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ON THE TORSION ON GAUGE-LIKE PROLONGATIONS OF
PRINCIPAL BUNDLES

BY IvAN KOLAR

Abstract. Every fiber product preserving bundle functor F' on the cate-
gory FM.,, defines the gauge-like prolongation W¥ P of a principal bundle
P, that coincides with the r-th principal prolongation W" P in the special
case F' = J". For a large class of such functors we introduce the torsion
of connections on W¥ P and we deduce some of its properties analogous to
the case of W"P.

The r-th principal (or gauge-natural) prolongation WP — M of a princi-
pal bundle P — M is a fundamental structure for both the theory of geometric
object fields [2} [9], and the gauge theories of mathematical physics [3]. In [5]
we introduced the torsion of a connection I' on W"P to be the covariant ex-
terior differential of the canonical one-form 6, of W"P. On the other hand,
the Lie algebroid L(W"P) coincides with the r-th jet prolongation J"(LP)
of the Lie algebroid LP of P [11]. In [8], we considered the algebroid form
v: TM — J"LP of I, we introduced the torsion of v by using the truncated
bracket of J"LP and we deduced that both approaches to the torsion are
naturally equivalent.

In the present paper we study a more general setting of this problem. In [I]
the authors constructed a principal bundle W¥ P — M for every fiber product
preserving bundle functor F' on the category F.M,, of fibered manifolds with
m-~dimensional bases and fibered morphisms with local diffeomorphisms as base
maps. In the case of the functor J" of r-th jet prolongation, we have W’ P =
WP, so that W P will be called a gauge-like prolongation of P. We are going
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to clarify that geometrically remarkable results concerning torsion appear in
the case of a subfunctor E C J! o F. In this situation, we can use our results
on the generalized G-structures on W P, i.e. the reductions of W(W¥ P) [4].

In Section [1] we first summarize the basic properties of W P. Then we
construct a canonical map relating the gauge-like prolongation of the iteration
of two functors with the iteration of the gauge-like prolongations. In Proposi-
tion [} we determine the Lie algebroid version of this map. In Section[2]we study
the reductions Q of WP (called generalized G-structures in [4]) from our point
of view. In Proposition [2] we deduce that both approaches to the torsion on @
are naturally equivalent. Special attention is paid to the additional properties
of semiprolongable generalized G-structures. Proposition |3| describes a rela-
tion between the prolongability of generalized G-structures and the existence
of torsion-free connections analogous to the case of classical G-structures. In
Section [3| we specify some fiber product preserving bundle functors on FM,,,
the gauge-like prolongations of which are of the form studied in Section [2| We
also point out that some further functors can be reduced to this case by using
a suitable natural equivalence.

All manifolds and maps are assumed to be infinitely differentiable. Unless
otherwise specified, we use the terminology and notations from the book [9].
In particular, we write P"M for the r-th order frame bundle of a manifold M
and G7, for the r-th jet group in dimension m. Under a connection we always
mean a principal connection.

1. Gauge-like prolongations of principal bundles. We denote by 74
the Weil functor determined by a Weil algebra A [9}, [7]. A fundamental result
reads that the product preserving bundle functors on the category M f of all
manifolds are in bijection with the Weil functors and the natural transforma-
tions har: TA*'M — TA2M are in bijection with the algebra homomorphisms
h: Ay — A, [7]. In the special case of D} = JJ(R*,R), TPk = T7 is the
classical functor of (k, r)-velocities.

In [10] the authors deduced that the fiber product preserving bundle func-
tors on FM,, of base order r are in bijection with the triples (A, H,t) of a
Weil algebra A, a group homomorphism H: G}, — Aut A and an equivariant
algebra homomorphism ¢: D], — A, where Aut A is the group of all algebra
automorphisms of A and we take into account Aut (Dj,) = G},. One con-
structs the functor F' = (A, H,t) as follows. For every manifold N, we have an
induced action Hy of GT, on TAN,

HN(gvz):H(g)N(Z)a gGGT ZETAN:

m?

