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Abstract. The aim of this paper is to investigate the weak* convergence
of the complex Monge—Ampeére measures of delta-plurisubharmonic func-
tions convergent in C,-capacity and in Cr-capacity for a closed positive
current 7'.

1. Introduction. The weak™® convergence of sequences of the complex
Monge—Ampere measures of plurisubharmonic functions convergent in capacity
has been studied by many authors. In 1996 Y. Xing established the weak* con-
vergence of the complex Monge-Ampere measures of locally bounded plurisub-
harmonic functions convergent in C,,_i-capacity or C,-capacity (see [14]). Af-
ter that in [15] he extended the above results for plurisubharmonic functions
with bounded values near the boundary. The generalization of the above re-
sults onto some classes of plurisubharmonic functions on which the complex
Monge-Ampere measures are well defined has recently been completed by Ce-
grell. In [5] Cegrell proved the following result. If u;,u € £(), uj,u are
uniformly bounded from below by a function from F(2) and if u; — u in
capacity, then (dd®u;)" is weak* convergent to (dd“u)". In Theorem [3.2below,
we extend Cegrell’s above result by replacing the class £ by the class 0E;,.(€2).
At the same time, we also study the weak™ convergence of currents of the form
(dd°u;)? NT , where T is a closed positive current of bidimension (p, p) and u;
are delta-plurisubharmonic functions convergent in Cp-capacity.

2010 Mathematics Subject Classification. 32U05, 32U40.
Key words and phrases. Delta-plurisubharmonic functions, convergence in capacity,
weak* convergence, closed positive currents.



74

The paper is organized as follows. In Section [2| we recall some background
of pluripotential theory presented in the paper by E. Bedford and B. A. Taylor,
as well as in the book by M. Klimek (see [1,10]). We also deal with some classes
of plurisubharmonic functions introduced and investigated by U. Cegrell in [4].
At the same time, we recall the two classes of delta-plurisubharmonic functions,
the class of §*PSH;,. in [9] and the class of &,.(2) introduced in [11]. The
main results of the paper are stated and proved in Section

2. Background. In this section we recall some results about delta-pluri-
subharmonic functions and their Monge-Ampere measures, the capacity of a
Borel set in the sense of Bedford and Taylor, as well as the capacity associated
to a closed positive current T

2.1 Let Q be an open set in C". We say that u € 6*PSH;,.(Q2) if for each
z in ) there exist a neighbourhood U of z in € and two plurisubharmonic
functions vy, vy € PSH(U) NL*>(U) such that

U ="v — V2

onU.

In [9], the authors have proved that if u € 0*PSH;,.(2) and {U;};>1 is an
open covering of  such that u = v; 1 —v;2 on U; for ¢ > 1, where v; 1,v;2 €
PSH(U;) N L*>(U;) and 0 < m < n, then on U; we have

(dd°u)™ =" (~1)* <’:) (dd°v;1)* A (ddvi )™ "

k=0

and, hence, (ddu)™ is a closed current of bidegree (m,m) on Q (see Proposi-
tion—Definition 2.2 in [9]). Moreover, they have shown that the above definition
does not depend on the choice of the open covering {U;}.

Based on the above definition we give the following. Let u € §*PSH;,.(€2)
and {U; }i>1 be an open covering of Q such that v = v; 1 —v; 2 on U; for i > 1,
where v;1,v,2 € PSH(U;) N L*>°(U;). Let T be a closed positive current of
bidimension (p,p) on ©, 0 < p < n. Then on each U; we can define a signed
regular Borel measure

p
(ddu)P AT = (~1)F (Z) (ddv; 1)* A (ddv; )P~ % AT.
k=0

By the same arguments as in [9], we note that (dd“u)? A T is a signed
regular Borel measure on 2.
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2.2. Let Q € C" be an open set and £ C  a Borel subset. The C,-
capacity of E, introduced by Bedford and Taylor in [1], is defined by

Co(E) = Co(E, Q) = sup{/(ddcu)” cu e PSH(Q), 0<u< 1}.
E

We state the following results on C,-capacity (see [2], [13]).
2.2.1. If 4 C By C Q1 C Q9 then Cn(El,QQ) < Cn(EQ,Ql).

