
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLVIII

2010

WEAK* CONVERGENCE OF THE COMPLEX
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Abstract. The aim of this paper is to investigate the weak* convergence
of the complex Monge–Ampère measures of delta-plurisubharmonic func-
tions convergent in Cn-capacity and in CT -capacity for a closed positive
current T .

1. Introduction. The weak* convergence of sequences of the complex
Monge–Ampère measures of plurisubharmonic functions convergent in capacity
has been studied by many authors. In 1996 Y. Xing established the weak* con-
vergence of the complex Monge–Ampère measures of locally bounded plurisub-
harmonic functions convergent in Cn−1-capacity or Cn-capacity (see [14]). Af-
ter that in [15] he extended the above results for plurisubharmonic functions
with bounded values near the boundary. The generalization of the above re-
sults onto some classes of plurisubharmonic functions on which the complex
Monge–Ampère measures are well defined has recently been completed by Ce-
grell. In [5] Cegrell proved the following result. If uj , u ∈ E(Ω), uj , u are
uniformly bounded from below by a function from F(Ω) and if uj −→ u in
capacity, then (ddcuj)n is weak* convergent to (ddcu)n. In Theorem 3.2 below,
we extend Cegrell’s above result by replacing the class E by the class δEloc(Ω).
At the same time, we also study the weak* convergence of currents of the form
(ddcuj)p ∧T , where T is a closed positive current of bidimension (p, p) and uj
are delta-plurisubharmonic functions convergent in CT -capacity.
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The paper is organized as follows. In Section 2 we recall some background
of pluripotential theory presented in the paper by E. Bedford and B. A. Taylor,
as well as in the book by M. Klimek (see [1,10]). We also deal with some classes
of plurisubharmonic functions introduced and investigated by U. Cegrell in [4].
At the same time, we recall the two classes of delta-plurisubharmonic functions,
the class of δ∗PSHloc in [9] and the class of δEloc(Ω) introduced in [11]. The
main results of the paper are stated and proved in Section 3.

2. Background. In this section we recall some results about delta-pluri-
subharmonic functions and their Monge–Ampère measures, the capacity of a
Borel set in the sense of Bedford and Taylor, as well as the capacity associated
to a closed positive current T .

2.1 Let Ω be an open set in Cn. We say that u ∈ δ∗PSHloc(Ω) if for each
z in Ω there exist a neighbourhood U of z in Ω and two plurisubharmonic
functions v1, v2 ∈ PSH(U) ∩ L∞(U) such that

u = v1 − v2

on U .
In [9], the authors have proved that if u ∈ δ∗PSHloc(Ω) and {Ui}i≥1 is an

open covering of Ω such that u = vi,1 − vi,2 on Ui for i ≥ 1, where vi,1, vi,2 ∈
PSH(Ui) ∩ L∞(Ui) and 0 ≤ m ≤ n, then on Ui we have

(ddcu)m =
m∑
k=0

(−1)k
(
m

k

)
(ddcvi,1)k ∧ (ddcvi,2)m−k

and, hence, (ddcu)m is a closed current of bidegree (m,m) on Ω (see Proposi-
tion–Definition 2.2 in [9]). Moreover, they have shown that the above definition
does not depend on the choice of the open covering {Ui}.

Based on the above definition we give the following. Let u ∈ δ∗PSHloc(Ω)
and {Ui}i≥1 be an open covering of Ω such that u = vi,1 − vi,2 on Ui for i ≥ 1,
where vi,1, vi,2 ∈ PSH(Ui) ∩ L∞(Ui). Let T be a closed positive current of
bidimension (p, p) on Ω, 0 ≤ p ≤ n. Then on each Ui we can define a signed
regular Borel measure

(ddcu)p ∧ T =
p∑

k=0

(−1)k
(
p

k

)
(ddcvi,1)k ∧ (ddcvi,2)p−k ∧ T.

By the same arguments as in [9], we note that (ddcu)p ∧ T is a signed
regular Borel measure on Ω.



75

2.2. Let Ω ⊂ Cn be an open set and E ⊂ Ω a Borel subset. The Cn-
capacity of E, introduced by Bedford and Taylor in [1], is defined by

Cn(E) = Cn(E,Ω) = sup
{∫
E

(ddcu)n : u ∈ PSH(Ω), 0 ≤ u ≤ 1
}
.

