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A FACTORISABLE DERIVATION OF POLYNOMIAL RINGS

IN n VARIABLES

by Andrzej Nowicki

Abstract. Let k[x1, . . . , xn] be the polynomial ring in n > 3 variables over
a field k of characteristic zero, and let ∆ be the factorisable derivation of
k[x1, . . . , xn] defined by ∆(xi) = xi(S − xi), for i = 1, . . . , n, where S =
x1 + · · · + xn. We prove that this derivation has no nontrivial polynomial
constants, and we describe the field of its rational constants.

Introduction. Throughout this paper k is a field of characteristic zero,
k[X] = k[x1, . . . , xn] is the polynomial ring in n > 3 variables over k, and
k(X) = k(x1, . . . , xn) is the field of quotients of k[X], that is k(X) is the field
of rational functions in n variables over k.

If R is a commutative k-algebra, then a k-linear mapping d : R → R is
said to be a k-derivation (or simply a derivation) of R if d(ab) = ad(b) + bd(a)
for all a, b ∈ R. In this case we denote by Rd the k-algebra of constants of R
with respect to d, that is, Rd = {r ∈ R; d(r) = 0}. Note that if R is a field,
then Rd is a subfield of R containing k.

If f1, . . . , fn are polynomials belonging to k[X], then there exists exactly
one derivation d : k[X] → k[X] such that d(x1) = f1, . . . , d(xn) = fn. This
derivation is of the form

d = f1
∂
∂x1

+ · · ·+ fn
∂
∂xn

.

Every derivation d of k[X] has a unique extension to a derivation of the field
k(X); also this extension we denote by d. Thus, for any derivation d of k[X],
there is the ring k[X]d = {f ∈ k[X]; d(f) = 0} and the field k(X)d = {ϕ ∈
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k(X); d(ϕ) = 0}. Of course, k(X)d contains the field of quotients of k[X]d,
but in many cases these fields are different (see [21, 20]). We are mainly
interested in some descriptions of k[X]d and k(X)d. However, we know that,
in general, such descriptions are very difficult to obtain. Rings and fields of
constants appear in various classical problems; for details we refer the reader
to [3] and [20].

The mentioned problems are also very difficult for factorisable derivations.
We say that a derivation d : k[X]→ k[X] is factorisable (or factorizable) if

d(xi) = xi(ai1x1 + · · ·+ ainxn),

for all i = 1, . . . , n, where each aij belongs to k. Factorisable derivations and
factorisable systems of ordinary differential equations have intensively been
studied for a long time; see for example [5, 4, 19] and [20], where numerous
references to this subject can be found. With any given derivation d of k[X],
using a special procedure, we may associate a factorisable derivation δ (see
[24] for details). There exist derivations for which the problem of descriptions
of k[X]d or k(X)d reduces to the same problem for the factorisable derivation
associated with a given derivation. We know from [22] and [18] that this
is the case if the derivation d is monomial, that is, if all the polynomials
d(x1), . . . , d(xn) are monomials. Consider, for example, a cyclic monomial
derivation d : k[X]→ k[X] defined by

d(x1) = xs2, d(x2) = xs3, . . . , d(xn−1) = xsn, d(xn) = xs1,

where n > 3 and s > 2. Such d is called a Jouanolou derivation ([8, 19, 9, 26]).
The factorisable derivation δ, associated with d, is a derivation of k[X] defined
by

δ(xi) = xi(sxi+1 − xi),
for i = 1, . . . , n, where xn+1 = x1 ([9, 26]). In 2003, H. Żo l ↪adek [26] proved
that the field of constants of the factorisable derivation δ is trivial, that is,
k(X)δ = k. As a consequence of this fact (and some results from [9]), he
proved that the above Jouanolou derivation d has no Darboux polynomials; in
particular, he proved that also the field of constants of d is trivial. Let us recall
([19, 20]) that a polynomial F ∈ k[X] is a Darboux polynomial of d if F 6∈ k
and d(F ) = ΛF for some Λ ∈ k[X]. Derivations without Darboux polynomials
are intensively studied in many papers ([16, 10, 17].