[e.9]

2.2.2. Co(U Ej) < 3" Cu(E)).
=1 j=1

J
2.2.3. If E; 1 E, then lim C,(E;) = C,(E).
—00

2.3. Recently Dabékk and Elkhadhra introduced the notion of a capacity
associated with a closed positive current 7' of bidimension (p,p) on an open
set () of C™. Let €2 be an open set in C" and E C 2 be a Borel set. Let T" be
a closed positive current of bidimension (p,p), p > 1 on . The capacity of E
with respect to 2, denoted by Cr(E, Q) = Cr(E), is defined by

Cr(E,Q)=Cr(E) = sup{/T/\ (ddv)P v € PSH(Q2), 0<wv < 1}.
E
Similarly to C,,-capacity, Cp-capacity has the following properties.

2.3.1. If E4 C Ey C Q1 C Q9 then CT(El,QQ) < CT(EQ,Ql).
2.3.2. If E, E5,--- are Borel subsets of {2, then

o o
crJ ) < (),
j=1 j=1
2.3.3. If £y C E5 C --- are Borel subsets of €2, then

o0
CT(U EJ> = hm CT(EJ)
j=1 =

(See Definition 2.1 and Proposition 2.2 in [8] for details).

2.4. Now we recall definitions of convergence in C,-capacity and Crp-
capacity (see [8], [14]).

Let {u;j};j>1 and u be functions on an open set & C C" and £ C Q2. We
say that the sequence {u;} is convergent to u in C,-capacity ( resp., in Cp-
capacity) on F if for all § > 0, there is
lim Cn({z € E:|uj(z) —u(z)| > 5})2 0.

J—00

(Resp., lim CT({Z € B |uj(z) —u(z)] > 5}): 0.



76

2.5. Let pyn, it be Borel measures on an open set €2 C C™. We say that the
sequence {fin }n>1 is weak™ convergent to p if

/gbd,un — /cbd,u for all ¢ € C3°(9),
Q Q

where C§°(2) denotes the set of smooth functions with compact support on €.

2.6 Let p be a Borel measure on an open set Q@ C C". We say that pu
is absolutely continuous with respect to Cjp-capacity if for each € > 0 there
exists § > 0 such that for every Borel set £ C Q with C,,(E) < § there follows
that u(E) < e. It is easy to see that u is absolutely continuous with respect
to Cp-capacity if and only if it vanishes on all pluripolar sets F' C €. Here
a subset ' C 2 is pluripolar if there exists a plurisubharmonic function ¢ on
Q, p # —o0, such that F C {z € Q: p(2) = —oo}. Indeed, the necessity is
obvious. To prove the sufficiency, we assume that p vanishes on all pluripolar
sets £ C Q but p is not absolutely continuous with respect to Cj,-capacity.
Then there exist 9 > 0 and a decreasing sequence of Borel sets { Ej }r>1 C
such that

and
/L(Ek) > €0 vV k > 1.

o0
Put £ = () Ex. Then C,(E) = 0 and, by Theorem 6.9 in [1], F is
k=1

pluripolar. But _;L(E) = lillgn w(Ex) > €p and we get a contradiction.

2.7. Now we deal with the following classes &, F and & of plurisubhar-
monic functions introduced and investigated by Cegrell in [4]. We introduce
the class 0&;,c(2).

Let 2 be a bounded hyperconvex domain in C”. Then

0= E(S2) = {1 € PSHIR) NL¥(@) : Ly o(z) =0, [ (dd*)" < oc,
Q

F=FQ) = {Lp € PSH() :3 & 2 ¢; \L ¢, sup/(ddcgoj)" < oo},
J
Q
E=E(Q) = {p € PSH(Q) : Vzy € Q, there is a neighbourhood w > 2o,

E3pj \\p on w, sup/(ddccpj)” < oo}.
J
Q

The following inclusions are clear: & C F C £.
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It follows from [4] that if v € £ then (ddu)” is well defined and it is
a positive Radon measure on Q. Moreover, Blocki in [3] proved that € has
the local property, i.e., u € £(Q) if and only if for each z € Q there is a
neighbourhood U, of z in Q such that v € £(U,). Notice that Theorem 4.5
in [4] implies that every u € £() is locally in F(Q2). Now we introduce the class
0&10c(). We say that u € 0&,.(2) if for each z € Q there is a neighbourhood
U, of z in © such that u = v — w on U, where v,w € E(U,). As in [11] if
U € 0E156(2) then (ddu)™ is well defined and it is a signed Borel measure on €.

