ON THE TORSION ON GAUGE-LIKE PROLONGATIONS OF PRINCIPAL BUNDLES

by Ivan Kolář

Abstract. Every fiber product preserving bundle functor F on the category \mathcal{FM}_m defines the gauge-like prolongation $W^F P$ of a principal bundle P, that coincides with the *r*-th principal prolongation $W^r P$ in the special case $F = J^r$. For a large class of such functors we introduce the torsion of connections on $W^F P$ and we deduce some of its properties analogous to the case of $W^r P$.

The r-th principal (or gauge-natural) prolongation $W^r P \to M$ of a principal bundle $P \to M$ is a fundamental structure for both the theory of geometric object fields [2, 9], and the gauge theories of mathematical physics [3]. In [5] we introduced the torsion of a connection Γ on $W^r P$ to be the covariant exterior differential of the canonical one-form θ_r of $W^r P$. On the other hand, the Lie algebroid $L(W^r P)$ coincides with the r-th jet prolongation $J^r(LP)$ of the Lie algebroid LP of P [11]. In [8], we considered the algebroid form $\gamma: TM \to J^r LP$ of Γ , we introduced the torsion of γ by using the truncated bracket of $J^r LP$ and we deduced that both approaches to the torsion are naturally equivalent.

In the present paper we study a more general setting of this problem. In [1] the authors constructed a principal bundle $W^F P \to M$ for every fiber product preserving bundle functor F on the category \mathcal{FM}_m of fibered manifolds with m-dimensional bases and fibered morphisms with local diffeomorphisms as base maps. In the case of the functor J^r of r-th jet prolongation, we have $W^{J^r}P = W^r P$, so that $W^F P$ will be called a gauge-like prolongation of P. We are going

¹⁹⁹¹ Mathematics Subject Classification. 53C05, 53C10, 58A20, 58A32.

Key words and phrases. Gauge-like prolongation of principal bundle, Lie algebroid, generalized G-structure, connection, torsion.

The author was supported by the Ministry of Education of Czech Republic under the project MSM 0021622409.

to clarify that geometrically remarkable results concerning torsion appear in the case of a subfunctor $E \subset J^1 \circ F$. In this situation, we can use our results on the generalized *G*-structures on $W^F P$, i.e. the reductions of $W^1(W^F P)$ [4].

In Section 1 we first summarize the basic properties of $W^F P$. Then we construct a canonical map relating the gauge-like prolongation of the iteration of two functors with the iteration of the gauge-like prolongations. In Proposition 1 we determine the Lie algebroid version of this map. In Section 2 we study the reductions Q of W^1P (called generalized G-structures in [4]) from our point of view. In Proposition 2 we deduce that both approaches to the torsion on Qare naturally equivalent. Special attention is paid to the additional properties of semiprolongable generalized G-structures. Proposition 3 describes a relation between the prolongability of generalized G-structures and the existence of torsion-free connections analogous to the case of classical G-structures. In Section 3 we specify some fiber product preserving bundle functors on \mathcal{FM}_m , the gauge-like prolongations of which are of the form studied in Section 2. We also point out that some further functors can be reduced to this case by using a suitable natural equivalence.

All manifolds and maps are assumed to be infinitely differentiable. Unless otherwise specified, we use the terminology and notations from the book [9]. In particular, we write $P^r M$ for the *r*-th order frame bundle of a manifold M and G_m^r for the *r*-th jet group in dimension m. Under a connection we always mean a principal connection.

1. Gauge-like prolongations of principal bundles. We denote by T^A the Weil functor determined by a Weil algebra A [9, 7]. A fundamental result reads that the product preserving bundle functors on the category $\mathcal{M}f$ of all manifolds are in bijection with the Weil functors and the natural transformations $h_M: T^{A_1}M \to T^{A_2}M$ are in bijection with the algebra homomorphisms $h: A_1 \to A_2$, [7]. In the special case of $\mathbb{D}_k^r = J_0^r(\mathbb{R}^k, \mathbb{R}), T^{\mathbb{D}_k^r} = T_k^r$ is the classical functor of (k, r)-velocities.