We state the following results on Cn-capacity (see [2], [13]).
2.2.1. If E1 ⊂ E2 ⊂ Ω1 ⊂ Ω2 then Cn(E1,Ω2) ≤ Cn(E2,Ω1).

2.2.2. Cn(
∞⋃
j=1

Ej) ≤
∞∑
j=1

Cn(Ej).

2.2.3. If Ej ↑ E, then lim
j→∞

Cn(Ej) = Cn(E).

2.3. Recently Dabekk and Elkhadhra introduced the notion of a capacity
associated with a closed positive current T of bidimension (p,p) on an open
set Ω of Cn. Let Ω be an open set in Cn and E ⊂ Ω be a Borel set. Let T be
a closed positive current of bidimension (p,p), p ≥ 1 on Ω. The capacity of E
with respect to Ω, denoted by CT (E,Ω) = CT (E), is defined by

CT (E,Ω) = CT (E) = sup
{∫
E

T ∧ (ddcv)p : v ∈ PSH(Ω), 0 < v < 1
}
.

Similarly to Cn-capacity, CT -capacity has the following properties.
2.3.1. If E1 ⊂ E2 ⊂ Ω1 ⊂ Ω2 then CT (E1,Ω2) ≤ CT (E2,Ω1).
2.3.2. If E1, E2, · · · are Borel subsets of Ω, then

CT (
∞⋃
j=1

Ej) ≤
∞∑
j=1

CT (Ej).

2.3.3. If E1 ⊂ E2 ⊂ · · · are Borel subsets of Ω, then

CT (
∞⋃
j=1

Ej) = lim
j→∞

CT (Ej).

(See Definition 2.1 and Proposition 2.2 in [8] for details).
2.4. Now we recall definitions of convergence in Cn-capacity and CT -

capacity (see [8], [14]).
Let {uj}j≥1 and u be functions on an open set Ω ⊂ Cn and E ⊂ Ω. We

say that the sequence {uj} is convergent to u in Cn-capacity ( resp., in CT -
capacity) on E if for all δ > 0, there is

lim
j→∞

Cn

({
z ∈ E : |uj(z)− u(z)| > δ

})
= 0.

(Resp., lim
j→∞

CT

({
z ∈ E : |uj(z)− u(z)| > δ

})
= 0.
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2.5. Let µn, µ be Borel measures on an open set Ω ⊂ Cn. We say that the
sequence {µn}n≥1 is weak* convergent to µ if∫

Ω

φdµn −→
∫
Ω

φdµ for all φ ∈ C∞0 (Ω),

where C∞0 (Ω) denotes the set of smooth functions with compact support on Ω.
2.6 Let µ be a Borel measure on an open set Ω ⊂ Cn. We say that µ

is absolutely continuous with respect to Cn-capacity if for each ε > 0 there
exists δ > 0 such that for every Borel set E ⊂ Ω with Cn(E) < δ there follows
that µ(E) < ε. It is easy to see that µ is absolutely continuous with respect
to Cn-capacity if and only if it vanishes on all pluripolar sets F ⊂ Ω. Here
a subset F ⊂ Ω is pluripolar if there exists a plurisubharmonic function ϕ on
Ω, ϕ 6≡ −∞, such that F ⊂ {z ∈ Ω : ϕ(z) = −∞}. Indeed, the necessity is
obvious. To prove the sufficiency, we assume that µ vanishes on all pluripolar
sets E ⊂ Ω but µ is not absolutely continuous with respect to Cn-capacity.
Then there exist ε0 > 0 and a decreasing sequence of Borel sets {Ek}k≥1 ⊂ Ω
such that

Cn(Ek) <
1
k
, k = 1, 2, . . . ,

and
µ(Ek) ≥ ε0 ∀ k ≥ 1.

Put E =
∞⋂
k=1

Ek. Then Cn(E) = 0 and, by Theorem 6.9 in [1], E is

pluripolar. But µ(E) = lim
k
µ(Ek) ≥ ε0 and we get a contradiction.

2.7. Now we deal with the following classes E0,F and E of plurisubhar-
monic functions introduced and investigated by Cegrell in [4]. We introduce
the class δEloc(Ω).