Examples of factorisable derivations are the famous Lotka–Volterra deriva-
tions for n = 3 (see for example: [11, 12, 15, 13, 14]). A Lotka–Volterra
derivation is a derivation d : k[x, y, z]→ k[x, y, z] such that

d(x) = x(Cy + z), d(y) = y(Az + x), d(z) = z(Bx+ y),
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where A,B,C ∈ k. There also exist some specific generalizations of Lotka–
Volterra derivations, for polynomial rings in n > 4 variables. One of such
generalizations is the derivation D : k[X]→ k[X] defined by

D(xi) = xi (xi−1 − xi+1) ,

for i = 1, . . . , n, where x0 = xn and xn+1 = x1. Such D is called either a Lotka–
Volterra derivation ([6, 1, 23]) or a Volterra derivation ([2, 25]). It is not easy
to describe the ring of constants of D for arbitrary n > 3. If n = 3, then some
description is given in [15]. P. Ossowski and J. Zieliński ([23]) determined
all polynomial constants for n = 4. Recently, Zieliński ([25]) presented such
description for n = 5. Hence, we know a structure of k[X]D for n 6 5 only.
For n > 6, the problem is open. There are similar open problems concerning
the field k(X)D, even for n < 6. It is a natural question what happens if in
the above derivation D we change the sign before xi+1, that is, if

D(xi) = xi (xi−1 + xi+1)

for i = 1, . . . , n. In particular, if n = 3, then D is a cyclic derivation of k[x, y, z]
such that

D(x) = x(y + z), D(y) = y(z + x), D(z) = z(x+ y).

There are no results concerning k[X]D and k(X)D for an arbitrary n.

In this paper, we consider a similar factorisable derivation ∆ : k[X] →
k[X], defined by

∆(xi) = xi (S − xi) ,
for i = 1, . . . , n, where S is the sum x1+· · ·+xn. We prove that, for an arbitrary
n > 3, the ring of constant of ∆ is trivial, that is, k[X]∆ = k. Moreover, we
prove that the field k(X)∆ is generated by n − 1 algebraically independent
rational functions; we also present some explicit formulas for generators. Note
that if n = 3, then ∆ coincides with the above mentioned derivation D of
k[x, y, z].

1. Polynomial constants. Let us recall that ∆ : k[X] → k[X] is the
factorisable derivation of the polynomial ring k[X] = k[x1, . . . , xn] defined by

∆(xi) = xi (S − xi) ,

for i = 1, . . . , n, where n > 3, k is a field of characteristic zero and S is the sum
x1 + · · · + xn. In this section, using a method described in [19] and [20], we
prove that the ring of constants of ∆ is equal to k. Note that the derivation ∆
is homogeneous; all the elements ∆(x1), . . . ,∆(xn) are nonzero homogeneous
polynomials od degree 2. Hence, if there exists a nontrivial polynomial constant
of ∆, then there exists such a constant which is homogeneous.
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Let us assume that F ∈ k[X] is a nonzero homogeneous polynomial of
degreem > 1 such that ∆(F ) = 0. Then x1(S−x1) ∂F∂x1

+· · ·+xn(S−xn) ∂F∂xn
= 0

and, since F is homogeneous, x1
∂F
∂x1

+ · · · + xn
∂F
∂xn

= mF . As a combination
of these two equalities we obtain the equality

(1) x1(x1 − xn)
∂F

∂x1
+ · · ·+ xn−1(xn−1 − xn)

∂F

∂xn−1
= m(S − xn)F,

which does not include the last partial derivative.

Let ϕ : k[X] = k[x1, . . . , xn] → k[x1, . . . , xn−1] be the k-algebra homo-
morphism such that ϕ(xi) = xi for i = 1, . . . , n − 1, and ϕ(xn) = 1. This
homomorphism commutes with the partial derivatives ∂

∂x1
, . . . , ∂

∂xn−1
, that is,

ϕ◦ ∂
∂xi

= ∂
∂xi
◦ϕ, for i = 1, . . . , n−1. Denote by F the image of F with respect

to ϕ, that is,
F = ϕ(F ) = F (x1, . . . , xn−1, 1).