In [10] the authors deduced that the fiber product preserving bundle functors on \mathcal{FM}_m of base order r are in bijection with the triples (A, H, t) of a Weil algebra A, a group homomorphism $H: G_m^r \to \text{Aut } A$ and an equivariant algebra homomorphism $t: \mathbb{D}_m^r \to A$, where Aut A is the group of all algebra automorphisms of A and we take into account $\text{Aut}(\mathbb{D}_m^r) = G_m^r$. One constructs the functor F = (A, H, t) as follows. For every manifold N, we have an induced action H_N of G_m^r on $T^A N$,

$$H_N(g,z) = H(g)_N(z), \quad g \in G_m^r, \ z \in T^A N,$$

where $H(g)_N : T^A N \to T^A N$ is the map determined by $H(g) : A \to A$. The value of F on the product fibered manifold $M \times N \to M$, dim M = m, is the

associated bundle

(1)
$$F(M \times N) = P^r M[T^A N, H_N].$$

Every local diffeomorphism $f: M \to \overline{M}$ and every map $\varphi: N \to \overline{N}$ determine the product \mathcal{FM}_m -morphism $f \times \varphi: M \times N \to \overline{M} \times \overline{N}$. By naturality, the map $T^A \varphi: T^A N \to T^A \overline{N}$ is G_m^r -equivariant. Further, $P^r f: P^r M \to P^r \overline{M}$ is a principal bundle morphism. Then we define $F(f \times \varphi): F(M \times N) \to F(\overline{M} \times \overline{N})$ to be the morphism of associated bundles

(2)
$$F(f \times \varphi) = (P^r f, T^A \varphi) \colon P^r M[T^A N, H_N] \to P^r \overline{M}[T^A \overline{N}, H_{\overline{N}}].$$

For an arbitrary fibered manifold $p: Y \to M$, FY is the subbundle of $P^rM[T^AY, H_Y]$ of all elements $\{u, Z\}, u \in P^rM \subset T_m^rM, Z \in T^AY$ satisfying

(3)
$$t_M(u) = T^A p(Z),$$

where $t_M: T_m^r M \to T^A M$ is the map induced by $t: \mathbb{D}_m^r \to A$. Since t is equivariant, (3) is independent of the choice of the representatives u and Z of the equivalence class $\{u, Z\} \in FY$. For another fibered manifold $\bar{p}: \bar{Y} \to \bar{M}$ and an $\mathcal{F}\mathcal{M}_m$ -morphism $f: Y \to \bar{Y}$ over $\underline{f}: M \to \bar{M}$, $(P^r \underline{f}, T^A f)$ maps FYinto $F\bar{Y}$. Then one defines Ff to be its restriction and corestriction. In the case of J^r , we have $A = \mathbb{D}_m^r$, $H = \operatorname{id}_{G_m^r}$, $t = \operatorname{id}_{\mathbb{D}_m^r}$ and (3) expresses, in fact, the classical relation

(4)
$$J^{r}Y = \left\{ X \in J^{r}(M,Y); \ p_{*}(X) = j_{x}^{r} \operatorname{id}_{M} \right\},$$

where x is the source of $X = j_x^r f$ and $p_*(X) = j_x^r(p \circ f) \in J^r(M, M)$.

Consider a principal bundle P(M, G). First we recall $W^r P = P^r M \times_M J^r P$, [9]. This is a principal bundle over M, whose structure group is the group semidirect product $W_m^r G = G_m^r \rtimes T_m^r G$ with the composition

(5)
$$(g_1, C_1)(g_2, C_2) = (g_1 \circ g_2, (C_1 \circ g_2) \bullet C_2),$$

where \bullet denotes the induced group composition in $T_m^r G$. In [1] the authors defined

(6)
$$W^F P = P^r M \times_M F P.$$

Analogously to (5), one constructs the group semidirect product

$$W_H^A G = G_m^r \rtimes_H T^A G$$

with the composition

(7)
$$(g_1, C_1)(g_2, C_2) = (g_1 \circ g_2, H(g_2^{-1})_G(C_1) \bullet C_2),$$

where • denotes the induced group composition in $T^A G$. In the case of $W_m^r G$, $H(g_2^{-1})_G(C_1) = C_1 \circ g_2$, so that (7) generalizes (5). Then $W^F P$ is a principal

bundle over M with structure group $W_H^A G$ with respect to the following action [1]. The right action of G on P can be interpreted as an \mathcal{FM}_m -morphism

$$\varrho \colon P \times_M (M \times G) \to P \, .$$

Applying F, we obtain

$$F\varrho\colon FP\times_M P^rM[T^AG,H_G]\to FP$$
.