3. Results. The first result of this section is the following.

THEOREM 3.1. Let ) be an open set in C™ and T be a closed positive current
of bidimension (p,p) on Q and {u;} C §* PSHjoc(2) and u a §-plurisubharmonic
function on Q in the sense u = v — w, where v,w are locally bounded plurisub-
harmonic functions on ). Assume that

i) uj — u in Cp-capacity on every E € Q).
ii) For all z € Q, there is a neighbourhood U, of z in Q such that for all
j=>1,u; = U} — ’U]Q-, where vjl, UJQ- are uniformly bounded plurisubharmonic

functions on U, for all j > 1.

Then (ddu;)P AT is weak™* convergent to (dd“u)? AT

PROOF. First we prove the theorem for p = 1. Namely we prove that

(3.1) ]11)1110 Ydduj NT = /wddcu AT

Q Q
for all p € C5°(Q2). Let ¢ € C3°(£2) be given. There holds

’/wddcuj AT — /wddcu/\T‘: )/zpddC(uj —u) AT

Q Q Q
_ ‘/(uj —w)dd*y A T|= ‘/(uj —w)ddy A T|
K

(3.2) .
- ‘ (uj — w)dd® AT + / (u; — w)dd®p A T‘
Kn{|uj—ul>e} Kn{|uj—u|<e}
< [ weuldrearic [ - ulldawaT),
KOy —ul><} KOy —ul<e}

where ¢ > 0 is given, K = supp ¢ and ||dd°® A T'|| denotes the total variation
of the regular Borel signed measure dd“) AT
Proposition 3.2.7 in [10] implies that there exists a positive constant C =
C(n, 1) such that
w = Cl|dd“y|3 + dd“y
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is (1, 1) nonnegative real form, where § = % i dz; \dZ; is the canonical Kahler
form of C™. Hence, =
ddYNT =T ANw — C||ddp||T A B.
Then
(3.3) |ddY ANT|| < T Aw + C||dd“y||T A S.
Lemma 1.3.8 in [2] implies that
TAw+C|ddY|TANB<D TAP,

where D is a constant depending only on ¢. Hence, the right-hand side of ([3.2)
does not exceed

(3.2)5])[ / u; — ulT A B+ / |uj—u]T/\ﬁ].
Kn{|uj—u|>e} Kn{|uj—u|<e}
First, we notice that

/|uj—u]T/\B§5 / TABSE/T/\[?.

KO {ju;—ul<e) K

K{[uj—ul<e}

Secondary,

i —u| T A B < / (luj |+ Jul) TAB

Kn{|uj—u|>¢e} Kn{ju;—u|>e}
<M [ 1A
Kn{|uj—ul|>e}

< Ml(K,u)CT(Kﬂ {luj —u| > 6},(2)% 0

as j — 00, where M(K,u) and M; (K, u) are constants depending on K and
u only.

Hence, we have proved .

Now assume that the theorem holds for p = s,1 < s < n — 1. We show
that it is true for s + 1. It suffices to show that

ujT A (dduj)® — uT A (ddu)®

in weak* topology. Indeed, by the hypothesis we can write ©u = v — w, where
v,w € PSH(2) NL>(£). Theorem 2.5 in [8] implies that for ¢ > 0 there exists
an open subset G C Q, Cp(G,Q) < € such that v = v1 + Y1, w = w1 + Yo,
where vy, w; are continuous on 2 and ¥; =0 =19 on 2\ G.
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Note that
ujT A (dduj)® —uT A (ddu)® = (uj —u)T A (dduy)®
+ (v1 — w1)(T A (ddu;)® =T A (ddw)®)
+ (1 — Y2) (T A (dduj)® — T A (ddu)®).
By the inductive hypothesis, we note that the second term
(v —w1)(T A (dduj)® =T A (ddu)®) — 0 as j — oo.
Now we prove that (u; — u)T A (dd°u;)® — 0 in weak™ topology. Let
p € DP=5P=5(Q),supp ¢ € Q. Choose Q1 € Q such that supp¢ C ©;. Under

m
the hypothesis ii), we can cover Q; C |J Uy with Uy € Q such that on each Uy
t=1
we can write u; = v§ —wh, v%, wh € PSH(U;) and the two sequences {v'}, {w!}
are uniformly bounded on U; for all 5 > 1 and for all 1 <¢ < m. Then on each
U; there is