Note that F is a polynomial belonging to k[x1, . . . , xn−1]. Put z = xn and let

F = F0z
m + F1z

m−1 + · · ·+ Fm−1z + Fm,

where each Fi (for i = 0, 1, . . . ,m) is either zero or a nonzero homogeneous
polynomial, belonging to k[x1, . . . , xn−1], of degree i. Then we obtain the
equality

F = F0 + F1 + · · ·+ Fm,

which is the decomposition of F into homogeneous components. Since F 6= 0,
there exists i ∈ {0, 1, . . . ,m} such that Fi 6= 0, and this implies that F is a
nonzero polynomial. Suppose that F0 6= 0 and F1 = F2 = · · · = Fm = 0.
Then F = azm, where 0 6= a ∈ k, z = xn. But ∆(F ) = 0, so 0 = ∆(axmn ) =
amxmn (S − xn) 6= 0; a contradiction. Therefore, F is a nonzero polynomial of
degree p, where 1 6 p 6 m. Moreover, by (1), there follows:

m(x1 + · · ·+ xn−1)F = mϕ(S − xn)ϕ(F ) = ϕ
(
m(S − xn)F

)
= ϕ

(
x1(x1 − xn)

∂F

∂x1
+ · · ·+ xn−1(xn−1 − xn)

∂F

∂xn−1

)
= x1(x1 − 1)

∂F

∂x1
+ · · ·+ xn−1(xn−1 − 1)

∂F

∂xn−1
.

Hence, the polynomial F satisfies the equality

(2) x1(x1− 1)
∂F

∂x1
+ · · ·+xn−1(xn−1− 1)

∂F

∂xn−1
= m(x1 +x2 + · · ·+xn−1)F .



93

Let σ : k[x1, . . . , xn−1]→ k[x1, . . . , xn−1] be the affine k-algebra automorphism
defined by

σ(xi) = xi + 1, for i = 1, . . . , n− 1.

This homomorphism also commutes with all the partial derivatives ∂
∂x1

, . . . ,
∂

∂xn−1
, that is, σ ◦ ∂

∂xi
= ∂

∂xi
◦ σ, for i = 1, . . . , n− 1. Consider the polynomial

G = σ
(
F
)

= F (x1 + 1, . . . , xn−1 + 1).

It is clear that G 6= 0, degG = degF = p with 1 6 p 6 m. Moreover, by (2),
we obtain

(x1 + 1)x1
∂G

∂x1
+ · · ·+ (xn−1 + 1)xn−1

∂G

∂xn−1

= m
(
x1 + x2 + · · ·+ xn−1 + (n− 1)

)
G.

(3)

It follows from the above equality that G(0, . . . , 0) = 0.

Let H be the nonzero homogeneous component of G of the minimal degree.
Put q = degH. Since G 6= 0 and G(0, . . . , 0) = 0, then q > 1. Thus, H is a
nonzero homogeneous polynomial, belonging to k[x1, . . . , xn−1], and degH = q
with 1 6 q 6 p 6 m.

Comparing in the homogeneous components of the smallest degree in (3),
we obtain the equality

x1
∂H

∂x1
+ · · ·+ xn−1

∂H

∂xn−1
= m(n− 1)H.

But H is homogeneous, so by Euler’s identity we have

x1
∂H

∂x1
+ · · ·+ xn−1

∂H

∂xn−1
= qH.

Hence, q = (n− 1)m and we have a contradiction: 2m 6 (n− 1)m = q 6 m.

Thus we have proved the following theorem.

Theorem 1.1. For any n > 3, the derivation ∆ has no nontrivial polyno-
mial constants. In other words:

k[X]∆ =
{
F ∈ k[X]; d(F ) = 0

}
= k.
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2. An extension of ∆. In this section we will show that the derivation
∆ is associated with some simple monomial derivation δ of a polynomial ring
in n variables over k.

We denote by k[Y ] the polynomial ring k[y1,. . . , yn], by k(Y )=k(y1,. . . , yn)
the field of quotients of k[Y ], and by π the product y1y2 · · · yn. Moreover, we
use notations:

u1 = y1 − yn, u2 = y2 − yn, . . . , un−1 = yn−1 − yn.
Let us consider the unique derivation δ : k[Y ]→ k[Y ] such that δ(yi) = π

for i = 1, . . . , n. This derivation is of the form δ = πδ0, where

δ0 =
∂

∂y1
+ · · ·+ ∂

∂yn
.