For $(g, X) \in G_m^r \times T^A G$ and $(u, Y) \in P^r M \times_M FP$, one defines

(8) $(u,Y)(g,X) = \left(u \circ g, F\varrho(Y, \{u \circ g, X\})\right).$

In the case of $W^r P$, (8) coincides with the right action of $W_m^r G$ on $W^r P$ described in [9].

We remark that a basic geometric property of $W^F P$ is that for every bundle $D \to M$ associated to $P, FD \to M$ is a bundle associated to $W^F P$ [1].

Further, F determines a natural transformation $\tilde{t}_Y \colon J^r Y \to FY$. Every element $X \in J^r Y$ is of the form $j_x^r s$. We interpret the local section s of Y as a local \mathcal{FM}_m -morphism \tilde{s} of the trivial fibered manifold $\operatorname{id}_M \colon M \to M$ into Yand we set

(9)
$$\tilde{t}_Y(X) = (F\tilde{s})(x) \in FY.$$

In the product case, $J^r(M \times N) = P^r M[T_m^r N]$, $F(M \times N) = P^r M[T^A N]$ and $\tilde{t}_{M \times N}$ is of the form $\tilde{t}_{M \times N} = (\operatorname{id}_{P^r M}, t_N)$ with $t_N \colon T_m^r N \to T^A N$.

In particular, we have $\tilde{t}_{TM}: J^rTM \to FTM$. Write $q: LP \to TM$ for the anchor map, so that $Fq: FLP \to FTM$. In [6] we deduced that the Lie algebroid of W^FP is

(10)
$$L(W^F P) = J^r T M \times_{FTM} F L P.$$

In the special case $F = J^r$, we reobtain

$$L(W^r P) = J^r T M \times_{J^r T M} J^r L P = J^r L P.$$

Consider two such functors F_1 and F_2 of base orders r and s. Then the base order of $F_2 \circ F_1$ is r+s. Using $(\tilde{t}_2)_{P^rM} \colon J^s P^rM \to F_2 P^rM$, we construct a map

(11)
$$W^{F_2 \circ F_1} P \to W^{F_2} (W^{F_1} P)$$

as follows. The classical inclusion $P^{r+s}M \hookrightarrow W^s(P^rM) = P^sM \times_M J^sP^rM$ is described in [9]. So we have

(12)

$$W^{F_{2}\circ F_{1}}P = P^{r+s}M \times_{M} F_{1}F_{1}P \hookrightarrow P^{s}M \times_{M} J^{s}P^{r}M \times_{M} F_{2}F_{1}P$$

$$\to P^{s}M \times_{M} F_{2}P^{r}M \times_{M} F_{2}F_{1}P$$

$$\to P^{s}M \times_{M} F_{2}(W^{F_{1}}P) = W^{F_{2}}(W^{F_{1}}P).$$

80

According to [1], this is a principal bundle morphism. If t_2 is injective, (11) is an injection.

To construct the corresponding Lie algebroid homomorphism, we start with a general formula. Consider two principal bundles $P_1 \to M_1$ and $P_2 \to M_2$ over *m*-manifolds and a \mathcal{PB} -morphism $f: P_1 \to P_2$ over a local diffeomorphism $\underline{f}: M_1 \to M_2$. Write $Lf: LP_1 \to LP_2$ for the induced algebroid morphism. Using trivializations, one finds easily that the algebroid morphism $LW^F f: LW^F P_1 \to LW^F P_2$ is

(13)
$$J^r Tf \times_{FTf} FLf \colon J^r TM_1 \times_{FTM_1} FLP_1 \to J^r TM_2 \times_{FTM_2} FLP_2.$$

Further, the algebroid form of the injection $P^{r+s}M \hookrightarrow W^s P^r M$ is

 $J^{r+s}TM \hookrightarrow J^sTM \times_{J^sTM} J^sJ^rTM \,,$

where we consider both the jet projection $\pi_s^{r+s}: J^{r+s}TM \to J^sTM$ and the canonical injection $J^{r+s}TM \hookrightarrow J^sJ^rTM$. According to [1], $(\tilde{t}_2)_{P^rM}: J^sP^rM \to F_2P^rM$ induces a principal bundle morphism

$$W^{s}P^{r}M = P^{s}M \times_{M} J^{s}P^{r}M \to P^{s}M \times_{M} F_{2}P^{r}M = W^{F_{2}}P^{r}M.$$