Let Ω be a bounded hyperconvex domain in Cn. Then

E0 = E0(Ω) = {ϕ ∈ PSH(Ω) ∩ L∞(Ω) : lim
z→∂Ω

ϕ(z) = 0,
∫
Ω

(ddcϕ)n <∞},

F = F(Ω) =
{
ϕ ∈ PSH(Ω) : ∃ E0 3 ϕj ↘ ϕ, sup

j

∫
Ω

(ddcϕj)n <∞
}
,

E = E(Ω) =
{
ϕ ∈ PSH(Ω) : ∀z0 ∈ Ω, there is a neighbourhood ω 3 z0,

E0 3 ϕj ↘ ϕ on ω, sup
j

∫
Ω

(ddcϕj)n <∞
}
.

The following inclusions are clear: E0 ⊂ F ⊂ E .
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It follows from [4] that if u ∈ E then (ddcu)n is well defined and it is
a positive Radon measure on Ω. Moreover, B locki in [3] proved that E has
the local property, i.e., u ∈ E(Ω) if and only if for each z ∈ Ω there is a
neighbourhood Uz of z in Ω such that u ∈ E(Uz). Notice that Theorem 4.5
in [4] implies that every u ∈ E(Ω) is locally in F(Ω). Now we introduce the class
δEloc(Ω). We say that u ∈ δEloc(Ω) if for each z ∈ Ω there is a neighbourhood
Uz of z in Ω such that u = v − w on Uz, where v, w ∈ E(Uz). As in [11] if
u ∈ δEloc(Ω) then (ddcu)n is well defined and it is a signed Borel measure on Ω.

3. Results. The first result of this section is the following.

Theorem 3.1. Let Ω be an open set in Cn and T be a closed positive current
of bidimension (p, p) on Ω and {uj} ⊂ δ∗PSHloc(Ω) and u a δ-plurisubharmonic
function on Ω in the sense u = v−w, where v, w are locally bounded plurisub-
harmonic functions on Ω. Assume that

i) uj −→ u in CT -capacity on every E b Ω.
ii) For all z ∈ Ω, there is a neighbourhood Uz of z in Ω such that for all

j ≥ 1, uj = v1
j − v2

j , where v1
j , v

2
j are uniformly bounded plurisubharmonic

functions on Uz for all j ≥ 1.
Then (ddcuj)p ∧ T is weak* convergent to (ddcu)p ∧ T .

Proof. First we prove the theorem for p = 1. Namely we prove that

(3.1) lim
j→∞

∫
Ω

ψddcuj ∧ T =
∫
Ω

ψddcu ∧ T

for all ψ ∈ C∞0 (Ω). Let ψ ∈ C∞0 (Ω) be given. There holds∣∣∣∫
Ω

ψddcuj ∧ T −
∫
Ω

ψddcu ∧ T
∣∣∣= ∣∣∣∫

Ω

ψddc(uj − u) ∧ T
∣∣∣

=
∣∣∣∫

Ω

(uj − u)ddcψ ∧ T
∣∣∣= ∣∣∣∫

K

(uj − u)ddcψ ∧ T
∣∣∣

=
∣∣∣ ∫
K∩{|uj−u|>ε}

(uj − u)ddcψ ∧ T +
∫

K∩{|uj−u|≤ε}

(uj − u)ddcψ ∧ T
∣∣∣

≤
∫

K∩{|uj−u|>ε}

|uj − u|‖ddcψ ∧ T‖+
∫

K∩{|uj−u|≤ε}

|uj − u|‖ddcψ ∧ T‖,

(3.2)

where ε > 0 is given, K = suppψ and ‖ddcψ ∧ T‖ denotes the total variation
of the regular Borel signed measure ddcψ ∧ T .

Proposition 3.2.7 in [10] implies that there exists a positive constant C =
C(n, 1) such that

ω = C‖ddcψ‖β + ddcψ
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is (1, 1) nonnegative real form, where β = i
2

n∑
j=1

dzj∧dzj is the canonical Kähler

form of Cn. Hence,

ddcψ ∧ T = T ∧ ω − C‖ddcψ‖T ∧ β.

Then

(3.3) ‖ddcψ ∧ T‖ ≤ T ∧ ω + C‖ddcψ‖T ∧ β.