The polynomials u1, . . . , un−1 are constants with respect to δ, and we have the
following proposition holds.

Proposition 2.1. k[Y ]δ = k[u1, . . . , un−1], k(Y )δ = k(u1, . . . , un−1).

Proof. Observe that σδ0σ
−1 = ∂

∂yn
, where σ : k[Y ] → k[Y ] is the k-

algebra automorphism defined by σ(yi) = yi + yn for i = 1, . . . , n − 1, and
σ(yn) = yn. Hence,

k[Y ]δ = k[Y ]δ0 = σ−1
(
k[Y ]∂/∂yn

)
= σ−1

(
k[y1, . . . , yn−1]

)
= k[σ−1(y1), . . . , σ−1(yn−1)] = k[u1, . . . , un−1]

and, by the same argument, k(Y )δ = k(u1, . . . , un−1).

Now we introduce the elements x1, . . . , xn, which are polynomials, belong-
ing to k[Y ], defined by xi = π

yi
for i = 1, . . . , n, that is,

x1 = y2y3 · · · yn, x2 = y1y3y4 · · · yn, . . . , xn = y1y2 · · · yn−1.

Proposition 2.2. The above polynomials x1, . . . , xn are algebraically in-
dependent over k.

Proof. It is enough to prove (see for example [7]) that the Jacobian
det[∂xi/∂yj ] is nonzero. Observe that

det[∂xi/∂yj ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x1
y2

x1
y3
· · · x1

yn

x2
y1

0 x2
y3
· · · x2

yn

x3
y1

x3
y2

0 · · · x3
yn

...
...

...
...

xn
y1

xn
y2

xn
y3
· · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
x1 · · ·xn
y1 · · · yn

detM,
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where M is the following n× n matrix:
0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

...
1 1 1 · · · 0

 .
It is easy to check that detM=(−1)n−1(n−1). Hence, the Jacobian det[∂xi/∂yj ]
is nonzero.

Proposition 2.3. If x1, . . . , xn are the polynomials described above, then

δ(xi) = xi(S − xi),
for i = 1, . . . , n, where S = x1 + · · ·+ xn.

Proof. Let us recall that δ(yi) = π and xi = π/yi for i = 1, . . . , n, where
π = y1 · · · yn. For i = 1:

δ(x1) = δ(y2y3 · · · yn)

= δ(y2)y3y4 · · · yn + y2δ(y3)y4 · · · yn + · · ·+ y2y3 · · · yn−1δ(yn)
= πy3y4 · · · yn + y2πy4 · · · yn + · · ·+ y2y3 · · · yn−1π

=
π

y1

π

y2
+
π

y1

π

y3
+ · · ·+ π

y1

π

yn
= x1x2 + x1x3 + · · ·+ x1xn = x1(S − x1).

We may repeat the same for any i = 2, . . . , n and hence δ(xi) = xi(S − xi) for
i = 1, . . . , n.

Since x1, . . . , xn are algebraically independent over the field k (see Propo-
sition 2.2), we have the polynomial ring k[X] = k[x1, . . . , xn]. Thus, we have
two polynomial rings:

k[X] = k[x1, . . . , xn] and k[Y ] = k[y1, . . . , yn],

and k[X] is a subring of k[Y ]. We also have the field extension k(X) ⊂ k(Y ),
where k(X) = k(x1, . . . , xn) and k(Y ) = k(y1, . . . , yn). It follows from [18]
that the extension k(X) ⊂ k(Y ) is Galois, and dimk(X) k(Y ) = n − 1, but we
do not need such information.

Observe that, by Proposition 2.3, δ(k[X]) ⊆ k[X] and the restriction of the
derivation δ to k[X] is exactly equal to the derivation ∆. We already know
that k[X]∆ = k (see Theorem 1.1). Our aim is to describe the field k(X)∆.
Now we know that k(X)∆ is a subfield of the field k(Y )δ, which, by Proposition
2.1, is equal to the field k(u1, . . . , un−1). Moreover, k(X)∆ = k(Y )δ ∩ k(X).
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3. Rational constants. We use the same notations as in the previous
section. Put also

W := x1 · · ·xn and N := n− 1.

