A FACTORISABLE DERIVATION OF POLYNOMIAL RINGS
IN n VARIABLES

BY ANDRZEJ NOWICKI

Abstract. Let \(k[x_1, \ldots, x_n] \) be the polynomial ring in \(n \geq 3 \) variables over a field \(k \) of characteristic zero, and let \(\Delta \) be the factorisable derivation of \(k[x_1, \ldots, x_n] \) defined by \(\Delta(x_i) = x_i(S - x_i) \), for \(i = 1, \ldots, n \), where \(S = x_1 + \cdots + x_n \). We prove that this derivation has no nontrivial polynomial constants, and we describe the field of its rational constants.

Introduction. Throughout this paper \(k \) is a field of characteristic zero, \(k[X] = k[x_1, \ldots, x_n] \) is the polynomial ring in \(n \geq 3 \) variables over \(k \), and \(k(X) = k(x_1, \ldots, x_n) \) is the field of quotients of \(k[X] \), that is \(k(X) \) is the field of rational functions in \(n \) variables over \(k \).

If \(R \) is a commutative \(k \)-algebra, then a \(k \)-linear mapping \(d : R \to R \) is said to be a \(k \)-derivation (or simply a derivation) of \(R \) if \(d(ab) = ad(b) + bd(a) \) for all \(a, b \in R \). In this case we denote by \(R^d \) the \(k \)-algebra of constants of \(R \) with respect to \(d \), that is, \(R^d = \{ r \in R ; d(r) = 0 \} \). Note that if \(R \) is a field, then \(R^d \) is a subfield of \(R \) containing \(k \).

If \(f_1, \ldots, f_n \) are polynomials belonging to \(k[X] \), then there exists exactly one derivation \(d : k[X] \to k[X] \) such that \(d(x_1) = f_1, \ldots, d(x_n) = f_n \). This derivation is of the form

\[
d = f_1 \frac{\partial}{\partial x_1} + \cdots + f_n \frac{\partial}{\partial x_n}.
\]

Every derivation \(d \) of \(k[X] \) has a unique extension to a derivation of the field \(k(X) \); also this extension we denote by \(\bar{d} \). Thus, for any derivation \(d \) of \(k[X] \), there is the ring \(k[X]^d = \{ f \in k[X] ; d(f) = 0 \} \) and the field \(k(X)^d = \{ \varphi \in \}

2000 Mathematics Subject Classification. Primary 12H05; Secondary 13N15, 34A34.

Key words and phrases. Derivation, ring of constants, field of constants, Darboux polynomial, factorisable derivation, Lotka–Volterra derivation, Jouanolou derivation.
$k(X); \ d(\varphi) = 0\}$. Of course, $k(X)^d$ contains the field of quotients of $k[X]^d$, but in many cases these fields are different (see [21, 20]). We are mainly interested in some descriptions of $k[X]^d$ and $k(X)^d$. However, we know that, in general, such descriptions are very difficult to obtain. Rings and fields of constants appear in various classical problems; for details we refer the reader to [3] and [20].

The mentioned problems are also very difficult for factorisable derivations. We say that a derivation $d : k[X] \rightarrow k[X]$ is factorisable (or factorizable) if

$$d(x_i) = x_i(a_{i1}x_1 + \cdots + a_{in}x_n),$$

for all $i = 1, \ldots, n$, where each a_{ij} belongs to k. Factorisable derivations and factorisable systems of ordinary differential equations have intensively been studied for a long time; see for example [5, 4, 19] and [20], where numerous references to this subject can be found. With any given derivation $d : k[X]$, using a special procedure, we may associate a factorisable derivation δ (see [24] for details). There exist derivations for which the problem of descriptions of $k[X]^d$ or $k(X)^d$ reduces to the same problem for the factorisable derivation associated with a given derivation. We know from [22] and [18] that this is the case if the derivation d is monomial, that is, if all the polynomials $d(x_1), \ldots, d(x_n)$ are monomials. Consider, for example, a cyclic monomial derivation $d : k[X] \rightarrow k[X]$ defined by

$$d(x_i) = x_i^s, \ d(x_2) = x_3^s, \ldots, \ d(x_{n-1}) = x_n^s, \ d(x_n) = x_1^s,$$

where $n \geq 3$ and $s \geq 2$. Such d is called a Jouanolou derivation ([8, 19, 9, 26]). The factorisable derivation δ, associated with d, is a derivation of $k[X]$ defined by

