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NOTE ON THE  LOJASIEWICZ EXPONENT OF WEIGHTED

HOMOGENEOUS ISOLATED SINGULARITIES

by Maciej S ↪ekalski

Abstract. We compute the  Lojasiewicz exponent for some classes of weighted
homogeneous isolated singularities.

1. Result. A polynomial f = f(z1, . . . , zn) in n complex variables defines
an isolated singularity at the origin if f(0) = 0 and there is an open neighbor-
hood U of 0 ∈ Cn such that {z ∈ U : ∂f

∂z1
(z) = · · · = ∂f

∂zn
(z) = 0} = {0}.

In singularity theory the invariants of singularities play an important part.
The most known invariant is the Milnor number

µ0(f) = dimC
C[[z1,...,zn]]/( ∂f

∂z1
,..., ∂f

∂zn

)
introduced by Milnor in [3].

Another important invariant is the  Lojasiewicz exponent L0(f) of f . It is
by definition the smallest θ > 0 such that there exists a neighborhood U of
0 ∈ Cn and a constant c > 0 such that

|∇f(z)| > c|z|θ for all z ∈ U.

In the above inequality, | · | stands for any norm on Cn. The  Lojasiewicz
exponent was defined in [7] by B. Teissier, who proved the basic properties of
L0(f). Teissier’s conjecture that L0(f) is, as µ0(f) is, a topological invariant
of a singularity is still open.

An interesting class of singularities is defined by weighted homogeneous
polynomials. Let (w1, . . . , wn) be a sequence of positive rationals. A polyno-
mial f = f(z1, . . . , zn) is called weighted homogeneous of type (w1, . . . , wn)
if f may be written as a sum of monomials cza1

1 · · · · · zan
n (c 6= 0) with

a1
w1

+ · · ·+ an
wn

= 1.
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If a weighted homogeneous polynomial f of type (w1, . . . , wn) defines an
isolated singularity, then wi > 1 for all i = 1, . . . , n. In [4], the authors
proved the following formula for the Milnor number of a weighted homogeneous
polynomial f of type (w1, . . . , wn) with an isolated singularity:

µ0(f) =
n∏
i=1

(wi − 1).

On the other hand, T. Krasiński, G. Oleksik and A. P loski proved in [2] that

L0(f) 6 min

(
n

max
i=1

(wi − 1),
n∏
i=1

(wi − 1)

)
with equality for n = 2 or n = 3. If n > 3, the inequality may be strict.

Example 1.1. Let f = z1z4 + z3
2 + z3

3 + z5
4 . It is easy to see that f

is a weighted homogeneous polynomial of type
(

5
4 , 3, 3, 5

)
with an isolated

singularity at 0 ∈ C4.
We shall check that

L0(f) = 2 < min

(
4

max
i=1

(wi − 1),
4∏
i=1

(wi − 1)

)

= min
(

max
{

1
4
, 2, 2, 4

}
,
1
4
· 2 · 2 · 4

)
= 4.

To compute L0(f), let us put |(z1, z2, z3, z4)| = |z1| + |z2| + |z3| + |z4| for
z = (z1, z2, z3, z4) ∈ C4. There is ∇f(z) = (z4, 3z2

2 , 3z
2
3 , z1 + 5z4

4) and

∇f(z) = |z4|+ 3|z2|2 + 3|z3|2 + |z1 + 5z4
4 |

> |z4|+ 3|z2|2 + 3|z3|2 + |z1| − 5|z4|4

= |z4|(1− 5|z4|3) + 3|z2|2 + 3|z3|2 + |z1|.

If |z1| > 3|z1|2 and 1− 5|z4|3 > 3|z4|, these inequalities hold near 0 ∈ C4 and

|∇f(z)| > 3(|z1|2 + |z2|2 + |z3|2 + |z4|2).

Since all norms are equivalent in C4,

|∇f(z)| > c|z|2 for a c > 0 near 0 ∈ C4;

therefore, L0(f) 6 2.
On the other hand, ∇f(0, z2, 0, 0) = (0, 3z2

2 , 0, 0), which implies L0(f) > 2.
Thus L0(f) = 2.