Lemma 1.3.8 in [2] implies that

T ∧ ω + C‖ddcψ‖T ∧ β ≤ D T ∧ β,

where D is a constant depending only on ψ. Hence, the right-hand side of (3.2)
does not exceed

(3.2) ≤ D
[ ∫
K∩{|uj−u|>ε}

|uj − u|T ∧ β +
∫

K∩{|uj−u|≤ε}

|uj − u|T ∧ β
]
.

First, we notice that

K∩{|uj−u|≤ε}

∫
|uj − u|T ∧ β ≤ ε

∫
K∩{|uj−u|≤ε}

T ∧ β ≤ ε
∫
K

T ∧ β.

Secondary,∫
K∩{|uj−u|>ε}

|uj − u|T ∧ β ≤
∫

K∩{|uj−u|>ε}

(|uj |+ |u|) T ∧ β

≤ M(K,u)
∫

K∩{|uj−u|>ε}

T ∧ β

≤ M1(K,u)CT

(
K ∩ {|uj − u| > ε},Ω

)
−→ 0

as j −→ ∞, where M(K,u) and M1(K,u) are constants depending on K and
u only.

Hence, we have proved (3.1).
Now assume that the theorem holds for p = s, 1 ≤ s ≤ n − 1. We show

that it is true for s+ 1. It suffices to show that

ujT ∧ (ddcuj)s −→ uT ∧ (ddcu)s

in weak* topology. Indeed, by the hypothesis we can write u = v − w, where
v, w ∈ PSH(Ω)∩L∞(Ω). Theorem 2.5 in [8] implies that for ε > 0 there exists
an open subset G ⊂ Ω, CT (G,Ω) < ε such that v = v1 + ψ1, w = w1 + ψ2,
where v1, w1 are continuous on Ω and ψ1 = 0 = ψ2 on Ω \G.
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Note that
ujT ∧ (ddcuj)s − uT ∧ (ddcu)s = (uj − u)T ∧ (ddcuj)s

+ (v1 − w1)(T ∧ (ddcuj)s − T ∧ (ddcu)s)

+ (ψ1 − ψ2)(T ∧ (ddcuj)s − T ∧ (ddcu)s).

By the inductive hypothesis, we note that the second term

(v1 − w1)(T ∧ (ddcuj)s − T ∧ (ddcu)s) −→ 0 as j →∞.

Now we prove that (uj − u)T ∧ (ddcuj)s −→ 0 in weak* topology. Let
ϕ ∈ Dp−s,p−s(Ω), suppϕ b Ω. Choose Ω1 b Ω such that suppϕ ⊂ Ω1. Under

the hypothesis ii), we can cover Ω1 ⊂
m⋃
t=1

Ut with Ut b Ω such that on each Ut

we can write uj = vtj −wtj , vtj , wtj ∈ PSH(Ut) and the two sequences {vtj}, {wtj}
are uniformly bounded on Ut for all j ≥ 1 and for all 1 ≤ t ≤ m. Then on each
Ut there is

T ∧ (ddcuj)s ∧ ϕ =
s∑
r=0

(−1)r
(
s

r

)
T ∧ (ddcvtj)

r ∧ (ddcwtj)
s−r ∧ ϕ.

Hence, ∣∣∣∫
Ω

(uj − u)T ∧ (ddcuj)s ∧ ϕ
∣∣∣≤ ∫

Ω

|uj − u|‖T ∧ (ddcuj)s ∧ ϕ‖

=
∫
Ω1

|uj − u|‖T ∧ (ddcuj)s ∧ ϕ‖ ≤
m∑
t=1

∫
Ut

|uj − u|‖T ∧ (ddcuj)s ∧ ϕ‖

≤
m∑
t=1

s∑
r=0

∫
Ut

(
s

r

)
|uj − u|‖T ∧ (ddcvtj)

r ∧ (ddcwtj)
s−r ∧ ϕ‖

≤
m∑
t=1

s∑
r=0

Bt

(
s

r

)∫
Ut

|uj − u|T ∧ (ddc(vtj + wtj + |z|2))p(3.4)

=
m∑
t=1

s∑
r=0

Bt

(
s

r

)( ∫
{|uj−u|>δ}∩Ut

+
∫

{|uj−u|≤δ}∩Ut

)
,

where Bt are some constants depending on ϕ and inequality (3.4) holds because
from Lemma 1.3.8 in [2] it follows that