A (ddu;)® N = Z(—l)T <i>T A (ddcvjt»)’" A (ddcwj-)s_r A p.
r=0
Hence,

[ =07 Aty nl< [l —allT A @) Al
Q Q

= [l —ullT A daws)* gl <Z / = ulT A (dd0;)* Al

Ql

3 Z / (5 s = ull ety ety e

(3.4) gi s <)/|u]u|T/\(ddC(v +wlh+ [2)P

t=1 r=0 U,

S o« [ )
t=1r=0 {luj—ul[>83nU:  {|uj—u|<5}NU;

where B; are some constants depending on ¢ and inequality (3.4]) holds because
from Lemma 1.3.8 in [2] it follows that

T A (ddv8)" A (ddw? ol < BT A ddv)" A (ddwt)™" A (dd€|z|?)P~*
J J J i
< BT A dd®(vh + wh + [2*)P.
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Let Q9 € Q such that Q1 C |J Uy C Q2 € . Then
t=1

fuy — ulT A (dd°(} + w' + [2[2))” < SM | Tl

{|uj —u|§5}ﬂUz

where M; is some constant independent of j and ||T'||q, is the total variation of
T on 9. This estimate is obtained from Lemma 1.3.8 in [2] by using similar
arguments as in the proof of Theorem 2.1.4 in [2]. Hence,

m S s
SB[ - A e+ )

t=17r=0 {Ju;—u|<6}NT;

S

<033 (0) Ml < AMIT o,
=1 r=0

On the other hand,

S () [ T gty

{Juj—u|>6}NU

S <> / T A (dd(wt + wt + [2]2))P

{|’U,j*’U,|>(5}ﬂUt

m

Z tcT({{yu] —u| > 8N, Ut>
as j — oo, where A, N; do not depend on j. Thus (u; —u)T A (ddu;)® — 0
in weak* topology.

Theorem [3.1| will be proved if we show that (1 — 2)(T A (ddu;)® — T A
(dd‘u)®) — 0 in weak™® topology. Note that it is enough to prove that

1 (T A (dd°u;)® — T A (ddu)®) — 0

in weak™ topology. Let 6 € DP~P~%(Q) with supp § € 2. Since 11 = 0 outside
G, then we may assume that supp € G. Choose suppf € Q3 € G. Then
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‘/@Z}lT/\ (dd°uy)* A 6] = ’/QplT/\ (dd°u;)* 1 6|
Q Q3

< / W llIT A (dd°u;)® A 6] < Dy / IT A (dd°u;)* £ 6]
Q3 QS

V4
<D} /HT A (dd€uy)® A 6]
t=1 U,

l s
<D Z / Z (i) 1T A (ddv)" A (dd“w§)*™" A8
t=1 U, r=0

(3.5)

<D, ZZ:ZS: <i>Mt/T/\ (dd° (v} + wh + |2[*))P

t=1 r=0 U,
l )4
<Dy Z H;Cr(G,Q) < eDy Z Hy,
t=1 t=1
‘
where suppf C |J U C Q3 € G and on each U; there is a representation
t=1
uj = vjt» —w}?, U;-, wt € PSH(U;) NL*>°(U;), D1 and Hy are constants independent
of j. Inequality follows by using arguments similar to those used to prove
inequality .

Similarly, one can prove that

’/wlT A (dd°u)® A e}g D, C
Q

and, therefore, the proof of Theorem is finished. O]

Now we establish the weak™ convergence of (dd“u;)" to (dd“u)™ in the case
of uj,u € 6&4:(2). Namely, we prove the following.

THEOREM 3.2. Let Q be an open set in C" and uj, u € 6E;0.(Q). Assume that
i) uj — u in Cp-capacity on every E € ).
ii) For each z € Q) there exists a neighbourhood U, of z in £ such that on U,
we can write
Uj; =0 —wWj, U=70V—-w,
where vj,w;,v,w € E(U,) and |v;| < |gl, |w;| < gl |v] < |g],|w] < |g] on
U., g€ &(Q).
Then (dd®u;)" is weak™ convergence to (dd“uw)™ in .
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In order to prove the above theorem, we need the following