One verifies easily that its algebroid form

(14)
$$J^{s}TM \times_{J^{s}TM} J^{s}J^{r}TM \to J^{s}TM \times_{F_{2}TM} F_{2}J^{r}TM$$

is determined by $(\tilde{t}_2)_{J^rTM} : J^s J^r TM \to F_2 J^r TM$. So we have

(15)

$$L(W^{F_{2}\circ F_{1}}P) = J^{r+s}TM \times_{F_{2}F_{1}TM} F_{2}F_{1}LP$$

$$\hookrightarrow J^{s}J^{r}TM \times_{F_{2}F_{1}TM} F_{2}F_{1}LP$$

$$\to (J^{s}TM \times_{F_{2}TM} F_{2}J^{r}TM) \times_{F_{2}F_{1}TM} F_{2}F_{1}LP$$

$$= J^{s}TM \times_{F_{2}TM} F_{2}(LW^{F_{1}}P) = L(W^{F_{2}}(W^{F_{1}}P)).$$

Using (12)–(15), we deduce

PROPOSITION 1. The algebroid homomorphism

(16)
$$L(W^{F_2 \circ F_1}P) \to L(W^{F_2}(W^{F_1}P))$$

corresponding to (11) is the composition of all arrows in (15).

2. Reductions of W^1P . First we summarize our results from [8] on the torsion of connections on W^rP in the case r = 1. We consider the principal bundle $W^1P = P^1M \times_M J^1P$ with structure group $W_m^1G = G_m^1 \rtimes T_m^1G$ and the canonical one-form $\theta_1 \colon TW^1P \to \mathbb{R}^m \times \mathfrak{g}$. For a connection Γ on W^1P , the torsion is defined to be the covariant exterior differential $D_{\Gamma}\theta_1$. This can be interpreted as a map

(17)
$$\{D_{\Gamma}\theta_1\} \colon W^1 P \to (\mathbb{R}^m \times \mathfrak{g}) \otimes \Lambda^2 \mathbb{R}^{m*}.$$

On the other hand, we have $L(W^1P) = J^1(LP)$. Since the bracket [[,]] of LP is a first order differential operator, it induces the so-called truncated bracket

,
$$]_1: J^1LP \times_M J^1LP \to LP$$

[8]. If we pass to the algebroid form $\gamma: TM \to J^1LP$ of Γ , we introduce $\tau\gamma: TM \times_M TM \to LP$ by

(18)
$$\tau \gamma(Z_1, Z_2) = \llbracket \gamma Z_1, \gamma Z_2 \rrbracket_1, \qquad (Z_1, Z_2) \in TM \times_M TM.$$

This is a section of $LP \otimes \Lambda^2 T^*M$, what is a fiber bundle associated to W^1P with standard fiber $(\mathbb{R}^m \times \mathfrak{g}) \otimes \Lambda^2 \mathbb{R}^{m*}$. So the frame form of $\tau \gamma$ is a map

(19)
$$\{\tau\gamma\}\colon W^1P\to (\mathbb{R}^m\times\mathfrak{g})\otimes\Lambda^2\mathbb{R}^{m*}.$$

In [8] we deduced

(20)
$$\{D_{\Gamma}\theta_1\} = \frac{1}{2}\{\tau\gamma\}.$$

REMARK. The coordinate formula for $\tau\gamma$ can be found in [8]. We find remarkable that this formula implies directly the following assertion. If Γ_1 and Γ_2 are two torsion-free connections on W^1P over the same connection on P, then every connection of the pencil $t\Gamma_1 + (1-t)\Gamma_2$, $t \in \mathbb{R}$, is also torsion-free.