‖T ∧ (ddcvtj)
r ∧ (ddcwtj)

s−rϕ‖ ≤ BtT ∧ (ddcvtj)
r ∧ (ddcwtj)

s−r ∧ (ddc|z|2)p−s

≤ BtT ∧ ddc(vtj + wtj + |z|2)p.
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Let Ω2 b Ω such that Ω1 ⊂
m⋃
t=1

Ut ⊂ Ω2 b Ω. Then

∫
{|uj−u|≤δ}∩Ut

|uj − u|T ∧ (ddc(vtj + wtj + |z|2))p ≤ δMt‖T‖Ω2 ,

where Mt is some constant independent of j and ‖T‖Ω2 is the total variation of
T on Ω2. This estimate is obtained from Lemma 1.3.8 in [2] by using similar
arguments as in the proof of Theorem 2.1.4 in [2]. Hence,

m∑
t=1

s∑
r=0

Bt

(
s

r

) ∫
{|uj−u|≤δ}∩Ut

|uj − u|T ∧ (ddc(vtj + wtj + |z|2))p

≤ δ
m∑
t=1

s∑
r=0

Bt

(
s

r

)
Mt‖T‖Ω2 ≤ δM‖T‖Ω2 .

On the other hand,

m∑
t=1

s∑
r=0

Bt

(
s

r

) ∫
{|uj−u|>δ}∩Ut

|uj − u|T ∧ (ddc(vtj + wtj + |z|2))p

≤
m∑
t=1

s∑
r=0

Bt

(
s

r

)
At

∫
{|uj−u|>δ}∩Ut

T ∧ (ddc(vtj + wtj + |z|2))p

≤
m∑
t=1

NtCT

(
{{|uj − u| > δ} ∩ Ut}, Ut

)
−→ 0

as j →∞, where At,Nt do not depend on j. Thus (uj − u)T ∧ (ddcuj)s −→ 0
in weak* topology.

Theorem 3.1 will be proved if we show that (ψ1 − ψ2)(T ∧ (ddcuj)s − T ∧
(ddcu)s) −→ 0 in weak* topology. Note that it is enough to prove that

ψ1(T ∧ (ddcuj)s − T ∧ (ddcu)s) −→ 0

in weak* topology. Let θ ∈ Dp−s,p−s(Ω) with supp θ b Ω. Since ψ1 = 0 outside
G, then we may assume that supp θ b G. Choose supp θ b Ω3 b G. Then
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∣∣∣∫
Ω

ψ1T ∧ (ddcuj)s ∧ θ
∣∣∣= ∣∣∣∫

Ω3

ψ1T ∧ (ddcuj)s ∧ θ
∣∣∣

≤
∫
Ω3

|ψ1|‖T ∧ (ddcuj)s ∧ θ‖ ≤ D1

∫
Ω3

‖T ∧ (ddcuj)s ∧ θ‖

≤ D1

∑̀
t=1

∫
Ut

‖T ∧ (ddcuj)s ∧ θ‖

≤ D1

∑̀
t=1

∫
Ut

s∑
r=0

(
s

r

)
‖T ∧ (ddcvtj)

r ∧ (ddcwtj)
s−r ∧ θ‖

≤ D1

∑̀
t=1

s∑
r=0

(
s

r

)
Mt

∫
Ut

T ∧ (ddc(vtj + wtj + |z|2))p

≤ D1

∑̀
t=1

HtCT (G,Ω) ≤ εD1

∑̀
t=1

Ht,

(3.5)

where supp θ ⊂
⋃̀
t=1

Ut ⊂ Ω3 b G and on each Ut there is a representation

uj = vtj−wtj , vtj , wtj ∈ PSH(Ut)∩L∞(Ut), D1 and Ht are constants independent
of j. Inequality (3.5) follows by using arguments similar to those used to prove
inequality (3.4).

Similarly, one can prove that∣∣∣∫
Ω

ψ1T ∧ (ddcu)s ∧ θ
∣∣∣≤ εD1C

and, therefore, the proof of Theorem 3.1 is finished.

Now we establish the weak* convergence of (ddcuj)n to (ddcu)n in the case
of uj , u ∈ δEloc(Ω). Namely, we prove the following.