$$\delta(x_i) = x_i (sx_{i+1} - x_i),$$

for $i = 1, \ldots, n$, where $x_{n+1} = x_1$ ([9, 26]). In 2003, H. Žoladek [26] proved that the field of constants of the factorisable derivation δ is trivial, that is, $k(X)^\delta = k$. As a consequence of this fact (and some results from [9]), he proved that the above Jouanolou derivation d has no Darboux polynomials; in particular, he proved that also the field of constants of d is trivial. Let us recall ([19, 20]) that a polynomial $F \in k[X]$ is a Darboux polynomial of d if $F \notin k$ and $d(F) = \Lambda F$ for some $\Lambda \in k[X]$. Derivations without Darboux polynomials are intensively studied in many papers ([16, 10, 17]).

Examples of factorisable derivations are the famous Lotka–Volterra derivations for $n = 3$ (see for example: [11, 12, 15, 13, 14]). A Lotka–Volterra derivation is a derivation $d : k[x, y, z] \rightarrow k[x, y, z]$ such that

$$d(x) = x(Cy + z), \ d(y) = y(Az + x), \ d(z) = z(Bx + y),$$
where $A, B, C \in k$. There also exist some specific generalizations of Lotka–Volterra derivations, for polynomial rings in $n \geq 4$ variables. One of such generalizations is the derivation $D : k[X] \to k[X]$ defined by

$$D(x_i) = x_i (x_{i-1} - x_{i+1}),$$

for $i = 1, \ldots, n$, where $x_0 = x_n$ and $x_{n+1} = x_1$. Such D is called either a Lotka–Volterra derivation ([6, 1, 23]) or a Volterra derivation ([2, 25]). It is not easy to describe the ring of constants of D for arbitrary $n \geq 3$. If $n = 3$, then some description is given in [15]. P. Ossowski and J. Zieliński ([23]) determined all polynomial constants for $n = 4$. Recently, Zieliński ([25]) presented such description for $n = 5$. Hence, we know a structure of $k[X]^D$ for $n \leq 5$ only. For $n \geq 6$, the problem is open. There are similar open problems concerning the field $k(X)^D$, even for $n < 6$. It is a natural question what happens if in the above derivation D we change the sign before x_{i+1}, that is, if

$$D(x_i) = x_i (x_{i-1} + x_{i+1}),$$

for $i = 1, \ldots, n$. In particular, if $n = 3$, then D is a cyclic derivation of $k[x, y, z]$ such that

$$D(x) = x(y + z), \quad D(y) = y(z + x), \quad D(z) = z(x + y).$$

There are no results concerning $k[X]^D$ and $k(X)^D$ for an arbitrary n.

In this paper, we consider a similar factorisable derivation $\Delta : k[X] \to k[X]$, defined by

$$\Delta(x_i) = x_i (S - x_i),$$

for $i = 1, \ldots, n$, where S is the sum $x_1 + \cdots + x_n$. We prove that, for an arbitrary $n \geq 3$, the ring of constant of Δ is trivial, that is, $k[X]^\Delta = k$. Moreover, we prove that the field $k(X)^\Delta$ is generated by $n - 1$ algebraically independent rational functions; we also present some explicit formulas for generators. Note that if $n = 3$, then Δ coincides with the above mentioned derivation D of $k[x, y, z]$.

1. Polynomial constants. Let us recall that $\Delta : k[X] \to k[X]$ is the factorisable derivation of the polynomial ring $k[X] = k[x_1, \ldots, x_n]$ defined by

$$\Delta(x_i) = x_i (S - x_i),$$

for $i = 1, \ldots, n$, where $n \geq 3$, k is a field of characteristic zero and S is the sum $x_1 + \cdots + x_n$. In this section, using a method described in [19] and [20], we prove that the ring of constants of Δ is equal to k. Note that the derivation Δ is homogeneous; all the elements $\Delta(x_1), \ldots, \Delta(x_n)$ are nonzero homogeneous polynomials of degree 2. Hence, if there exists a nontrivial polynomial constant of Δ, then there exists such a constant which is homogeneous.
Let us assume that $F \in k[X]$ is a nonzero homogeneous polynomial of degree $m \geq 1$ such that $\Delta(F) = 0$. Then $x_1(S-x_1) \frac{\partial F}{\partial x_1} + \cdots + x_n(S-x_n) \frac{\partial F}{\partial x_n} = 0$ and, since F is homogeneous, $x_1 \frac{\partial F}{\partial x_1} + \cdots + x_n \frac{\partial F}{\partial x_n} = mF$. As a combination of these two equalities we obtain the equality

\[
(1) \quad x_1(x_1-x_n) \frac{\partial F}{\partial x_1} + \cdots + x_n(x_n-x_n) \frac{\partial F}{\partial x_n} = m(S-x_n)F,
\]

which does not include the last partial derivative.