where H(g)y: TAN — TN is the map determined by H(g): A — A. The
value of F' on the product fibered manifold M x N — M, dim M = m, is the
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associated bundle
(1) F(M x N)=P"M[T“N, Hy].
Every local diffeomorphism f: M — M and every map p: N — N determine
the product FM,,-morphism f x p: M x N — M x N. By naturality, the
map T4¢p: TAN — TAN is Gy,-equivariant. Further, P"f: P"M — P"M is a
principal bundle morphism. Then we define F/(f x¢): F(MxN) — F(M xN)
to be the morphism of associated bundles
(@) F(f x ) = (P"f,TAp): PPMITAN, Hy] — PPM[TAN, Hy].

For an arbitrary fibered manifold p: ¥ — M, FY is the subbundle of
PTM[TAY, Hy] of all elements {u, Z}, u € P"M C T, M, Z € TAY satisfying
(3) tar(u) = Tp(2),

where tyr: T7M — TAM is the map induced by ¢: D7, — A. Since t is
equivariant, is independent of the choice of the representatives v and Z of
the equivalence class {u, Z} € FY. For another fibered manifold p: ¥ — M
and an FM,,-morphism f:Y — Y over f: M — M, (P"f,T4f) maps FY
into FY. Then one defines Ff to be its restriction and corestriction. In the
case of J", we have A =Dj,, H =id¢gr , t =idpr and expresses, in fact,
the classical relation

(4) JY = {X € J(M,Y); pu(X) = jrid },

where x is the source of X = j7 f and p«(X) = ji(po f) € J" (M, M).

Consider a principal bundle P(M, G). First we recall W"P =P"M x 5/ J" P,
[9]. This is a principal bundle over M, whose structure group is the group
semidirect product W G = G, x T} G with the composition

(5) (91,C1) (g2, C2) = (g1 0 g2, (Cro g2) # Ca) ,

where o denotes the induced group composition in 77, G. In [I] the authors
defined

(6) WEP=P'M xy FP.

Analogously to , one constructs the group semidirect product
WHG = GT xuy TAG

with the composition

(7) (91,C1)(92, C2) = (g1 0 92, H(g3 )a(Cr) @ Ca)

where o denotes the induced group composition in T74G. In the case of WG,
H(gy")a(C1) = Oy 0 ga, so that generalizes (B). Then W P is a principal
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bundle over M with structure group Wf}G with respect to the following action
[1]. The right action of G on P can be interpreted as an F.M,,-morphism

0: Pxy (M xG)— P.
Applying F', we obtain
Fo: FP xy P"M[T*G,Hg] — FP.
For (g, X) € G, x TAG and (u,Y) € P"M x 1 FP, one defines

(8) (0,Y)(g,X) = (uog, Fo(Y,{uog,X})).
In the case of W"P, ({8)) coincides with the right action of W), G on W"P
described in [9].
We remark that a basic geometric property of W P is that for every bundle
D — M associated to P, FD — M is a bundle associated to W P [1].
Further, F' determines a natural transformation fy: J'Y — FY. Every
element X € J"Y is of the form jIs. We interpret the local section s of Y as a
local FM,,-morphism § of the trivial fibered manifold id ;: M — M into Y
and we set

(9) ty(X) = (F3)(z) € FY .

In the product case, J"(M x N) = P"M[T} N], F(M x N) = P"M[T*N] and
tarxn is of the form fyun = (id pras, ty) with ty: 7N — TAN.

In particular, we have try: J'TM — FTM. Write q: LP — TM for
the anchor map, so that Fg: FLP — FTM. In [6] we deduced that the Lie
algebroid of WF' P is

(10) LWYP)=J"TM xpry FLP.
In the special case F' = J", we reobtain
L(W"P)=J"TM X jyrppg J'LP = J'LP.

Consider two such functors F; an F5 of base orders r and s. Then the
base order of Fyo Fy is r+s. Using (t2)prar: JP"M — FoP" M, we construct
a map

(11) whehp . wh i p)

as follows. The classical inclusion P"*5M «— W$(P"M) = PSM x5 JSP"M
is described in [9]. So we have

WP p — prsyf sy FLEVP < PSM x5 JSP™M x5 FyFy P
(12) — P°M XM FQPTM XM F2F1P
— PSM xy Fo(WHP) = w2 (whip).,
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According to [1], this is a principal bundle morphism. If ¢5 is injective, is
an injection.

