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ON THE TORSION ON GAUGE-LIKE PROLONGATIONS OF

PRINCIPAL BUNDLES

by Ivan Kolář

Abstract. Every fiber product preserving bundle functor F on the cate-
gory FMm defines the gauge-like prolongation W F P of a principal bundle
P , that coincides with the r-th principal prolongation W rP in the special
case F = Jr. For a large class of such functors we introduce the torsion
of connections on W F P and we deduce some of its properties analogous to
the case of W rP .

The r-th principal (or gauge-natural) prolongation W rP →M of a princi-
pal bundle P →M is a fundamental structure for both the theory of geometric
object fields [2, 9], and the gauge theories of mathematical physics [3]. In [5]
we introduced the torsion of a connection Γ on W rP to be the covariant ex-
terior differential of the canonical one-form θr of W rP . On the other hand,
the Lie algebroid L(W rP ) coincides with the r-th jet prolongation Jr(LP )
of the Lie algebroid LP of P [11]. In [8], we considered the algebroid form
γ : TM → JrLP of Γ, we introduced the torsion of γ by using the truncated
bracket of JrLP and we deduced that both approaches to the torsion are
naturally equivalent.

In the present paper we study a more general setting of this problem. In [1]
the authors constructed a principal bundle WFP →M for every fiber product
preserving bundle functor F on the category FMm of fibered manifolds with
m-dimensional bases and fibered morphisms with local diffeomorphisms as base
maps. In the case of the functor Jr of r-th jet prolongation, we have W Jr

P =
W rP , so that WFP will be called a gauge-like prolongation of P . We are going
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to clarify that geometrically remarkable results concerning torsion appear in
the case of a subfunctor E ⊂ J1 ◦ F . In this situation, we can use our results
on the generalized G-structures on WFP , i.e. the reductions of W 1(WFP ) [4].

In Section 1 we first summarize the basic properties of WFP . Then we
construct a canonical map relating the gauge-like prolongation of the iteration
of two functors with the iteration of the gauge-like prolongations. In Proposi-
tion 1 we determine the Lie algebroid version of this map. In Section 2 we study
the reductions Q of W 1P (called generalized G-structures in [4]) from our point
of view. In Proposition 2 we deduce that both approaches to the torsion on Q
are naturally equivalent. Special attention is paid to the additional properties
of semiprolongable generalized G-structures. Proposition 3 describes a rela-
tion between the prolongability of generalized G-structures and the existence
of torsion-free connections analogous to the case of classical G-structures. In
Section 3 we specify some fiber product preserving bundle functors on FMm,
the gauge-like prolongations of which are of the form studied in Section 2. We
also point out that some further functors can be reduced to this case by using
a suitable natural equivalence.

All manifolds and maps are assumed to be infinitely differentiable. Unless
otherwise specified, we use the terminology and notations from the book [9].
In particular, we write P rM for the r-th order frame bundle of a manifold M
and Gr

m for the r-th jet group in dimension m. Under a connection we always
mean a principal connection.

1. Gauge-like prolongations of principal bundles. We denote by TA

the Weil functor determined by a Weil algebra A [9, 7]. A fundamental result
reads that the product preserving bundle functors on the category Mf of all
manifolds are in bijection with the Weil functors and the natural transforma-
tions hM : TA1M → TA2M are in bijection with the algebra homomorphisms
h : A1 → A2, [7]. In the special case of Dr

k = Jr
0 (Rk,R), TDr

k = T r
k is the

classical functor of (k, r)-velocities.
In [10] the authors deduced that the fiber product preserving bundle func-

tors on FMm of base order r are in bijection with the triples (A,H, t) of a
Weil algebra A, a group homomorphism H : Gr

m → Aut A and an equivariant
algebra homomorphism t : Dr

m → A, where Aut A is the group of all algebra
automorphisms of A and we take into account Aut (Dr

m) = Gr
m. One con-

structs the functor F = (A,H, t) as follows. For every manifold N , we have an
induced action HN of Gr

m on TAN ,

HN (g, z) = H(g)N (z) , g ∈ Gr
m, z ∈ TAN ,

where H(g)N : TAN → TAN is the map determined by H(g) : A → A. The
value of F on the product fibered manifold M ×N → M , dimM = m, is the
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associated bundle

(1) F (M ×N) = P rM [TAN,HN ] .