Now, let H(w1, . . . , wn) be the set of all weighted homogeneous polynomials
of type (w1, . . . , wn) with isolated singularity at 0 ∈ Cn. If H(w1, . . . , wn) 6= ∅
then we can ask how to compute L0(f) for f ∈ H(w1, . . . , wn) (if Teissier’s
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conjecture holds, then from Milnor–Orlik’s formula there follows that L0(f) is
constant on H(w1, . . . , wn)).

Example 1.2. Let d > 1 be an integer. Then H(d, . . . , d) is the space of
homogeneous polynomials of degree d and L0(f) = d− 1 for f ∈ H(d, . . . , d).

If n 6 3, then L0(f) = min {maxni=1(wi − 1),
∏n
i=1(wi − 1)} for f ∈

H(w1, w2, w3), according to [2], Theorem 3. In this note we shall prove

Theorem 1.3. Suppose that H(w) 6= ∅, w = (w1, . . . , wn) and let

r(w) = 2 · ]{i : wi < 2} + ]{i : wi = 2}. Then
n∏
i=1

(wi − 1) > 2n−r(w) and

r(w) = n if and only if L0(f) = 1 for f ∈ H(w).
Suppose that r(w) < n. Then

(i) if
n∏
i=1

(wi − 1) = 2n−r(w) then L0(f) = 2 for f ∈ H(w),

(ii) if
n∏
i=1

(wi − 1) = 2n−r(w) + 1 then L0(f) = 3 for f ∈ H(w).

We give the proof of Theorem 1.3 in Section 2 of this note. Example 1.1
shows that H

(
5
4 , 3, 3, 5

)
6= ∅. From Theorem 1.3 (ii) we get L0(f) = 2 for all

f ∈ H(5
4 , 3, 3, 5).

2. Proof. Let Hess0(f) be the Hesse matrix of f at 0.

Lemma 2.1. Suppose that f = f(z1, . . . , zn) has an isolated singularity at
0 ∈ Cn. Let r = rank Hess0(f) < n. Then µ0(f) > 2n−r,

(i) if µ0(f) = 2n−r then L0(f) = 2,
(ii) if µ0(f) = 2n−r + 1 then L0(f) = 3.

Proof. Apply Lemma 3.13 from [5] to the gradient ∇f .

Lemma 2.2. Let f = f(z1, . . . , zn) be a weighted homogeneous polynomial
of type (w1, . . . , wn) with isolated singularity at 0 ∈ Cn. Then

rank Hess0(f) = 2 · ]{i : wi < 2}+ ]{i : wi = 2}.

Proof. The proof is given in [6], Theorem 1.

Proof of Theorem 1.3. Using the Milnor–Orlik formula, Lemma 2.2

and the inequality µ0(f) > 2n−r, we get
n∏
i=1

(wi − 1) > 2n−r(w). By Lemma

2.2, r(w) = n if and only if rank Hess0(f) = n. If rank Hess0(f) = n, then it is
easy to check that L0(f) = 1 (see also [5], Corollary 3.8). On the other hand,
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if L0(f) = 1, then, by [5], Proposition 3.2, we get µ0(f) 6 [L0(f)]n = 1 (here
[·] stands for the integral part), thus µ0(f) = 1 and rank Hess0(f) = n.

To show (i) and (ii), let us observe that, by Lemma 2.2, rank Hess0(f) =
r(w). Use Lemma 2.1.

Example 2.3 (see [1], Example 4.17). Let f = z1z3 + z2
2 + z2

1z2. Then f
is weighted homogeneous of type w = (4, 2, 4

3). Here
r(w) = 2 · ]{i : wi < 2}+ ]{i : wi = 2} = 2 · 1 + 1 = 3, and n = 3.

Therefore, L0(f) = 1.

Example 2.4. Consider the polynomial f = z1z3 + z4
2 + z5

3 , weighted ho-
mogeneous of type w = (5

4 , 4, 5). Here we have
r = 2 · ]{i : wi < 2}+ ]{i : wi = 2} = 2 · 1 + 0 = 2 and n = 3,

thus
3∏
i=1

(wi − 1) =
1
4
· 3 · 4 = 3 = 2n−r + 1. By Theorem 1.3 (ii), L0(f) = 3.
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