To construct the corresponding Lie algebroid homomorphism, we start with
a general formula. Consider two principal bundles P, — M; and P, — M
over m-manifolds and a PB-morphism f: P, — P, over a local diffeomor-
phism f: My — Ms. Write Lf: LP; — LP» for the induced algebroid mor-
phism. Using trivializations, one finds easily that the algebroid morphism
IWEf. LWFP, — LWFP, is

(13) JTTi XFTi FLf: JTTMl X FTM; FLPl — JTTMQ X FT M FLP2 .
Further, the algebroid form of the injection P™*M < W3P"M is
JVSTM — JTM X jopag JSJ TM ,

where we consider both the jet projection #7*: J"*STM — JTM and the
canonical injection J" ST M < JSJ"TM. According to [1, (t2) pras: JSP"M —
F>P"M induces a principal bundle morphism

WP M = PSM Xy JSP"M — P°M x 3 FoPTM = W2 PrM |
One verifies easily that its algebroid form
(14) JTM X gsppr JEJ'TM — J°TM X pppr FoJ " TM
is determined by (f2)yrrar: JSJ " TM — FoJ"TM. So we have
L(WEehipy = JrHsTM x g gy FoFy LP
— J*J"T'M Xp,pyrar FoFy' LP
— (J*TM xp,rpr Fod"TM) Xpypyrn FoF1 LP
= J*TM xprm Fo(LWH P) = LW (W P)).
Using 7, we deduce
ProrosiITION 1. The algebroid homomorphism
(16) L(wtehipy — p(wtwtip))
corresponding to 18 the composition of all arrows in .

(15)

2. Reductions of W!P. First we summarize our results from [8] on the
torsion of connections on W" P in the case r = 1. We consider the principal
bundle WP = P'M x,; J'P with structure group WG = GL, x TLG and
the canonical one-form #;: TW'P — R™ x g. For a connection I" on WP,
the torsion is defined to be the covariant exterior differential Dr6;. This can
be interpreted as a map

(17) {Dré,}: W'P — (R™ x g) @ A*R™* .
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On the other hand, we have L(W!P) = J1(LP). Since the bracket [ , ] of LP
is a first order differential operator, it induces the so-called truncated bracket

[, ]i: J'LP xp; J'LP — LP

[8]. If we pass to the algebroid form ~: TM — J'LP of ', we introduce
7v: TM Xy TM — LP by

(18) (21, Z2) = [vZ1,7vZ2]1, (Z1,22) € TM xpy TM .

This is a section of LP ® A?T*M, what is a fiber bundle associated to WP
with standard fiber (R™ x g) @ A2R™*. So the frame form of 7 is a map

(19) {r7}: WP — (R™ x g) @ A’R™ .
In [8] we deduced
(20) {Drb:} = %{m}v

REMARK. The coordinate formula for 7y can be found in [8]. We find
remarkable that this formula implies directly the following assertion. If I'y and
I'y are two torsion-free connections on WP over the same connection on P,
then every connection of the pencil tI'; + (1 — )9, t € R, is also torsion-free.

Consider a reduction @ C WP to a subgroup H C WLG. In [4] Q is said
to be a generalized G-structure. Write g: TQ — R™ x gor [, Jo: LQ Xui
LQ — LP for the restriction of 6; or [, ]1, respectively, and ig: Q — WP for
the injection. A connection I' on @ is canonically extended into a connection
I on W!P. Clearly, we have

(21) Drg = Z'ZQ(Dfel) .
Further, for the algebroid form v: TM — LQ of ', we define
™(Z1,22) = [vZ1,v22] g, (Z1,Z2) € TM xp TM.