Let $\varphi : k[X] = k[x_1, \ldots, x_n] \rightarrow k[x_1, \ldots, x_n-1]$ be the k-algebra homomorphism such that $\varphi(x_i) = x_i$ for $i = 1, \ldots, n-1$, and $\varphi(x_n) = 1$. This homomorphism commutes with the partial derivatives $\partial_{x_1}, \ldots, \partial_{x_{n-1}}$, that is, $\varphi \circ \partial_{x_i} = \partial_{x_i} \circ \varphi$, for $i = 1, \ldots, n-1$. Denote by \overline{F} the image of F with respect to φ, that is,

\[
\overline{F} = \varphi(F) = F(x_1, \ldots, x_{n-1}, 1).
\]

Note that \overline{F} is a polynomial belonging to $k[x_1, \ldots, x_{n-1}]$. Put $z = x_n$ and let

\[
F = F_0 z^m + F_1 z^{m-1} + \cdots + F_{m-1} z + F_m,
\]

where each F_i (for $i = 0, 1, \ldots, m$) is either zero or a nonzero homogeneous polynomial, belonging to $k[x_1, \ldots, x_{n-1}]$, of degree i. Then we obtain the equality

\[
\overline{F} = F_0 + F_1 + \cdots + F_m,
\]

which is the decomposition of \overline{F} into homogeneous components. Since $F \neq 0$, there exists $i \in \{0, 1, \ldots, m\}$ such that $F_i \neq 0$, and this implies that \overline{F} is a nonzero polynomial. Suppose that $F_0 \neq 0$ and $F_1 = F_2 = \cdots = F_m = 0$. Then $F = az^m$, where $0 \neq a \in k$, $z = x_n$. But $\Delta(F) = 0$, so $0 = \Delta(ax_n^m(S-x_n)) \neq 0$; a contradiction. Therefore, \overline{F} is a nonzero polynomial of degree p, where $1 \leq p \leq m$. Moreover, by (1), there follows:

\[
m(x_1 + \cdots + x_{n-1}) \overline{F} = m \varphi(S-x_n) \varphi(F) = \varphi\left(m(S-x_n)F\right) = \varphi\left(x_1(x_1-x_n) \frac{\partial F}{\partial x_1} + \cdots + x_n(x_n-x_n) \frac{\partial F}{\partial x_n-n} \right) = x_1(x_1-1) \frac{\partial \overline{F}}{\partial x_1} + \cdots + x_n(x-n-1) \frac{\partial \overline{F}}{\partial x_n-n}.
\]

Hence, the polynomial \overline{F} satisfies the equality

\[
(2) \quad x_1(x_1-1) \frac{\partial \overline{F}}{\partial x_1} + \cdots + x_n(x_n-1) \frac{\partial \overline{F}}{\partial x_n-n} = m(x_1 + x_2 + \cdots + x_{n-1}) \overline{F}.
\]
Let \(\sigma : k[x_1, \ldots, x_{n-1}] \to k[x_1, \ldots, x_{n-1}] \) be the affine \(k \)-algebra automorphism defined by

\[
\sigma(x_i) = x_i + 1, \quad \text{for} \quad i = 1, \ldots, n-1.
\]

This homomorphism also commutes with all the partial derivatives \(\frac{\partial}{\partial x_i}, \ldots, \frac{\partial}{\partial x_{n-1}} \), that is, \(\sigma \circ \frac{\partial}{\partial x_i} = \frac{\partial}{\partial x_i} \circ \sigma \), for \(i = 1, \ldots, n-1 \). Consider the polynomial

\[
G = \sigma(F) = F(x_1 + 1, \ldots, x_{n-1} + 1).
\]

It is clear that \(G \neq 0 \), \(\deg G = \deg F = p \) with \(1 \leq p \leq m \). Moreover, by (2), we obtain

\[
(x_1 + 1)x_1 \frac{\partial G}{\partial x_1} + \cdots + (x_{n-1} + 1)x_{n-1} \frac{\partial G}{\partial x_{n-1}} = m \left(x_1 + x_2 + \cdots + x_{n-1} + (n-1) \right) G.
\]

(3)

It follows from the above equality that \(G(0, \ldots, 0) = 0 \).