Theorem 3.2. Let Ω be an open set in Cn and uj , u∈δEloc(Ω). Assume that
i) uj → u in Cn-capacity on every E b Ω.
ii) For each z ∈ Ω there exists a neighbourhood Uz of z in Ω such that on Uz

we can write
uj = vj − wj , u = v − w,

where vj , wj , v, w ∈ E(Uz) and |vj | ≤ |g|, |wj | ≤ |g|, |v| ≤ |g|, |w| ≤ |g| on
Uz, g ∈ E(Ω).

Then (ddcuj)n is weak* convergence to (ddcu)n in Ω.
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In order to prove the above theorem, we need the following

Lemma 3.3. Let Ω ⊂ Cn be a hyperconvex domain and E ⊂ Ω a Borel
subset. Assume that ϕ1, · · · , ϕn−1 ∈ PSH−(Ω), g ∈ F(Ω) are such that ϕi ≥
g, i = 1, 2, · · · , n− 1. Then for every ϕ ∈ E0(Ω), we have

(3.6)
∫
E

ddcϕ ∧ ddcϕ1 ∧ · · · ∧ ddcϕn−1 ≤ ‖ϕ‖L∞(Ω)

[
Cn(E)

] 1
n
[∫

Ω

(ddcg)n
]n−1

n
,

where PSH−(Ω) denotes the set of negative plurisubharmonic functions on Ω.

Proof. First we assume that E is a relatively compact open set in Ω. Let
h∗E,Ω denote the upper semicontinuous regularization of the relatively extremal
function hE,Ω of E. Then h∗E,Ω ∈ E0(Ω). Moreover, h∗E,Ω ≡ −1 on E and
−1 ≤ h∗E,Ω ≤ 0 on Ω. It follows that∫

E

ddcϕ ∧ ddcϕ1 ∧ · · · ∧ ddcϕn−1

≤
∫
Ω

−h∗E,Ωddcϕ ∧ ddcϕ1 ∧ · · · ∧ ddcϕn−1

=
∫
Ω

−ϕddch∗E,Ω ∧ ddcϕ1 ∧ · · · ∧ ddcϕn−1

≤
[∫

Ω

−ϕ(ddch∗E,Ω)n
] 1

n
n−1∏
j=1

[∫
Ω

−ϕ(ddcϕj)n
] 1

n

≤ ‖ϕ‖L∞(Ω)

[∫
Ω

(ddch∗E,Ω)n
] 1

n
n−1∏
j=1

[∫
Ω

(ddcϕj)n
] 1

n
,

(3.7)

where the inequality in the fourth line follows from Theorem 5.5 in [4].
On the other hand, since ϕj ≥ g, j = 1, . . . , n − 1, then ϕj ∈ F(Ω) and

by using the Remark after Definition 4.6 together with Theorem 3.2 in [4], we
obtain

(3.8)
∫
Ω

(ddcϕj)n ≤
∫
Ω

(ddcg)n.

Moreover, Proposition 4.6.1 in [10] implies that

(3.9)
∫
Ω

(ddch∗E,Ω)n = Cn(E).

Combining (3.7), (3.8) and (3.9), we get desired inequality (3.6) in the case
of E a relatively compact open set in Ω.
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Now suppose that E is a compact subset of Ω. Take a decreasing sequence
{Dk}∞k=1 of relatively compact open sets of Ω such that Dk ↘ E as k → ∞.
Then

lim
k→∞

∫
Dk

ddcϕ ∧ ddcϕ1 ∧ · · · ∧ ddcϕn−1 =
∫
E

ddcϕ ∧ ddcϕ1 ∧ · · · ∧ ddcϕn−1

and
lim
k→∞

Cn(Dk) = Cn(E).

Applying inequality (3.6) to Dk and passing with k to∞, we obtain the desired
conclusion.

Finally, assume that E ⊂ Ω is a Borel subset. Let {Km}m≥1 be an increas-
ing sequence of compact subsets such that Km ⊂ E and Km ↗ E. Then

Cn(E) = lim
m→∞

Cn(Km)

and

lim
m→∞

∫
Km

ddcϕ ∧ ddcϕ1 ∧ · · · ∧ ddcϕn−1 =
∫
E

ddcϕ ∧ ddcϕ1 ∧ · · · ∧ ddcϕn−1

and by the result of the second case we get inequality (3.6). The proof of the
lemma is complete.