Every local diffeomorphism f : M → M̄ and every map ϕ : N → N̄ determine
the product FMm-morphism f × ϕ : M × N → M̄ × N̄ . By naturality, the
map TAϕ : TAN → TAN̄ is Gr

m-equivariant. Further, P rf : P rM → P rM̄ is a
principal bundle morphism. Then we define F (f×ϕ) : F (M×N)→ F (M̄×N̄)
to be the morphism of associated bundles

(2) F (f × ϕ) = (P rf, TAϕ) : P rM [TAN,HN ]→ P rM̄ [TAN̄ ,HN̄ ] .

For an arbitrary fibered manifold p : Y → M , FY is the subbundle of
P rM [TAY,HY ] of all elements {u, Z}, u ∈ P rM ⊂ T r

mM , Z ∈ TAY satisfying

(3) tM (u) = TAp(Z) ,

where tM : T r
mM → TAM is the map induced by t : Dr

m → A. Since t is
equivariant, (3) is independent of the choice of the representatives u and Z of
the equivalence class {u, Z} ∈ FY . For another fibered manifold p̄ : Ȳ → M̄
and an FMm-morphism f : Y → Ȳ over f : M → M̄ , (P rf, TAf) maps FY
into FȲ . Then one defines Ff to be its restriction and corestriction. In the
case of Jr, we have A = Dr

m, H = id Gr
m

, t = id Dr
m

and (3) expresses, in fact,
the classical relation

(4) JrY =
{
X ∈ Jr(M,Y ); p∗(X) = jr

x id M

}
,

where x is the source of X = jr
xf and p∗(X) = jr

x(p ◦ f) ∈ Jr(M,M).
Consider a principal bundle P (M,G). First we recallW rP =P rM×M JrP ,

[9]. This is a principal bundle over M , whose structure group is the group
semidirect product W r

mG = Gr
m o T r

mG with the composition

(5) (g1, C1)(g2, C2) =
(
g1 ◦ g2, (C1 ◦ g2) • C2

)
,

where • denotes the induced group composition in T r
mG. In [1] the authors

defined

(6) WFP = P rM ×M FP .

Analogously to (5), one constructs the group semidirect product

WA
HG = Gr

m oH TAG

with the composition

(7) (g1, C1)(g2, C2) =
(
g1 ◦ g2, H(g−1

2 )G(C1) • C2

)
,

where • denotes the induced group composition in TAG. In the case of W r
mG,

H(g−1
2 )G(C1) = C1 ◦ g2, so that (7) generalizes (5). Then WFP is a principal
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bundle over M with structure group WA
HG with respect to the following action

[1]. The right action of G on P can be interpreted as an FMm-morphism

% : P ×M (M ×G)→ P .

Applying F , we obtain

F% : FP ×M P rM [TAG,HG]→ FP .

For (g,X) ∈ Gr
m × TAG and (u, Y ) ∈ P rM ×M FP , one defines

(8) (u, Y )(g,X) =
(
u ◦ g, F%(Y, {u ◦ g,X})

)
.

In the case of W rP , (8) coincides with the right action of W r
mG on W rP

described in [9].
We remark that a basic geometric property of WFP is that for every bundle

D →M associated to P , FD →M is a bundle associated to WFP [1].
Further, F determines a natural transformation t̃Y : JrY → FY . Every

element X ∈ JrY is of the form jr
xs. We interpret the local section s of Y as a

local FMm-morphism s̃ of the trivial fibered manifold id M : M → M into Y
and we set

(9) t̃Y (X) = (F s̃)(x) ∈ FY .

In the product case, Jr(M ×N) = P rM [T r
mN ], F (M ×N) = P rM [TAN ] and

t̃M×N is of the form t̃M×N = (id P rM , tN ) with tN : T r
mN → TAN .

In particular, we have t̃TM : JrTM → FTM . Write q : LP → TM for
the anchor map, so that Fq : FLP → FTM . In [6] we deduced that the Lie
algebroid of WFP is

(10) L(WFP ) = JrTM ×FTM FLP .

In the special case F = Jr, we reobtain

L(W rP ) = JrTM ×JrTM JrLP = JrLP .

Consider two such functors F1 and F2 of base orders r and s. Then the
base order of F2 ◦F1 is r+s. Using (t̃2)P rM : JsP rM → F2P

rM , we construct
a map

(11) WF2◦F1P →WF2(WF1P )

as follows. The classical inclusion P r+sM ↪→ W s(P rM) = P sM ×M JsP rM
is described in [9]. So we have

(12)

WF2◦F1P = P r+sM ×M F1F1P ↪→ P sM ×M JsP rM ×M F2F1P

→ P sM ×M F2P
rM ×M F2F1P

→ P sM ×M F2(WF1P ) = WF2(WF1P ) .
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According to [1], this is a principal bundle morphism. If t2 is injective, (11) is
an injection.