Observe that W = π
y1
· · · πyn

= πn

π = πN . Moreover,

xNi =
(
π

yi

)N
=
W

yNi
,

so yNi = W
xN

i
for i = 1, . . . , n. Thus, the following lemma is true.

Lemma 3.1. The powers yN1 , . . . , y
N
n and πN belong to k(X).

Note also that
xj
xi

=
π/yj
π/yi

=
yi
yj
,

and hence each quotient yi

yj
, for i, j ∈ {1, . . . , n}, belongs to the field k(X).

Lemma 3.2. If i1, . . . , in are integers such that the sum i1 + · · · + in is
divisible by N , then yi11 · · · yinn belongs to k(X).

Proof. Let i1 + · · ·+ in = aN with a ∈ Z. Then

yi11 · · · y
in
n = yaN1 y

−(i1+···+in)
1 yi11 · · · y

in
n =

(
yN1
)a(y2

y1

)i2
· · ·
(
yn
y1

)in
,

and this lemma follows from the previous observations.

Let us recall that ui = yi − yn for i = 1, . . . , N .

Lemma 3.3. The powers uN1 , . . . , u
N
N belong to k(X).

Proof. Since uNi = (yi − yn)N =
∑

p+q=N

apqy
p
i y
q
n, where each apq is an

integer, the result follows from Lemma 3.2.

Lemma 3.4. Each quotient ui
uj

, for i, j ∈ {1, . . . , N}, belongs to k(X).

Proof. The result follows from the equalities

ui
uj

=
yi − yn
yj − yn

=
(yi − yn)

(
yN−1
j + yN−2

j yn + · · ·+ yN−1
n

)
yNj − yNn

and the previous lemmas.

As a consequence of the above lemmas, we obtain the following proposition.
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Proposition 3.5. If i1, . . . , iN are integers such that the sum i1 + · · ·+ iN
is divisible by N , then ui11 · · ·u

iN
N belongs to the field of constants k(X)∆. In

particular, all rational functions of the forms uNi and ui
uj

, for i, j ∈ {1, . . . , N},
belong to k(X)∆.

Proof. Let i1 + · · ·+ iN = aN with a ∈ Z, and put γ = ui11 · · ·u
iN
N . Then

γ = uaN1 u
−(i1+···+iN )
1 ui11 · · ·u

iN
N =

(
uN1
)a(u2

u1

)i2
· · ·
(
uN
u1

)iN
,

and hence, by Lemmas 3.3 and 3.4, the element γ belongs to k(X). But γ
belongs also to the field k(u1, . . . , uN ), which is equal to k(Y )δ (see Proposition
2.1). Recall that k(X)∆ = k(Y )δ ∩ k(X). Therefore, γ ∈ k(X)∆.

Lemma 3.6. The element u1 is algebraic over k(X) and the degree of its
minimal polynomial over k(X) is equal to N .

Proof. Since uN1 ∈ k(X)∆ ⊂ k(X), the element u1 is algebraic over k(X),
and the degree of its minimal polynomial over k(X) is not greater than N .
Suppose that this degree is equal to m and m < N . Then there exist elements
a0, a1, . . . , am, belonging to k[X], such that am 6= 0, and amu

m
1 + · · ·+ a1u

1
1 +

a0 = 0. Let us recall that xi = π
yi

, for i = 1, . . . , n, where π = y1y2 . . . yn.
Hence, in the polynomial ring k[Y ] = k[y1, . . . , yn], the following equality holds:

am

(
π

y1
, . . . ,

π

yn

)
(y1 − yn)m+· · ·+a1

(
π

y1
, . . . ,

π

yn

)
(y1 − yn)1+a0

(
π

y1
, . . . ,

π

yn

)
= 0.