LEMMA 3.3. Let Q C C" be a hyperconvex domain and E C ) a Borel
subset. Assume that @1, - ,pn—1 € PSH (Q),g9 € F(Q) are such that @; >
g,i=1,2,--- ,n—1. Then for every ¢ € (), we have

n—1

1
3:6) [t ndionne Add s < el [CulE)] " | [ (dag)]
E Q
where PSH™ () denotes the set of negative plurisubharmonic functions on Q.
PROOF. First we assume that E is a relatively compact open set in 2. Let
h; q denote the upper semicontinuous regularization of the relatively extremal

function hpq of E. Then hi; o € &(£2). Moreover, hj; o = —1 on E and
—1<hpo<0on It follows that

/ddcgo ANdd®p1 A Nddpn—1
E

< /—h* Qdd“o Nddpr A -+ NddSpp_1

:M—‘

- 1
< || —(dd°hpq) } H [ ddc%)n} "
1
< lellwioy | [@enig)] T [ [ @]
Q =l q
where the inequality in the fourth line follows from Theorem 5.5 in [4].
On the other hand, since ¢; > g,j7 = 1,...,n — 1, then ¢; € F(Q) and
by using the Remark after Definition 4.6 together with Theorem 3.2 in [4], we
obtain

Q
/ —pdd°h o Ndd“pr A -+ A dd pp—1
Q

Q

;l‘@\

1

.,:31‘

(3.8) [ty < [y
Q Q
Moreover, Proposition 4.6.1 in [10] implies that
(3.9) [a@ni gy = ().
Q

Combining (3.7)), (3.8) and (3.9), we get desired inequality (3.6)) in the case

of E a relatively compact open set in €.
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Now suppose that E is a compact subset of ). Take a decreasing sequence
{Dy}32, of relatively compact open sets of € such that Dy, \, E as k — oo.
Then

klim dd‘o Ndd°p1 N -+ Nddpp—1 = /ddccp ANddor A -+ Nddpr_q

Dy E

and
klim Cn(Dy) = Cy(E).

Applying inequality to Dy and passing with k to co, we obtain the desired
conclusion.

Finally, assume that £ C € is a Borel subset. Let { K, },,m>1 be an increas-
ing sequence of compact subsets such that K,, C F and K,,, /" E. Then

Cn(E) = lim C,(K;)
and

lim dd°e Ndd o1 N\ -+ Nddpp_1 = /ddcgo ANddor A+ NddCpn—1

m—00
Km E
and by the result of the second case we get inequality (3.6). The proof of the
lemma is complete. ]

PROOF OF THEOREM [3.2] Since the problem is local, then we may assume
that for each z € € there exists a neighbourhood U, of z in 2 as in the state-
ment of the theorem and it suffices to prove that (dd“u;)" is weak™ convergent

o (dd“u)"™ on U,. Since the class £ has the local property (see the proof of
Theorem 1.1 in [3]), then we may assume that g € £(U,). Thus in the proof
of the theorem we may assume that U = U, is a hyperconvex domain in C",
uj = vj —wj, vj,w; € E(U) and we have to prove that

(ddu;)" — (dd°u)™ in weak™® topology in U.

Take ¢ € C5°(U). We may assume that —1 < ¢ < 0. Write

‘ / o(dduj)" — / (dd°u) ’ / (dd°u;)" — (dd°u)")
U
(3.10) - )/Spddc(“j_“ (
U
n—1

) / —w)dd°p A ( (dd°u;)* A (ddcu)”_l_k) )

n—1
ddcu] ddc )n—l—k) )
0

O
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By replacing u; = vj—w;,u = v—w in (3.10), we get the following estimate

| [etdaruy~ [ty
U U

<y ’ (uj — w)ddp A ddps, A -+ A dd; |,
finite U

where either v, = v, wi or ¥, = v,w. Moreover, under the hypothesis it
follows that 1;, > g on U for all k = 2,--- ,n — 1. Hence, it remains to show
that

=0

Jj—00

lim ‘ / (uj — w)dd®p A ddebj, A --- A ddpj,
U

for ¢, > gon U for k = 2,3,--- ,n — 1. Take an open set D € U such that
suppp = K € D. Then

} / (uj — w)dd®p A ddy, A - A ddop;,

(3.11) v

- ( / (uj — w)dd®p A ddj, A -+ - A ddo;,
D

Now, by [4], there exists g € F(U) such that § = g on D. Put ij =
max(y;,,9) € F(U),¢;, = ¢j, on D. Let ¢ > 0 be given. Then we can
write (3.11) as follows.