Proof of Theorem 3.2. Since the problem is local, then we may assume
that for each z ∈ Ω there exists a neighbourhood Uz of z in Ω as in the state-
ment of the theorem and it suffices to prove that (ddcuj)n is weak* convergent
to (ddcu)n on Uz. Since the class E has the local property (see the proof of
Theorem 1.1 in [3]), then we may assume that g ∈ E(Uz). Thus in the proof
of the theorem we may assume that U = Uz is a hyperconvex domain in Cn,
uj = vj − wj , vj , wj ∈ E(U) and we have to prove that

(ddcuj)n −→ (ddcu)n in weak* topology in U.

Take ϕ ∈ C∞0 (U). We may assume that −1 ≤ ϕ ≤ 0. Write∣∣∣∫
U

ϕ(ddcuj)n −
∫
U

ϕ(ddcu)n
∣∣∣= ∣∣∣∫

U

ϕ((ddcuj)n − (ddcu)n)
∣∣∣

=
∣∣∣∫
U

ϕddc(uj − u) ∧
(n−1∑
k=0

(ddcuj)k ∧ (ddcu)n−1−k
)∣∣∣

=
∣∣∣∫
U

(uj − u)ddcϕ ∧
(n−1∑
k=0

(ddcuj)k ∧ (ddcu)n−1−k
)∣∣∣.

(3.10)
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By replacing uj = vj−wj , u = v−w in (3.10), we get the following estimate∣∣∣∫
U

ϕ(ddcuj)n −
∫
U

ϕ(ddcu)n
∣∣∣

≤
∑
finite

∣∣∣∫
U

(uj − u)ddcϕ ∧ ddcψj2 ∧ · · · ∧ ddcψjn−1

∣∣∣,
where either ψjk = vk, wk or ψjk = v, w. Moreover, under the hypothesis it
follows that ψjk ≥ g on U for all k = 2, · · · , n− 1. Hence, it remains to show
that

lim
j→∞

∣∣∣∫
U

(uj − u)ddcϕ ∧ ddcψj2 ∧ · · · ∧ ddcψjn−1

∣∣∣= 0

for ψjk ≥ g on U for k = 2, 3, · · · , n − 1. Take an open set D b U such that
suppϕ = K b D. Then∣∣∣∫

U

(uj − u)ddcϕ ∧ ddcψj2 ∧ · · · ∧ ddcψjn−1

∣∣∣
=
∣∣∣∫
D

(uj − u)ddcϕ ∧ ddcψj2 ∧ · · · ∧ ddcψjn−1

∣∣∣.(3.11)

Now, by [4], there exists g̃ ∈ F(U) such that g̃ = g on D. Put ψ̃jk =
max(ψjk , g̃) ∈ F(U), ψ̃jk = ψjk on D. Let ε > 0 be given. Then we can
write (3.11) as follows.

(3.11) =
∣∣∣ ∫
{|uj−u|≤ε}∩D

(uj − u)ddcϕ ∧ ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1

+
∫

{|uj−u|>ε}∩D

(uj − u)ddcϕ ∧ ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1

∣∣∣
≤
∣∣∣ ∫
{|uj−u|≤ε}∩D

(uj − u)ddcϕ ∧ ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1

∣∣∣
+
∣∣∣ ∫
{|uj−u|>ε}∩D

(uj − u)ddcϕ ∧ ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1

∣∣∣.
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Set

Aj =
∣∣∣ ∫
{|uj−u|≤ε}∩D

(uj − u)ddcϕ ∧ ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1

∣∣∣
and

Bj =
∣∣∣ ∫
{|uj−u|>ε}∩D

(uj − u)ddcϕ ∧ ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1

∣∣∣.
Hence, the proof of the theorem is complete if we prove that

lim
j→∞

Aj = 0

and
lim
j→∞

Bj = 0.

By Lemma 3.1 in [4], we can write ϕ = ϕ1 − ϕ2, where ϕ1, ϕ2 ∈ E0. So we
can assume that ϕ ∈ E0. Since ψ̃jk ∈ F(U), g̃ ∈ F(U) and ψ̃jk ≥ g̃ on U , then
by the remark after Definition 4.6 in [4], there holds

Aj ≤
∫

{|uj−u|≤ε}∩D

|(uj − u)|ddcϕ ∧ ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1

≤ ε
∫
D

ddcϕ ∧ ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1

≤ ε
∫
U

ddcϕ ∧ (ddcg̃)n−1.