Let \(H \) be the nonzero homogeneous component of \(G \) of the minimal degree. Put \(q = \deg H \). Since \(G \neq 0 \) and \(G(0, \ldots, 0) = 0 \), then \(q \geq 1 \). Thus, \(H \) is a nonzero homogeneous polynomial, belonging to \(k[x_1, \ldots, x_{n-1}] \), and \(\deg H = q \) with \(1 \leq q \leq p \leq m \).

Comparing in the homogeneous components of the smallest degree in (3), we obtain the equality

\[
x_1 \frac{\partial H}{\partial x_1} + \cdots + x_{n-1} \frac{\partial H}{\partial x_{n-1}} = m(n-1)H.
\]

But \(H \) is homogeneous, so by Euler’s identity we have

\[
x_1 \frac{\partial H}{\partial x_1} + \cdots + x_{n-1} \frac{\partial H}{\partial x_{n-1}} = qH.
\]

Hence, \(q = (n-1)m \) and we have a contradiction: \(2m \leq (n-1)m = q \leq m \).

Thus we have proved the following theorem.

Theorem 1.1. For any \(n \geq 3 \), the derivation \(\Delta \) has no nontrivial polynomial constants. In other words:

\[
k[X]^\Delta = \left\{ F \in k[X] : d(F) = 0 \right\} = k.
\]
2. An extension of Δ. In this section we will show that the derivation Δ is associated with some simple monomial derivation δ of a polynomial ring in n variables over k.

We denote by $k[Y]$ the polynomial ring $k[y_1, \ldots, y_n]$, by $k(Y) = k(y_1, \ldots, y_n)$ the field of quotients of $k[Y]$, and by π the product $y_1y_2 \cdots y_n$. Moreover, we use notations:

$$u_1 = y_1 - y_n, \ u_2 = y_2 - y_n, \ldots, \ u_{n-1} = y_{n-1} - y_n.$$

Let us consider the unique derivation $\delta : k[Y] \to k[Y]$ such that $\delta(y_i) = \pi$ for $i = 1, \ldots, n$. This derivation is of the form $\delta = \pi \delta_0$, where

$$\delta_0 = \frac{\partial}{\partial y_1} + \cdots + \frac{\partial}{\partial y_n}.$$

The polynomials u_1, \ldots, u_{n-1} are constants with respect to δ, and we have the following proposition holds.

Proposition 2.1. $k[Y]^\delta = k[u_1, \ldots, u_{n-1}], \ k(Y)^\delta = k(u_1, \ldots, u_{n-1}).$

Proof. Observe that $\sigma \delta \sigma^{-1} = \frac{\partial}{\partial y_n}$, where $\sigma : k[Y] \to k[Y]$ is the k-algebra automorphism defined by $\sigma(y_i) = y_i + y_n$ for $i = 1, \ldots, n - 1$, and $\sigma(y_n) = y_n$. Hence,

$$k[Y]^\delta = k[Y]^{\delta_0} = \sigma^{-1}
\left(k[Y] \left(\frac{\partial}{\partial y_n} \right) \right)
= \sigma^{-1}
\left(k[y_1, \ldots, y_{n-1}] \right)
= k[\sigma^{-1}(y_1), \ldots, \sigma^{-1}(y_{n-1})]
= k[u_1, \ldots, u_{n-1}]$$

and, by the same argument, $k(Y)^\delta = k(u_1, \ldots, u_{n-1})$. \hfill \square

Now we introduce the elements x_1, \ldots, x_n, which are polynomials, belonging to $k[Y]$, defined by $x_i = \frac{y_i}{y_n}$ for $i = 1, \ldots, n$, that is,

$$x_1 = y_2y_3 \cdots y_n, \ x_2 = y_1y_3y_4 \cdots y_n, \ldots, \ x_n = y_1y_2 \cdots y_{n-1}.$$

Proposition 2.2. The above polynomials x_1, \ldots, x_n are algebraically independent over k.