Analogously to , we have its frame form
{77}: Q — (R™ x g) @ A’R™*
satisfying
(22) {m} ={m}eiq.
Then f imply

PROPOSITION 2. Both approaches to the torsion of connections on () are
related by

(23) (Drfg} = 5{r7): Q — (B" x g) © AR™ .
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Further we need the basic facts concerning the prolongation of general-
ized G-structures. We define the second nonholonomic prolongation W2P =
WY(W'P). By [], W2P = P2M x,; J2P, where P2M is the second non-
holonomic frame bundle of M and J?P = J'(J'P). The second semiholo-
nomic prolongation W2P C W2P can be defined as P2M x; J2P. We have
W'Q c W2P and : W'Q — Q is always surjective. According to [4], Q is
called semiprolongable or prolongable, if the restriction of 8 to W'Q N W?2P
or WIQNW?2P is also surjective, respectively. Write Qo = 4Q and Hy = 3H.
In [4] we deduced

LEMMA. Q is semiprolongable, if and only if @ C W (Qo) or, equivalently,
the values of O¢q lie in R™ X ho.

Thus, if ) is semiprolongable, then holds with the additional property
that the values lie in (R™ x ho) @ A2R™*.

For every X € WP, X = (u,U), we have U ou € T} P. Hence X is
identified with an m-dimensional subspace A\(X) C TP. So every Z € W2P is
identified with A\(Z) ¢ TW'P. According to Proposition 5 of [4], Z € W?2P
satisfies

(24) Z € W2P if and only if df; | A\(Z) =0.

This implies an assertion analogous to the classical theory of G-structures.
Write 7: Q — M, m: Q — P'M and my: W'Q — J'Q for the canonical
projections.

PROPOSITION 3. Let (Q be semiprolongable. If Q admits a torsion-free
connection, then Q) is prolongable. Conversely, if Q@ is prolongable, then for
every x € M there exists a neighbourhood U and a torsion-free connection on

7 1(U).
PROOF. Let I': Q — J'Q be a torsion-free connection. By , the rule
X — (WI(X),F(X)), Xeq

is a section @ — W'Q N W?2P, so that @ is prolongable. Conversely, let
¥:Q — W'Q N W?2P be a section. For every section p: U — @, the map
My 0Yo00: U — J'Q is canonically extended into a connection on 7~ (U).
This connection is torsion-free due to the fact that 61 is a pseudo-tensorial
form 9, p. 155]. O

3. Torsions on certain gauge-like prolongations. If F is a fiber prod-
uct preserving bundle functor on F.M,, satisfying E C J' o F', then WFP is a
reduction of W(WF¥ P) to a subgroup K ¢ W} (W#G). Write Ey = BE C F
and Ky = 6K C WI‘{“G. In general, we have Ogp: T(EP) — R™ X mgG. If
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EP is semiprolongable, then the values of 0gp lie in R™ x £;. The simpliest
case of such situation is SE = F. We are going to present some examples.

EXAMPLE 1. We start with the functor J” of 7-th nonholonomic jet prolon-
gation of fibered manifolds, J'Y = J 1(j’”*lY). More generally, our approach
can be applied to an arbitrary functor S of r-th jet prolongation of fibered
manifolds. In accordance with [7], this means a fiber product preserving bun-
dle functor on FM,, satisfying J” C S C J". In particular, J” can be reduced
to this situation by means of the canonical inclusion J" C J'oJ"~1. A further
well known example is the r-th semiholonomic prolongation J" C J' o J" 1,
Clearly, the semiprolongability condition is satisfied in the last two cases.

EXAMPLE 2. Another example of our type is the composition J" o F' for
arbitrary F'. More generally, we can consider every composition S o F' with S
from Example

Some further functors can be studies in this way by using a suitable natural
equivalence.

ExXAMPLE 3. In [1] it is deduced that for every fiber product preserving
bundle functor E on FM,, and every vertical Weil functor V? there exists a
canonical natural equivalence

(25) w:VBoE~EoVE.

If EC J'oF, then (VB o E) C J' o (FoVPB). Hence we have the situation
of Section 2. In addition, one deduces that SE = F implies ﬁ(%(VB o E)) =
F o VB by using the standard Weil algebra manipulations from [1].
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