To construct the corresponding Lie algebroid homomorphism, we start with
a general formula. Consider two principal bundles P1 → M1 and P2 → M2

over m-manifolds and a PB-morphism f : P1 → P2 over a local diffeomor-
phism f : M1 → M2. Write Lf : LP1 → LP2 for the induced algebroid mor-
phism. Using trivializations, one finds easily that the algebroid morphism
LWF f : LWFP1 → LWFP2 is

(13) JrTf ×FTf FLf : JrTM1 ×FTM1 FLP1 → JrTM2 ×FTM2 FLP2 .

Further, the algebroid form of the injection P r+sM ↪→W sP rM is

Jr+sTM ↪→ JsTM ×JsTM JsJrTM ,

where we consider both the jet projection πr+s
s : Jr+sTM → JsTM and the

canonical injection Jr+sTM ↪→ JsJrTM . According to [1], (t̃2)P rM: JsP rM →
F2P

rM induces a principal bundle morphism

W sP rM = P sM ×M JsP rM → P sM ×M F2P
rM = WF2P rM .

One verifies easily that its algebroid form

(14) JsTM ×JsTM JsJrTM → JsTM ×F2TM F2J
rTM

is determined by (t̃2)JrTM : JsJrTM → F2J
rTM . So we have

(15)

L(WF2◦F1P ) = Jr+sTM ×F2F1TM F2F1LP

↪→ JsJrTM ×F2F1TM F2F1LP

→ (JsTM ×F2TM F2J
rTM)×F2F1TM F2F1LP

= JsTM ×F2TM F2(LWF1P ) = L
(
WF2(WF1P )

)
.

Using (12)–(15), we deduce

Proposition 1. The algebroid homomorphism

(16) L(WF2◦F1P )→ L
(
WF2(WF1P )

)
corresponding to (11) is the composition of all arrows in (15).

2. Reductions of W 1P . First we summarize our results from [8] on the
torsion of connections on W rP in the case r = 1. We consider the principal
bundle W 1P = P 1M ×M J1P with structure group W 1

mG = G1
m o T 1

mG and
the canonical one-form θ1 : TW 1P → Rm × g. For a connection Γ on W 1P ,
the torsion is defined to be the covariant exterior differential DΓθ1. This can
be interpreted as a map

(17) {DΓθ1} : W 1P → (Rm × g)⊗ Λ2Rm∗ .
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On the other hand, we have L(W 1P ) = J1(LP ). Since the bracket [[ , ]] of LP
is a first order differential operator, it induces the so-called truncated bracket

[[ , ]]1 : J1LP ×M J1LP → LP

[8]. If we pass to the algebroid form γ : TM → J1LP of Γ, we introduce
τγ : TM ×M TM → LP by

(18) τγ(Z1, Z2) = [[γZ1, γZ2]]1 , (Z1, Z2) ∈ TM ×M TM .

This is a section of LP ⊗ Λ2T ∗M , what is a fiber bundle associated to W 1P
with standard fiber (Rm × g)⊗ Λ2Rm∗. So the frame form of τγ is a map

(19) {τγ} : W 1P → (Rm × g)⊗ Λ2Rm∗ .

In [8] we deduced

(20) {DΓθ1} =
1
2
{τγ} .

Remark. The coordinate formula for τγ can be found in [8]. We find
remarkable that this formula implies directly the following assertion. If Γ1 and
Γ2 are two torsion-free connections on W 1P over the same connection on P ,
then every connection of the pencil tΓ1 + (1− t)Γ2, t ∈ R, is also torsion-free.

Consider a reduction Q ⊂W 1P to a subgroup H ⊂W 1
mG. In [4] Q is said

to be a generalized G-structure. Write θQ : TQ → Rm × g or [[ , ]]Q : LQ ×M

LQ→ LP for the restriction of θ1 or [[ , ]]1, respectively, and iQ : Q→W 1P for
the injection. A connection Γ on Q is canonically extended into a connection
Γ̄ on W 1P . Clearly, we have

(21) DΓθQ = i∗Q(DΓ̄θ1) .

Further, for the algebroid form γ : TM → LQ of Γ, we define

τγ(Z1, Z2) = [[γZ1, γZ2]]Q , (Z1, Z2) ∈ TM ×M TM .

Analogously to (19), we have its frame form

{τγ} : Q→ (Rm × g)⊗ Λ2Rm∗

satisfying

(22) {τγ} = {τ γ̄} ◦ iQ .

