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ON THE GRADIENT OF QUASI-HOMOGENEOUS

POLYNOMIALS

by Alain Haraux and Tien Son Pha.m

Résumé. Soit K le corps des réels ou des complexes et f : Kn → K un
polynôme quasi-homogène de poids w := (w1, w2, . . . , wn) et de degré d tel
que ∇f(0) = 0. L’inégalité bien connue dite du gradient de  Lojasiewicz
montre qu’il existe un voisinage ouvert U de l’origine dans Kn et deux
constantes positives c et ρ < 1 telles que pour tout x ∈ U on ait ‖∇f(x)‖ ≥
c|f(x)|ρ. On montre que si l’ensemble K̃∞(f) des points où la condition de
Fedoryuk est en dfaut est fini, l’ inégalité du gradient de  Lojasiewicz est

vérifiée avec ρ = 1−minj
wj

d
. On montre de plus que si n = 2, alors K̃∞(f)

est soit vide, soit réduit {0}.

Abstract. Let K be the real or the complex field, and let f : Kn → K
be a quasi-homogeneous polynomial with weight w := (w1, w2, . . . , wn)
and degree d. Assume that ∇f(0) = 0.  Lojasiewicz’s well known gradient
inequality states that there exists an open neighbourhood U of the origin
in Kn and two positive constants c and ρ < 1 such that for any x ∈ U we

have ‖∇f(x)‖ ≥ c|f(x)|ρ. We prove that if the set K̃∞(f) of points where
the Fedoryuk condition fails to hold is finite, then the gradient inequality

holds true with ρ = 1−minj
wj

d
. It is also shown that if n = 2, then K̃∞(f)

is either empty or reduced to {0}.

1. Introduction and statement of main results. Let K be the real or
the complex field, and let f : Kn → K be a polynomial function with f(0) = 0
and ∇f(0) = 0. According to  Lojasiewicz’s well known gradient inequality
(see [14]), there exists an open neighbourhood U of the origin in Kn and two
positive constants c and ρ < 1 such that for any x ∈ U we have

(1.1) ‖∇f(x)‖ ≥ c|f(x)|ρ.
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The  Lojasiewicz gradient exponent of f at the origin, denoted by ρ(f), is
the infimum of the exponents satisfying the  Lojasiewicz gradient inequality.
J. Bochnak and J. J. Risler (cf. [2]) proved that ρ(f) is a rational number,
cf. also [22]. Moreover, Inequality (1.1) holds with exponent ρ(f) and some
constant c > 0. It is also known that (see, for example, [1, 6]) ρ(f) can be
bounded by some rational number < 1 depending on n and the degree of f
only.

As is often the case, a general estimate of the  Lojasiewicz gradient exponent
can be replaced by a much simpler one in the weighted quasi-homogeneous case.
So let f be a quasi-homogeneous polynomial with weight w :=(w1, w2, . . . , wn)∈
(N− {0})n and degree d ∈ N− {0}; that is
(1.2)

f(tw1x1, t
w2x2, . . . , t

wnxn)= tdf(x1, x2, . . . , xn) for all x∈Kn and t>0.

Let w∗ := maxj=1,2,...,nwj and w∗ := minj=1,2,...,nwj . Assume that ∇f(0) = 0.

It was proven in [8, 9] that ρ(f) ≥ 1 − w∗

d and in the case n = 2 and K = R
we have ρ(f) ≤ 1− w∗

d . In particular, if f is a homogeneous polynomial in two

real variables then ρ(f) = 1− 1
d .

In the present note we generalize this result to quasi-homogeneous poly-

nomial functions f : Kn → K with the property that the set K̃∞(f) of points
where the Fedoryuk condition fails to hold is finite. More precisely, for any
polynomial f : Kn → K, we let

K̃∞(f) := {λ ∈ K | ∃xk →∞, f(xk)→ λ and ‖∇f(xk)‖ → 0}.

If λ 6∈ K̃∞(f), then we say that f satisfies Fedoryuk’s condition at λ. We see
that this condition restricts the asymptotic behavior of ∇f(x) as ‖x‖ → ∞
and f(x) → λ. The set K̃∞(f) has been studied by many authors; see, for
instance, [3, 4, 7, 10, 11, 13, 15, 16, 18, 19, 20, 21].