Let Xj = {|uj − u| > ε} ∩ D. Then

Bj ≤
∫
Xj

(|uj |+ |u|)ddcϕ ∧ ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1 ≤ 4
∫
Xj

(−g̃)ddcϕ ∧ T̃2,

where T̃2 = ddcψ̃j2 ∧ · · · ∧ ddcψ̃jn−1 .
Now for each R > 0, put g̃R = max(g̃,−R). Then

Bj ≤ 4
∫
Xj

(−g̃ + g̃2nR)ddcϕ ∧ T̃2 + 4
∫
Xj

(−g̃2nR)ddcϕ ∧ T̃2

≤ 4
∫
Xj

(−g̃ + g̃2nR)ddcϕ ∧ T̃2 + 2n+2R

∫
Xj

ddcϕ ∧ T̃2,
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because −g̃2nR ≤ 2nR. Lemma 3.3 implies that∫
Xj

ddcϕ ∧ T̃2 ≤
[
Cn({|uj − u| > ε}, U)

] 1
n
[∫
U

(ddcg̃)n
]n−1

n

and, hence, by the hypothesis, we get

lim
j→∞

∫
Xj

ddcϕ ∧ T̃2 = 0.

Thus, it follows that

(3.12) lim sup
j→∞

Bj ≤ 4 sup
j≥1

∫
U

(−g̃ + g̃2nR)ddcϕ ∧ T̃2.

We give the estimate of the right hand side of (3.12) as follows.∫
U

(−g̃ + g̃2nR)ddcϕ ∧ T̃2 =
∫
U

−ψ̃j2ddcϕ ∧ ddc(g̃ − g̃2nR) ∧ T̃3

=
∫

{g̃≤−2nR}

−ψ̃j2ddcϕ ∧ ddc(g̃ − g̃2nR) ∧ T̃3

=
∫

{g̃≤−2nR}

−ψ̃j2ddcϕ ∧ ddcg̃ ∧ T̃3 −
∫

{g̃≤−2nR}

−ψ̃j2ddcϕ ∧ ddcg̃2nR ∧ T̃3

≤
∫

{g̃≤−2nR}

−ψ̃j2ddcϕ ∧ ddcg̃ ∧ T̃3 ≤
∫

{g̃≤−2nR}

−g̃ddcϕ ∧ ddcg̃ ∧ T̃3

≤ 2
∫

{g̃≤−2nR}

(−g̃ + g̃2n−1R)ddcϕ ∧ ddcg̃ ∧ T̃3

≤ 2
∫

{g̃≤−2n−1R}

(−g̃ + g̃2n−1R)ddcϕ ∧ ddcg̃ ∧ T̃3,

because −g̃ ≤ 2(−g̃+ g̃2n−1R) on the set {g̃ ≤ −2nR} and {g̃ ≤ −2nR} ⊂ {g̃ ≤
−2n−1R} and T̃3 = ddcψ̃j3 ∧ · · · ∧ ddcψ̃jn−1 .

By repeating the same arguments n times, we arrive at

(3.13) lim sup
j→∞

Bj ≤ 2n
∫

{g̃≤−R}

−g̃ddcϕ ∧ (ddcg̃)n−1.
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However, ∫
{g̃≤−R}

− g̃ddcϕ ∧ (ddcg̃)n−1 ≤
∫
U

−g̃ddcϕ ∧ (ddcg̃)n−1

≤
∫
U

−ϕ(ddcg̃)n ≤
∫
U

(ddcg̃)n <∞.

Hence, −g̃ ∈ L1(ddcϕ ∧ (ddcg̃)n−1). On the other hand, since ϕ ∈ E0(U)
then Theorem 2.1 in [4] and Lemma 3.3 imply that ddcϕ ∧ (ddcg̃)n−1 is abso-
lutely continuous with respect to Cn-capacity. By the Radon–Nikodym the-
orem, −g̃ddcϕ ∧ (ddcg̃)n−1 is also absolutely continuous with respect to Cn-
capacity. But Proposition 3.1 in [7] implies that

Cn({g̃ ≤ −R}, U) ≤
Mn

∫
U

(ddcg̃)n

Rn
−→ 0

as R→∞, where Mn is a constant.
If R → ∞ in the right-hand side of (3.13), we infer that lim sup

j→∞
Bj = 0.

Hence, the proof of Theorem 3.2 is complete.
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