Consider the total degrees with respect to the variables y1, . . . , yn. Such degree
of each polynomial ai

(
π
y1
, . . . , πyn

)
, for i = 0, 1, . . . ,m, is divisible by N . This

means that in the above equality all the summands have degrees which are
pairwise incongruent modulo N . Hence,

ai

(
π

y1
, . . . ,

π

yn

)
= 0,

for all i=0, 1, . . .,m. In particular, am
(
π
y1
, . . ., πyn

)
=0, that is, am(x1, . . ., xn)=

0. But, by the assumption, am 6= 0 and, by Proposition 2.2, the elements
x1, . . . , xn are algebraically independent over k. Thus we have a contradiction.

Consider the field

L := k

(
uN1 ,

u2

u1
,
u3

u1
, . . . ,

uN
u1

)
.
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It is obvious that the generators uN1 , u2
u1
, . . . , uN

u1
are algebraically independent

over k. Note that, by Proposition 3.5, all the generators belong to k(X)∆.
Thus, L is a subfield of the field k(X)∆. We will show that k(X)∆ = L.

Since uN1 ∈ L and L ⊂ k(X), immediately from Lemma 3.6 we obtain the
following new lemma.

Lemma 3.7. The element u1 is algebraic over L and the degree of its min-
imal polynomial over L is equal to N .

Observe that
k (u1, . . . , uN ) = L (u1) .

In fact, the inclusion ⊇ is obvious. The inclusion ⊆ is obvious too, because
u1 ∈ L(u1), and ui = ui

u1
u1 ∈ L(u1) for i = 2, . . . , N . Now, by Lemma 3.7, the

following proposition is true.

Proposition 3.8. Every element ϕ of the field k (u1, . . . , uN ) has a unique
presentation of the form

ϕ = aN−1u
N−1
1 + · · ·+ a1u

1
1 + a0,

where a0, . . . , am ∈ L.

Now we are ready to prove that k(X)∆ = L.

Theorem 3.9. k(X)∆ = L. In other words, for any n > 3 there exist
n−1 rational functions ϕ1, . . . , ϕn−1 ∈ k(X), algebraically independent over k,
such that the field of constants of the derivation ∆ is equal to k (ϕ1, . . . , ϕn−1).

Proof. We already know that k(X)∆ contains L. To prove the inclusion
in the opposite direction, let us assume that ϕ ∈ k(X)∆. Then ϕ ∈ k(Y )
(because k(X)∆ ⊂ k(X) ⊂ k(Y )), and δ(ϕ) = 0, where δ is the derivation
defined in Section 2. Hence, ϕ ∈ k(Y )δ. But k(Y )δ = k(u1, . . . , uN ) (see
Proposition 2.1), so ϕ ∈ k(u1, . . . , uN ), and, by Proposition 3.8, we obtain an
equality of the form

ϕ = aN−1u
N−1
1 + · · ·+ a1u

1
1 + a0,

for some a0, . . . , aN−1 ∈ L. But L ⊂ k(X), whence the elements a0, . . . , aN−1

belong to k(X), and moreover, ϕ ∈ k(X). Hence, by Lemma 3.6, the equalities
a1 = a2 = · · · = aN−1 = 0, and ϕ = a0 ∈ L. Therefore, k(X)∆ ⊆ L, and
consequently, k(X)∆ = L.

We have proved that k(X)∆ = k(ϕ1, . . . , ϕN ), where N = n− 1, and

ϕ1 = uN1 , ϕ2 =
u2

u1
, ϕ3 =

u3

u1
, . . . , ϕN =

uN
u1
.
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All the elements ϕ1, . . . , ϕN are rational functions belonging to k(X) =
k(x1, . . . , xn). We may present explicit formulas for these functions. Observe
that

ϕ1 = uN1 = (y1 − yn)N = yN1

(
1− yn

y1

)N
=
W

xN1

(
1− x1

xn

)N W

xN1 x
N
n

(xn − x1)N

=
x1x2 · · ·xn
xN1 x

N
n

(xn − x1)N =
x2x3 · · ·xn−1

xN−1
1 xN−1

n

(xn − x1)

=
x2x3 · · ·xn−1

xn−2
1 xn−2

n
(xn − x1)n−1 ,

and, if i ∈ {2, . . . , N}, there is:

ϕi =
ui
u1

=
yi − yn
y1 − yn

=
yi

yn
− 1

y1
yn
− 1

=
xn
xi
− 1

xn
x1
− 1

=
xn−xi
xi

xn−x1
x1

=
x1(xn − xi)
xi(xn − x1)

.