Consider a reduction $Q \subset W^1P$ to a subgroup $H \subset W_m^1G$. In [4] Q is said to be a generalized G-structure. Write $\theta_Q \colon TQ \to \mathbb{R}^m \times \mathfrak{g}$ or $[\![],]\!]_Q \colon LQ \times_M LQ \to LP$ for the restriction of θ_1 or $[\![],]\!]_1$, respectively, and $i_Q \colon Q \to W^1P$ for the injection. A connection Γ on Q is canonically extended into a connection $\overline{\Gamma}$ on W^1P . Clearly, we have

(21)
$$D_{\Gamma}\theta_Q = i_Q^*(D_{\bar{\Gamma}}\theta_1).$$

Further, for the algebroid form $\gamma: TM \to LQ$ of Γ , we define

$$\tau \gamma(Z_1, Z_2) = \llbracket \gamma Z_1, \gamma Z_2 \rrbracket_Q, \qquad (Z_1, Z_2) \in TM \times_M TM.$$

Analogously to (19), we have its frame form

$$\{\tau\gamma\}\colon Q\to (\mathbb{R}^m\times\mathfrak{g})\otimes\Lambda^2\mathbb{R}^m$$

satisfying

(22)
$$\{\tau\gamma\} = \{\tau\bar{\gamma}\} \circ i_Q$$

Then (20)–(22) imply

PROPOSITION 2. Both approaches to the torsion of connections on Q are related by

(23)
$$\{D_{\Gamma}\theta_Q\} = \frac{1}{2}\{\tau\gamma\} \colon Q \to (\mathbb{R}^m \times \mathfrak{g}) \otimes \Lambda^2 \mathbb{R}^{m*}$$

Further we need the basic facts concerning the prolongation of generalized G-structures. We define the second nonholonomic prolongation $\tilde{W}^2 P = W^1(W^1P)$. By [4], $\tilde{W}^2 P = \tilde{P}^2 M \times_M \tilde{J}^2 P$, where $\tilde{P}^2 M$ is the second nonholonomic frame bundle of M and $\tilde{J}^2 P = J^1(J^1P)$. The second semiholonomic prolongation $\bar{W}^2 P \subset \tilde{W}^2 P$ can be defined as $\bar{P}^2 M \times_M \bar{J}^2 P$. We have $W^1 Q \subset \tilde{W}^2 P$ and $\beta \colon W^1 Q \to Q$ is always surjective. According to [4], Q is called semiprolongable or prolongable, if the restriction of β to $W^1 Q \cap \bar{W}^2 P$ or $W^1 Q \cap W^2 P$ is also surjective, respectively. Write $Q_0 = \beta Q$ and $H_0 = \beta H$. In [4] we deduced

LEMMA. Q is semiprolongable, if and only if $Q \subset W^1(Q_0)$ or, equivalently, the values of θ_Q lie in $\mathbb{R}^m \times \mathfrak{h}_0$.

Thus, if Q is semiprolongable, then (23) holds with the additional property that the values lie in $(\mathbb{R}^m \times \mathfrak{h}_0) \otimes \Lambda^2 \mathbb{R}^{m*}$.

For every $X \in W^1P$, X = (u, U), we have $U \circ u \in T_m^1P$. Hence X is identified with an *m*-dimensional subspace $\lambda(X) \subset TP$. So every $Z \in \tilde{W}^2P$ is identified with $\lambda(Z) \subset TW^1P$. According to Proposition 5 of [4], $Z \in W^2P$ satisfies

(24)
$$Z \in W^2 P$$
 if and only if $d\theta_1 \mid \lambda(Z) = 0$.

This implies an assertion analogous to the classical theory of *G*-structures. Write $\pi: Q \to M$, $\pi_1: Q \to P^1 M$ and $\pi_2: W^1 Q \to J^1 Q$ for the canonical projections.

PROPOSITION 3. Let Q be semiprolongable. If Q admits a torsion-free connection, then Q is prolongable. Conversely, if Q is prolongable, then for every $x \in M$ there exists a neighbourhood U and a torsion-free connection on $\pi^{-1}(U)$.

PROOF. Let $\Gamma: Q \to J^1Q$ be a torsion-free connection. By (24), the rule

$$X \mapsto (\pi_1(X), \Gamma(X)), \qquad X \in Q$$

is a section $Q \to W^1Q \cap W^2P$, so that Q is prolongable. Conversely, let $\Sigma: Q \to W^1Q \cap W^2P$ be a section. For every section $\varrho: U \to Q$, the map $\pi_2 \circ \Sigma \circ \varrho: U \to J^1Q$ is canonically extended into a connection on $\pi^{-1}(U)$. This connection is torsion-free due to the fact that θ_1 is a pseudo-tensorial form [9, p. 155].