Proof. It is enough to prove (see for example [7]) that the Jacobian $\det(\partial x_i/\partial y_j)$ is nonzero. Observe that

$$\det(\partial x_i/\partial y_j) = \begin{vmatrix}
0 & \frac{y_1}{y_2} & \frac{y_1}{y_3} & \cdots & \frac{y_1}{y_n} \\
\frac{y_2}{y_1} & 0 & \frac{y_2}{y_3} & \cdots & \frac{y_2}{y_n} \\
\frac{y_3}{y_1} & \frac{y_3}{y_2} & 0 & \cdots & \frac{y_3}{y_n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{y_n}{y_1} & \frac{y_n}{y_2} & \frac{y_n}{y_3} & \cdots & 0
\end{vmatrix} = \frac{x_1 \cdots x_n}{y_1 \cdots y_n} \det M,$$
where M is the following $n \times n$ matrix:

$$
\begin{bmatrix}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 0
\end{bmatrix}.
$$

It is easy to check that $\det M = (-1)^{n-1}(n-1)$. Hence, the Jacobian $\det[\partial x_j/\partial y_j]$ is nonzero. \hfill \square

Proposition 2.3. If x_1, \ldots, x_n are the polynomials described above, then

$$
\delta(x_i) = x_i(S - x_i),
$$

for $i = 1, \ldots, n$, where $S = x_1 + \cdots + x_n$.

Proof. Let us recall that $\delta(y_i) = \pi$ and $x_i = \pi/y_i$ for $i = 1, \ldots, n$, where $\pi = y_1 \cdots y_n$. For $i = 1$:

$$
\delta(x_1) = \delta(y_2y_3 \cdots y_n)
= \delta(y_2)y_3y_4 \cdots y_n + y_2\delta(y_3)y_4 \cdots y_n + \cdots + y_2y_3 \cdots y_{n-1}\delta(y_n)
= \pi y_3y_4 \cdots y_n + \pi y_2y_4 \cdots y_n + \cdots + \pi y_2y_3 \cdots y_{n-1}\pi
= \frac{\pi}{y_1y_2} + \frac{\pi}{y_1y_3} + \cdots + \frac{\pi}{y_1y_n}
= x_1x_2 + x_1x_3 + \cdots + x_1x_n = x_1(S - x_1).
$$

We may repeat the same for any $i = 2, \ldots, n$ and hence $\delta(x_i) = x_i(S - x_i)$ for $i = 1, \ldots, n$. \hfill \square

Since x_1, \ldots, x_n are algebraically independent over the field k (see Proposition 2.2), we have the polynomial ring $k[X] = k[x_1, \ldots, x_n]$. Thus, we have two polynomial rings:

$$
k[X] = k[x_1, \ldots, x_n] \quad \text{and} \quad k[Y] = k[y_1, \ldots, y_n],
$$

and $k[X]$ is a subring of $k[Y]$. We also have the field extension $k(X) \subset k(Y)$, where $k(X) = k(x_1, \ldots, x_n)$ and $k(Y) = k(y_1, \ldots, y_n)$. It follows from $[18]$ that the extension $k(X) \subset k(Y)$ is Galois, and $\dim_{k(X)} k(Y) = n - 1$, but we do not need such information.

Observe that, by Proposition 2.3 $\delta(k[X]) \subset k[X]$ and the restriction of the derivation δ to $k[X]$ is exactly equal to the derivation Δ. We already know that $k[X]^\Delta = k$ (see Theorem 1.1). Our aim is to describe the field $k(X)^\Delta$. Now we know that $k(X)^\Delta$ is a subfield of the field $k(Y)^\delta$, which, by Proposition 2.1 is equal to the field $k(u_1, \ldots, u_{n-1})$. Moreover, $k(X)^\Delta = k(Y)^\delta \cap k(X)$.

3. Rational constants. We use the same notations as in the previous section. Put also

\[W := x_1 \cdots x_n \quad \text{and} \quad N := n - 1. \]

Observe that \(W = \frac{\pi \cdots \pi}{y_1 \cdots y_n} = \pi^n = \pi^N. \) Moreover,

\[x_i^N = \left(\frac{\pi}{y_i} \right)^N = \frac{W}{y_i^N}, \]

so \(y_i^N = \frac{W}{x_i} \) for \(i = 1, \ldots, n. \) Thus, the following lemma is true.

