } are basic vector fields then for a totally
umbilic foliation of leaf dimension p, one has by a formula on page 59 of [7]
that (θ(V[X,Y ])g)(U, V ) = −(2/p)dκ(X,Y )g(U, V ). If κ is horizontally closed,
then V[X,Y ] is an infinitesimal isometry along each leaf. But by (1.7), this
occurs whenever κ∧ χF is closed. Note, for totally umbilic foliations, τ = pN ,
where τ is the mean curvature vector field of F. When the leaf dimension
p = n−2 and when the transverse volume form µ is basic, one has the following
improvement of part of Theorem 3.3 of [7].

Theorem 1.7. Let F be a transversely oriented codimension-2 foliation
with totally umbilic leaves on a closed, oriented, Riemannian manifold (Mn, g)
which admits a basic transverse volume form µ. Suppose κ ∧ χF is closed
on M .
If the Ricci curvature of each leaf L of F, RicL, is quasi-negative on L, then
H is integrable and the leaves of H are minimal surfaces of M .

Proof. From the remarks before the statement of the theorem, under the
stated conditions V[X,Y ] is a local infinitesimal isometry of the leaves of F.
When µ is basic, the codimension q = 2, and {X,Y } are basic vector fields
so µ(X,Y ) = 1, then V[X,Y ] is a global infinitesimal isometry for each of the
leaves of F. Now the proof of Theorem 3.3 of [7] yields that H is integrable.
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As before, the leaves of H are minimal surfaces of M thanks to Theorem 6.32
on page 71 of [37].

Remarks. In our formalism (see [31], page 166), formula (**) on page 60
of [7] reads:

(1.13) 4L f = |D̃V[X,Y ]|2L −RicL(V[X,Y ],V[X,Y ]) ≥ 0,

where the function f is given by f = (1/2)g(V[X,Y ],V[X,Y ]). The equation
(**) on page 60 of [7] incorrectly omits the factor (1/2), but the argument
there goes through without any trouble. Formulas (1.11) and (1.13) go right
back to Bochner himself. Remarkably, for these formulas to come into play
here, κ ∧ χF must be closed.

Section 2. A foliation F is a Riemannian foliation of leaf dimension p
and codimension-q, provided that there is some Riemannian metric g on Mn

with respect to which F is bundle-like in the sense above. If F is a Riemannian
foliation on a compact manifold Mn, then a fundamental result of Dominguez,
[11], shows that there always exists a metric g for which F is bundle-like and for
which the associated mean curvature one-form, κ, is basic. We call this metric,
a Dominguez metric. In this section we will assume that the original foliation F
is Riemannian and that the metric g chosen for M is a Dominguez metric. First
note, that when F is bundle-like with respect to g, it is well known that we can
choose a basic orthonormal frame {X,Y } for H [29], since in the bundle-like
case the local submersions, fα, defining F are Riemannian submersions. Now
the transverse volume form µ for F can be expressed explicitly in terms of the
basic components of the Dominguez metric g by [27] pages 38–39 combined
with [22], page 283.
Now the results in Section 1 simplify considerably. We have the following
theorems.

Theorem 2.1. Let F be a transversely oriented codimension-2 Riemannian
foliation leaves on a closed, oriented, Riemannian manifold (Mn, g) where g
is a Dominguez metric for F. Suppose further, that restricted to each leaf L of
F, β is a closed one-form: that is, i∗Lβ is closed on L.
(a) If the Ricci curvature of each leaf L of F, RicL, is quasi-positive on L,

then H is integrable and the leaves of H are totally geodesic surfaces in M .
Moreover, if κ∧χF is harmonic on M with respect to the Dominguez metric,
then in fact, the leaves of F are minimal codimension-2 submanifolds of M .

(b) If additionally, the sectional curvatures of M are non-negative, then the
leaves of F are necessarily totally geodesic.

Proof. The proof of (a) proceeds in this way. Since κ is basic and F
is bundle-like with respect to g, κ is closed by a result of Kamber–Tondeur
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(see [37], page 150). By equation (1.7) above, this means κ ∧ χF is closed on
M . From the above remarks, µ is basic. Then, Theorem 1.5 applies and H
is integrable and its leaves are minimal. In fact, the leaves of H are in this
case totally geodesic because when F is bundle-like with respect to g, equation
(1.3) becomes AXY = −AYX, for any horizontal vector fields {X,Y }. By
equation (1.2), AXY is the second fundamental form for the leaves of H when
H is integrable. Hence, A ≡ 0 and the leaves of H are not only integrable but
totally geodesic. If κ ∧ χF is harmonic on M with respect to the Dominguez
metric, then the leaves of F are also minimal submanifolds of M by Theorem
1.11 of [3].
Part (b) follows from (a) and from the proposition 5.87 on page 66 of [38],
which asserts that when H is integrable and Mn has non-negative sectional
curvatures, then the harmonicity of the leaves of F force those leaves to be
totally geodesic.

Theorem 2.2. Let F be a transversely oriented codimension-2 Riemannian
foliation with totally umbilic leaves on a closed, oriented, Riemannian manifold
(Mn, g) where g is a Dominguez metric for F.
(a) If the Ricci curvature of each leaf L of F, RicL, is quasi-negative on L,

then H is integrable and the leaves of H are totally geodesic of M .
(b) If additionally, κ ∧ χF is harmonic on M with respect to the Dominguez

metric, then in fact, the leaves of F are totally geodesic codimension-2
submanifolds of M and locally M is isometric to a product of the plaques
of the leaves of H and F.

Proof. That κ is closed follows from the argument in the proof of Theorem
2.1. Then the fact that for totally umbilic foliations one has

(θ(V[X,Y ])g)(U, V ) = −(2/p)dκ(X,Y )g(U, V ),

as noted in the paragraph above the statement of Theorem 1.7, yields that
the globally defined V[X,Y ] is an infinitesimal isometry when restricted to the
leaves of F. As noted before the statement of Theorem 2.1, the existence of
the Dominguez metric also guarantees that µ is basic. Theorem 1.7 applies
and H is integrable and its leaves are minimal surfaces of M . In fact, by the
argument just made in the proof of Theorem 2.1, the leaves of H are totally
geodesic surfaces of M . If additionally, κ∧ χF is harmonic on M with respect
to the Dominguez metric, then the leaves of F are minimal submanifolds of M
just as in the proof of Theorem 2.1.
To show part (b), observe that if κ∧χF is harmonic, then κ vanishes identically.
Hence, the mean curvature vector field τ vanishes. But when the leaves are
totally umbilic, τ = pN , where p is the leaf dimension and N is the normal
curvature vector field. This means for arbitrary vertical vector fields U and V ,
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TUV = g(U, V )N = 0, so the leaves are totally geodesic. The last part of part
(b) follows from part (a) together with the argument in last paragraph of the
proof of Theorem 4.1 in [12], page 338.

Remark. If the partial Ricci curvature of M in the sense of page 67 of
[38] is negative definite at a single point, then F cannot be totally geodesic,
as follows from proposition 5.91 also on page 67 of [38]. This means of course
that in this case κ ∧ χF cannot be harmonic in part (b) of Theorem 2.2.
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