Then (20)–(22) imply

Proposition 2. Both approaches to the torsion of connections on Q are
related by

(23) {DΓθQ} =
1
2
{τγ} : Q→ (Rm × g)⊗ Λ2Rm∗ .
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Further we need the basic facts concerning the prolongation of general-
ized G-structures. We define the second nonholonomic prolongation W̃ 2P =
W 1(W 1P ). By [4], W̃ 2P = P̃ 2M ×M J̃2P , where P̃ 2M is the second non-
holonomic frame bundle of M and J̃2P = J1(J1P ). The second semiholo-
nomic prolongation W̄ 2P ⊂ W̃ 2P can be defined as P̄ 2M ×M J̄2P . We have
W 1Q ⊂ W̃ 2P and β : W 1Q → Q is always surjective. According to [4], Q is
called semiprolongable or prolongable, if the restriction of β to W 1Q ∩ W̄ 2P
or W 1Q∩W 2P is also surjective, respectively. Write Q0 = βQ and H0 = βH.
In [4] we deduced

Lemma. Q is semiprolongable, if and only if Q ⊂W 1(Q0) or, equivalently,
the values of θQ lie in Rm × h0.

Thus, if Q is semiprolongable, then (23) holds with the additional property
that the values lie in (Rm × h0)⊗ Λ2Rm∗.

For every X ∈ W 1P , X = (u, U), we have U ◦ u ∈ T 1
mP . Hence X is

identified with an m-dimensional subspace λ(X) ⊂ TP . So every Z ∈ W̃ 2P is
identified with λ(Z) ⊂ TW 1P . According to Proposition 5 of [4], Z ∈ W̄ 2P
satisfies

(24) Z ∈W 2P if and only if dθ1 | λ(Z) = 0 .

This implies an assertion analogous to the classical theory of G-structures.
Write π : Q → M , π1 : Q → P 1M and π2 : W 1Q → J1Q for the canonical
projections.

Proposition 3. Let Q be semiprolongable. If Q admits a torsion-free
connection, then Q is prolongable. Conversely, if Q is prolongable, then for
every x ∈ M there exists a neighbourhood U and a torsion-free connection on
π−1(U).

Proof. Let Γ: Q→ J1Q be a torsion-free connection. By (24), the rule

X 7→
(
π1(X),Γ(X)

)
, X ∈ Q

is a section Q → W 1Q ∩ W 2P , so that Q is prolongable. Conversely, let
Σ: Q → W 1Q ∩ W 2P be a section. For every section % : U → Q, the map
π2 ◦ Σ ◦ % : U → J1Q is canonically extended into a connection on π−1(U).
This connection is torsion-free due to the fact that θ1 is a pseudo-tensorial
form [9, p. 155].

3. Torsions on certain gauge-like prolongations. If E is a fiber prod-
uct preserving bundle functor on FMm satisfying E ⊂ J1 ◦F , then WEP is a
reduction of W 1(WFP ) to a subgroup K ⊂ W 1

m(WA
HG). Write E0 = βE ⊂ F

and K0 = βK ⊂ WA
HG. In general, we have θEP : T (EP ) → Rm × wA

HG. If
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EP is semiprolongable, then the values of θEP lie in Rm × k0. The simpliest
case of such situation is βE = F . We are going to present some examples.

Example 1. We start with the functor J̃r of r-th nonholonomic jet prolon-
gation of fibered manifolds, J̃rY = J1(J̃r−1Y ). More generally, our approach
can be applied to an arbitrary functor S of r-th jet prolongation of fibered
manifolds. In accordance with [7], this means a fiber product preserving bun-
dle functor on FMm satisfying Jr ⊂ S ⊂ J̃r. In particular, Jr can be reduced
to this situation by means of the canonical inclusion Jr ⊂ J1 ◦Jr−1. A further
well known example is the r-th semiholonomic prolongation J̄r ⊂ J1 ◦ J̄r−1.
Clearly, the semiprolongability condition is satisfied in the last two cases.

Example 2. Another example of our type is the composition Jr ◦ F for
arbitrary F . More generally, we can consider every composition S ◦ F with S
from Example 1.

Some further functors can be studies in this way by using a suitable natural
equivalence.

Example 3. In [1] it is deduced that for every fiber product preserving
bundle functor E on FMm and every vertical Weil functor V B there exists a
canonical natural equivalence

(25) κ : V B ◦ E ≈ E ◦ V B .

If E ⊂ J1 ◦ F , then κ(V B ◦ E) ⊂ J1 ◦ (F ◦ V B). Hence we have the situation
of Section 2. In addition, one deduces that βE = F implies β

(
κ(V B ◦ E)

)
=

F ◦ V B by using the standard Weil algebra manipulations from [1].
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