3. Torsions on certain gauge-like prolongations. If E is a fiber product preserving bundle functor on \mathcal{FM}_m satisfying $E \subset J^1 \circ F$, then $W^E P$ is a reduction of $W^1(W^F P)$ to a subgroup $K \subset W^1_m(W^A_H G)$. Write $E_0 = \beta E \subset F$ and $K_0 = \beta K \subset W^A_H G$. In general, we have $\theta_{EP} \colon T(EP) \to \mathbb{R}^m \times \mathfrak{w}^A_H G$. If EP is semiprolongable, then the values of θ_{EP} lie in $\mathbb{R}^m \times \mathfrak{k}_0$. The simpliest case of such situation is $\beta E = F$. We are going to present some examples.

EXAMPLE 1. We start with the functor \tilde{J}^r of r-th nonholonomic jet prolongation of fibered manifolds, $\tilde{J}^r Y = J^1(\tilde{J}^{r-1}Y)$. More generally, our approach can be applied to an arbitrary functor S of r-th jet prolongation of fibered manifolds. In accordance with [7], this means a fiber product preserving bundle functor on \mathcal{FM}_m satisfying $J^r \subset S \subset \tilde{J}^r$. In particular, J^r can be reduced to this situation by means of the canonical inclusion $J^r \subset J^1 \circ J^{r-1}$. A further well known example is the r-th semiholonomic prolongation $\bar{J}^r \subset J^1 \circ \bar{J}^{r-1}$. Clearly, the semiprolongability condition is satisfied in the last two cases.

EXAMPLE 2. Another example of our type is the composition $J^r \circ F$ for arbitrary F. More generally, we can consider every composition $S \circ F$ with S from Example 1.

Some further functors can be studies in this way by using a suitable natural equivalence.

EXAMPLE 3. In [1] it is deduced that for every fiber product preserving bundle functor E on \mathcal{FM}_m and every vertical Weil functor V^B there exists a canonical natural equivalence

(25)
$$\boldsymbol{\varkappa} \colon \boldsymbol{V}^B \circ \boldsymbol{E} \approx \boldsymbol{E} \circ \boldsymbol{V}^B.$$

If $E \subset J^1 \circ F$, then $\varkappa(V^B \circ E) \subset J^1 \circ (F \circ V^B)$. Hence we have the situation of Section 2. In addition, one deduces that $\beta E = F$ implies $\beta(\varkappa(V^B \circ E)) = F \circ V^B$ by using the standard Weil algebra manipulations from [1].

References

- Doupovec M., Kolář I., Iteration of Fiber Product Preserving Bundle Functors, Monatsh. Math., 134 (2001), 901–916.
- Ehresmann C., Les prolongements d'un espace fibré différentiable, C. R. Acad. Sci. Paris, 240 (1955), 1755–1757.
- Fatibene L., Francaviglia M., Natural and Gauge Natural Formalism for Classical Fields Theories, Kluwer, 2003.
- Kolář I., Generalized G-structures and G-structures of higher order, Boll. Un. Mat. Ital., Suppl. fasc., 3 (1975), 249–256.
- 5. Kolář I., A generalization of the torsion form, Čas. pěst. math., 100 (1975), 284–290.
- Kolář I., Functorial prolongations of Lie algebroids, Proceedings Conf. Prague 2004, Charles University, Prague, 2005, 305–314.
- Kolář I., Weil Bundles as Generalized Jet Spaces, Handbook of Global Analysis, Elsevier, 2008, 625–665.
- Kolář I., Connections on principal prolongations of principal bundles, Proceedings Conf. Olomouc 2007, World Scientific, 2008, 279–291.

- Kolář I., Michor P. W., Slovák J., Natural Operations in Differential Geometry, Springer, 1993.
- Kolář I., Mikulski W. M., On the fiber product preserving bundle functors, Differential Geom. Appl., 11 (1999), 105–115.
- 11. Kumpera A., Spencer D., Lie equations I, Princeton University Press, 1972.

Received November 12, 2008

Institute of Mathematics and Statistics Masaryk University Kotlářská 2, CZ 611 37 Brno Czech Republic