(3.11) = ‘ / (uj — w)dd®p A ddPj, A - Add,
{Juj—u|<e}nD
+ / (uj — w)dd®p A ddpi, A - A ddy;,
{luj—ul>e}ND

< ‘ / (uj — w)dd®p A ddPj, A -+ A dd°D;,
{Ju;—ul <e}D

/ (uj — u)ddp A ddpj, A --- A dd°;,

{Juj—u|>e}ND

+
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Set

A = ‘ / (u; — w)ddp A dd°Dj, A -+ A dd;,

{Juj—u|<e}nD

and

B; = | / (uj = u)ddp A ddj, A+ A ddd, .
{|uj—u\>a}ﬂ]D

Hence, the proof of the theorem is complete if we prove that

J—00
and
J—00

By Lemma 3.1 in [4], we can write ¢ = @1 — @2, where @1, 2 € &y So we
can assume that ¢ € &. Since ¢;, € F(U),g € F(U) and 1, > g on U, then
by the remark after Definition 4.6 in [4], there holds

g [l wldde A ddG e ndi
{Juj—u|<e}nD
<e / dd®p A ddeij, A - A dddj,
D
<e / dd°p A (dd“g)" L.
U
Let X; = {|uj —u| > e} ND. Then

Bj < /(|uj + [u])ddp A ddej, A - A ddy;, < 4 /(—Zj)ddcgo ATy,
Xj Xj
where Ty = dd®j, A --- A dd°dj, .
Now for each R > 0, put gr = max(g, —R). Then
Bj < 4 /(_§+ :qVQnR)ddCQO A TVQ +4 /(—ggnR)ddC(p A fg
X Xj
<4 /(—§+ ggnR)ddcgo VAN TQ + "R ddcgo VAN fg,
X X



86

because —ganp < 2"R. Lemma [3.3] implies that

/ddc@ ATy < |Cal{lu; = ul > £}, U)] z [/(ddcgj)n] B
X; 4

and, hence, by the hypothesis, we get

lim [ dd®¢ ATy = 0.

j—00
X
Thus, it follows that
(3.12) lim sup B; < 4sup/(—§+ Gong)dd®p A Ty.
Jj—00 Jj=1

U

We give the estimate of the right hand side of (3.12)) as follows.

/ (=G + Gang)dd®o ATy = / — i, dd®o A dd°(§ — Gong) A T

U U

= / —QZ]’?ddCQO AN ddc(g — §2nR) VAN Tvg
{g<—2"R}

= / — iy dd®p A dd°g A'Ts — / — iy dd®p A ddGong N T
{9<-2"R} {9<—2"R}

< / — i, ddp A ddG ATy < / —Gdd®o A ddG AT
{9<-2"R} {g<—2"R}

<2 / (_§ + §27L71R)ddcg0 A ddcg A\ Tvg
{g<—2"R}
<2 / (—§ + §Q7L713)ddccp A ddcg A Tg,
{g<—27—1R}
because —g < 2(—g+ gon-1) on the set {g < —2"R} and {g < —2"R} C {g <

—2" 1R} and Ty = ddthj, A --- A dd°y;, .
By repeating the same arguments n times, we arrive at

(3.13) limsup B; < 2" / —gddp A (ddg)" L.

Jj—00 ~
{g<-R}
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However,
/ — gdd°p A (ddg)" ! < / —gddcp A (ddg)" !
{g<-R} u
< / —p(ddg)" < / (dd°g)" < oo.
U U

Hence, —g € LY(dd°p A (dd°g)"~'). On the other hand, since ¢ € & (U)
then Theorem 2.1 in [4] and Lemma [3.3| imply that ddp A (ddg)" ! is abso-
lutely continuous with respect to Cy-capacity. By the Radon—Nikodym the-
orem, —gddp A (dd°g)™ ' is also absolutely continuous with respect to C,,-
capacity. But Proposition 3.1 in [7] implies that

M, [(dd°g)"
Cal{g < —R}U) < —L— — 0
as R — oo, where M, is a constant.
If R — oo in the right-hand side of (3.13), we infer that limsup B; = 0.

J—00

Hence, the proof of Theorem [3.2]is complete. O
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