Let us rewrite Theorems 1.1 and 3.9 as a single theorem in the following final
version.

Theorem 3.10. Let k[X] = k[x1, . . . , xn] be the polynomial ring in n > 3
variables over a field k of characteristic zero, and let ∆ : k[X] → k[X] be the
derivation defined by

∆(xi) = xi(S − xi),
for i = 1, . . . , n, where S = x1 + · · ·+ xn. The derivation ∆ has no nontrivial
polynomial constants. The field of constants of ∆ is equal to k (ϕ1, . . . , ϕn−1),
where

ϕ1 =
x2x3 · · ·xn−1

xn−2
1 xn−2

n
(xn − x1)n−1 ,

ϕ2 =
x1(xn − x2)
x2(xn − x1)

, ϕ3 =
x1(xn − x3)
x3(xn − x1)

, . . . , ϕn−1 =
x1(xn − xn−1)
xn−1(xn − x1)

.

The rational constants ϕ1, . . . , ϕn−1 are algebraically independent over k.

Note the specific cases of the above theorem, for n = 3 and n = 4.

Corollary 3.11. Let k[x, y, z] be the polynomial ring in three variables
over a field k of characteristic zero. Let ∆ : k[x, y, z] → k[x, y, z] be the
derivation defined by  ∆(x) = x(y + z),

D(y) = y(x+ z),
∆(z) = z(x+ y).

Then k[x, y, z]∆ = k, and k(x, y, z)∆ = k
(
y(z−x)2

xz , x(y−z)
y(x−z)

)
.
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Corollary 3.12. Let k[x, y, z, t] be the polynomial ring in four variables
over a field k of characteristic zero. Let ∆ : k[x, y, z, t] → k[x, y, z, t] be the
derivation defined by 

∆(x) = x(y + z + t),
D(y) = y(x+ z + t),
∆(z) = z(x+ y + t),
∆(t) = t(x+ y + z).

Then k[x, y, z, t]∆ = k, and k(x, y, z, t)∆ = k
(
yz(z−t)3

xt , x(y−t)
y(x−t) ,

x(z−t)
z(x−t)

)
.

References

1. Bogoyavlenskij O. I., Integrable Lotka–Volterra systems, Regul. Chaotic Dyn., 13 (2008),
543–336.

2. Bogoyavlenskij O. I., Algebraic constructions of integrable dynamical systems – extension
of the Volterra system (Russian), Uspehi Mat. Nauk, 46 (1991), No. 3 (279), 3–48, 239;
translation in Russian Math. Surveys, 46 (1991), 1–64.

3. van den Essen A., Polynomial Automorphisms and the Jacobian Conjecture, Progress in
Mathematics, Vol. 190, 2000.

4. Grammaticos B., Moulin Ollagnier J., Ramani A., Strelcyn J.-M., Wojciechowski S.,
Integrals of quadratic ordinary differential equations in R3: the Lotka–Volterra system,
Physica A, 163 (1990), 683–722.

5. Hofbauer J., Sigmund K., The Theory of Evolution and Dynamical Systems. Mathematical
Aspects of Selection, London Mathem. Society Student Text 7, Cambridge University
Press, Cambridge, 1988.

6. Itoh Y., Integrala of a Lotka–Volterra system of odd number of variables, Progr. Theoret.
Phys., 78 (1987), 507–510.

7. Jacobson N., Lectures in abstract algebra. Vol. III: Theory of fields and Galois theory,
D. Van Nostrand Co., Inc., Princeton, N.J.–Toronto, Ont.–London–New York, 1964.
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21. Nowicki A., Nagata M., Rings of constants for k–derivations in k[x1, . . . , xn], J. Math.
Kyoto Univ., 28 (1988), 111–118.
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24. Zieliński J., Factorizable derivations and ideals of relations, Comm. Algebra, 35 (2007),
983–997.
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