Lemma 3.1. The powers \(y_1^N, \ldots, y_n^N \) and \(\pi^N \) belong to \(k(X). \)

Note also that

\[\frac{x_j}{x_i} = \frac{\pi/y_j}{\pi/y_i} = \frac{y_i}{y_j}, \]

and hence each quotient \(\frac{y_i}{y_j}, \) for \(i, j \in \{1, \ldots, n\}, \) belongs to the field \(k(X). \)

Lemma 3.2. If \(i_1, \ldots, i_n \) are integers such that the sum \(i_1 + \cdots + i_n \) is divisible by \(N, \) then \(y_1^{i_1} \cdots y_n^{i_n} \) belongs to \(k(X). \)

Proof. Let \(i_1 + \cdots + i_n = aN \) with \(a \in \mathbb{Z}. \) Then

\[y_1^{i_1} \cdots y_n^{i_n} = y_1^{aN} y_1^{-(i_1+i_2+\cdots+i_n)} y_1^{i_1} \cdots y_n^{i_n} = (y_1^N)^a \left(\frac{y_2}{y_1} \right)^{i_2} \cdots \left(\frac{y_n}{y_1} \right)^{i_n}, \]

and this lemma follows from the previous observations. \(\square \)

Let us recall that \(u_i = y_i - y_n \) for \(i = 1, \ldots, N. \)

Lemma 3.3. The powers \(u_1^N, \ldots, u_N^N \) belong to \(k(X). \)

Proof. Since \(u_i^N = (y_i - y_n)^N = \sum_{p+q=N} a_{pq} y_1^p y_n^q, \) where each \(a_{pq} \) is an integer, the result follows from Lemma 3.2. \(\square \)

Lemma 3.4. Each quotient \(\frac{u_i}{u_j}, \) for \(i, j \in \{1, \ldots, N\}, \) belongs to \(k(X). \)

Proof. The result follows from the equalities

\[\frac{u_i}{u_j} = \frac{y_i - y_n}{y_j - y_n} = \frac{(y_i - y_n) \left(y_j^{N-1} + y_j^{N-2} y_n + \cdots + y_n^{N-1} \right)}{y_j^N - y_n^N} \]

and the previous lemmas. \(\square \)

As a consequence of the above lemmas, we obtain the following proposition.
PROPOSITION 3.5. If \(i_1, \ldots, i_N \) are integers such that the sum \(i_1 + \cdots + i_N \) is divisible by \(N \), then \(u_1^{i_1} \cdots u_N^{i_N} \) belongs to the field of constants \(k(X)^\Delta \). In particular, all rational functions of the forms \(u_i^N \) and \(u_i \), for \(i, j \in \{1, \ldots, N\} \), belong to \(k(X)^\Delta \).

Proof. Let \(i_1 + \cdots + i_N = aN \) with \(a \in \mathbb{Z} \), and put \(\gamma = u_1^{i_1} \cdots u_N^{i_N} \). Then

\[
\gamma = u_1^{a N} u_1^{-(i_1 + \cdots + i_N)} u_1^{i_1} \cdots u_N^{i_N} = \left(\frac{u_1^N}{u_1} \right)^a \left(\frac{u_2}{u_1} \right)^{i_2} \cdots \left(\frac{u_N}{u_1} \right)^{i_N},
\]

and hence, by Lemmas 3.3 and 3.4, the element \(\gamma \) belongs to \(k(X) \). But \(\gamma \) belongs also to the field \(k(u_1, \ldots, u_N) \), which is equal to \(k(Y)^\delta \) (see Proposition 2.1). Recall that \(k(X)^\Delta = k(Y)^\delta \cap k(X) \). Therefore, \(\gamma \in k(X)^\Delta \). □

Lemma 3.6. The element \(u_1 \) is algebraic over \(k(X) \) and the degree of its minimal polynomial over \(k(X) \) is equal to \(N \).

Proof. Since \(u_1^N \in k(X)^\Delta \subset k(X) \), the element \(u_1 \) is algebraic over \(k(X) \), and the degree of its minimal polynomial over \(k(X) \) is not greater than \(N \). Suppose that this degree is equal to \(m \) and \(m < N \). Then there exist elements \(a_0, a_1, \ldots, a_m \), belonging to \(k[X] \), such that \(a_m \neq 0 \), and \(a_m u_1^m + \cdots + a_1 u_1 + a_0 = 0 \). Let us recall that \(x_i = \frac{\pi}{y_i} \) for \(i = 1, \ldots, n \), where \(\pi = y_1 y_2 \cdots y_n \).

Hence, in the polynomial ring \(k[X] = k[y_1, \ldots, y_n] \), the following equality holds:

\[
a_m \left(\frac{\pi}{y_1}, \ldots, \frac{\pi}{y_n} \right) (y_1 - y_m)^m + \cdots + a_1 \left(\frac{\pi}{y_1}, \ldots, \frac{\pi}{y_n} \right) (y_1 - y_n)^1 + a_0 \left(\frac{\pi}{y_1}, \ldots, \frac{\pi}{y_n} \right) = 0.
\]

Consider the total degrees with respect to the variables \(y_1, \ldots, y_n \). Such degree of each polynomial \(a_i \left(\frac{\pi}{y_1}, \ldots, \frac{\pi}{y_n} \right) \), for \(i = 0, 1, \ldots, m \), is divisible by \(N \). This means that in the above equality all the summands have degrees which are pairwise incongruent modulo \(N \). Hence,

\[
a_i \left(\frac{\pi}{y_1}, \ldots, \frac{\pi}{y_n} \right) = 0,
\]

for all \(i = 0, 1, \ldots, m \). In particular, \(a_m \left(\frac{\pi}{y_1}, \ldots, \frac{\pi}{y_n} \right) = 0 \), that is, \(a_m(x_1, \ldots, x_n) = 0 \). But, by the assumption, \(a_m \neq 0 \) and, by Proposition 2.2, the elements \(x_1, \ldots, x_n \) are algebraically independent over \(k \). Thus we have a contradiction. □

Consider the field

\[
L := k \left(u_1^{N}, \frac{u_2}{u_1}, \frac{u_3}{u_1}, \ldots, \frac{u_N}{u_1} \right).
\]
It is obvious that the generators $u_1^N, \frac{u_2}{u_1^2}, \ldots, \frac{u_N}{u_1}$ are algebraically independent over k. Note that, by Proposition 3.5, all the generators belong to $k(X)^\Delta$. Thus, L is a subfield of the field $k(X)^\Delta$. We will show that $k(X)^\Delta = L$.

Since $u_1^N \in L$ and $L \subset k(X)$, immediately from Lemma 3.6 we obtain the following new lemma.

Lemma 3.7. The element u_1 is algebraic over L and the degree of its minimal polynomial over L is equal to N.

Observe that

$$k(u_1, \ldots, u_N) = L(u_1).$$

In fact, the inclusion \supseteq is obvious. The inclusion \subseteq is obvious too, because $u_1 \in L(u_1)$, and $u_i = \frac{u_i}{u_1} u_1 \in L(u_1)$ for $i = 2, \ldots, N$. Now, by Lemma 3.7, the following proposition is true.

Proposition 3.8. Every element φ of the field $k(u_1, \ldots, u_N)$ has a unique presentation of the form

$$\varphi = a_{N-1} u_1^{N-1} + \cdots + a_1 u_1 + a_0,$$

where $a_0, \ldots, a_m \in L$.

Now we are ready to prove that $k(X)^\Delta = L$.

Theorem 3.9. $k(X)^\Delta = L$. In other words, for any $n \geq 3$ there exist $n-1$ rational functions $\varphi_1, \ldots, \varphi_{n-1} \in k(X)$, algebraically independent over k, such that the field of constants of the derivation Δ is equal to $k(\varphi_1, \ldots, \varphi_{n-1})$.

Proof. We already know that $k(X)^\Delta$ contains L. To prove the inclusion in the opposite direction, let us assume that $\varphi \in k(X)^\Delta$. Then $\varphi \in k(Y)$ (because $k(X)^\Delta \subset k(X) \subset k(Y)$), and $\delta(\varphi) = 0$, where δ is the derivation defined in Section 2. Hence, $\varphi \in k(Y)^\delta$. But $k(Y)^\delta = k(u_1, \ldots, u_N)$ (see Proposition 2.1), so $\varphi \in k(u_1, \ldots, u_N)$, and, by Proposition 3.8, we obtain an equality of the form

$$\varphi = a_{N-1} u_1^{N-1} + \cdots + a_1 u_1 + a_0,$$

for some $a_0, \ldots, a_{N-1} \in L$. But $L \subset k(X)$, whence the elements a_0, \ldots, a_{N-1} belong to $k(X)$, and moreover, $\varphi \in k(X)$. Hence, by Lemma 3.6, the equalities $a_1 = a_2 = \cdots = a_{N-1} = 0$, and $\varphi = a_0 \in L$. Therefore, $k(X)^\Delta \subseteq L$, and consequently, $k(X)^\Delta = L$.

We have proved that $k(X)^\Delta = k(\varphi_1, \ldots, \varphi_N)$, where $N = n - 1$, and

$$\varphi_1 = u_1^N, \quad \varphi_2 = \frac{u_2}{u_1}, \quad \varphi_3 = \frac{u_3}{u_1}, \quad \ldots, \quad \varphi_N = \frac{u_N}{u_1}.$$
All the elements $\varphi_1, \ldots, \varphi_N$ are rational functions belonging to $k(X) = k(x_1, \ldots, x_n)$. We may present explicit formulas for these functions. Observe that

$$
\varphi_1 = u_1^N = (y_1 - y_n)^N = y_1^N \left(1 - \frac{y_n}{y_1}\right)^N = \frac{W}{x_1^N} \left(1 - \frac{x_1}{x_n}\right)^N \frac{W}{x_1^N x_n^N} (x_n - x_1)^N
$$

$$
= \frac{x_1 x_2 \cdots x_n}{x_1^N x_n^N} (x_n - x_1)^N = \frac{x_2 x_3 \cdots x_{n-1}}{x_1^N x_n^N} (x_n - x_1)
$$

and, if $i \in \{2, \ldots, N\}$, there is:

$$
\varphi_i = \frac{u_i}{u_1} = \frac{y_i - y_n}{y_1 - y_n} = \frac{y_i - y_n}{y_1 - y_n} = \frac{x_i - 1}{x_i - 1} = \frac{x_n - x_i}{x_n - x_i} = \frac{x_i (x_n - x_i)}{x_n - x_i}.
$$

Let us rewrite Theorems 1.1 and 3.9 as a single theorem in the following final version.

Theorem 3.10. Let $k[X] = k[x_1, \ldots, x_n]$ be the polynomial ring in $n \geq 3$ variables over a field k of characteristic zero, and let $\Delta : k[X] \rightarrow k[X]$ be the derivation defined by

$$
\Delta(x_i) = x_i (S - x_i),
$$

for $i = 1, \ldots, n$, where $S = x_1 + \cdots + x_n$. The derivation Δ has no nontrivial polynomial constants. The field of constants of Δ is equal to $k(\varphi_1, \ldots, \varphi_{n-1})$, where

$$
\varphi_1 = \frac{x_2 x_3 \cdots x_{n-1}}{x_n^2 x_{n-1}^2} (x_n - x_1)^{n-1},
$$

$$
\varphi_2 = \frac{x_1 (x_n - x_2)}{x_2 (x_n - x_1)}, \quad \varphi_3 = \frac{x_1 (x_n - x_3)}{x_3 (x_n - x_1)}, \quad \ldots, \quad \varphi_{n-1} = \frac{x_1 (x_n - x_{n-1})}{x_{n-1} (x_n - x_1)}.
$$

The rational constants $\varphi_1, \ldots, \varphi_{n-1}$ are algebraically independent over k.

Note the specific cases of the above theorem, for $n = 3$ and $n = 4$.

Corollary 3.11. Let $k[x, y, z]$ be the polynomial ring in three variables over a field k of characteristic zero. Let $\Delta : k[x, y, z] \rightarrow k[x, y, z]$ be the derivation defined by

$$
\begin{align*}
\Delta(x) &= x(y + z), \\
D(y) &= y(x + z), \\
\Delta(z) &= z(x + y).
\end{align*}
$$

Then $k[x, y, z]^\Delta = k$, and $k(x, y, z)^\Delta = k\left(\frac{y(z-x)^2}{xz}, \frac{x(y-z)}{y(z-x)}\right)$.

Corollary 3.12. Let $k[x, y, z, t]$ be the polynomial ring in four variables over a field k of characteristic zero. Let $\Delta : k[x, y, z, t] \to k[x, y, z, t]$ be the derivation defined by

\[
\begin{align*}
\Delta(x) &= x(y + z + t), \\
\Delta(y) &= y(x + z + t), \\
\Delta(z) &= z(x + y + t), \\
\Delta(t) &= t(x + y + z).
\end{align*}
\]

Then $k[x, y, z, t]^\Delta = k$, and $k(x, y, z, t)^\Delta = k\left(\frac{yz(z-t)^3}{xt}, \frac{z(y-t)}{y(x-t)}, \frac{z(z-t)}{z(t)}\right)$.

References

Received November 10, 2010
Nicolaus Copernicus University
Faculty of Mathematics and Computer Science
Chopina 12/18
87-100 Toruń, Poland
e-mail: anow@mat.uni.torun.pl