Our main result is

Theorem 1.1. Let f : Kn → K be a quasi-homogeneous polynomial with

weight w := (w1, w2, . . . , wn) and degree d > 1. If the set K̃∞(f) is finite, then
ρ(f) ≤ 1− w∗

d .

Remark 1.2. (i) Let us note that [10] for n = 1 and n = 2 the set

K̃∞(f) is always finite (see also Section 3 below).
(ii) In [11], Z. Jelonek showed that the number of points of the set K0(f) ∪

K̃∞(f) is less than or equal to (deg f − 1)n provided that #K̃∞(f) <∞,
where K0(f) denotes the set of critical values of f.

(iii) As we will see in the next example, the converse of Theorem 1.1 does not
hold: There exist quasi-homogeneous polynomials for which ρ(f) ≤ 1−w∗

d

and the set K̃∞(f) is infinite.
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Example 1.3. Let f(x, y, z) := x2y − xz ∈ K[x, y, z]. Then f is a quasi-
homogeneous polynomial with weight w := (1, 1, 2) and degree d := 3. Define
the curve

ϕ : (0, 1)→ C3, τ 7→ (τ, τ−2, 2τ−1).

We have then

lim
τ→0
‖ϕ(τ)‖ =∞, lim

τ→0
f(ϕ(τ)) = −1, lim

τ→0
‖∇f(ϕ(τ))‖ = 0.

Hence, −1 ∈ K̃∞(f). By virtue of the quasi-homogeneity of the polynomial f,

we find that K̃∞(f) = K.
On the other hand, by the definition,

∇f(x, y, z) = (2xy − z, x2,−x).

Hence with c = 2−1/2 > 0 we have

‖∇f(x, y, z)‖ ≥ c(|2xy − z|+ |x|),
while

|f(x, y, z)| = |x2y − xz| ≤ |2x2y − xz|+ |x|2 ≤ |2xy − z|2 + 2|x|2,
whenever |y| ≤ 1. Thus

|f(x, y, z)| ≤ 2(|2xy − z|+ |x|)2 ≤ (2/c2)‖∇f(x, y, z)‖2,(1.3)

whenever |y| ≤ 1. In particular, ρ(f) ≤ 1
2 .

On the other hand

f(x, 0, x) = −x2, ∇f(x, 0, x) = (−x, x2,−x).

Hence Inequality (1.3) is sharp; so the polynomial f satisfies the  Lojasiewicz
gradient inequality for the exponent ρ(f) = 1

2 < 1− 1
d .

However, we have

Corollary 1.4. Let f : Kn → K be a homogeneous polynomial of degree
d > 1. Then the following conditions are equivalent

(i) K̃∞(f) is either empty or reduced to {0}.
(ii) K̃∞(f) is finite.

(iii) ρ(f) = 1− 1
d .

(iv) There exists a positive constant c such that

‖∇f(x)‖ ≥ c‖f(x)‖1−
1
d for all x ∈ Kn.

(v) The polynomial f(x) is bounded on the set {x ∈ Kn | ‖∇f(x)‖ ≤ 1}.
(vi) ∇f and f are separated at infinity, which means that there exist c,R > 0

and q ∈ R such that if |f(x)| ≥ R then ‖∇f(x)‖ ≥ c|f(x)|q.
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Remark 1.5. Let K := C. It follows from the results of J. Gwoździewicz
and A. P loski [5] that each of conditions (i)–(vi) is equivalent to the following
condition:

(vii) The polynomial f is integral over the algebra C[ ∂f∂x1 , . . . ,
∂f
∂xn

], which means

that there exits a polynomial P ∈ C[y1, y2, . . . , yn+1] monic with respect
to y1 such that

P

(
f(x),

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
≡ 0.

It should be noticed that, in his paper [21], S. Spodzieja proved that one
can take q = −d(d− 1)n−1 in condition (vi). On the other hand, by Corollary
1.4 (iv), we may put q = 1− 1

d , which is the best (largest) possible value of q
in the condition of separation at infinity (vi). One may consult, for example,
[17] for more details about the problem of separation at infinity of arbitrary
complex polynomial mappings.

Remark 1.6. Let f : Cn → C be a homogeneous polynomial such that the
hypersurface f(x) = 0 in the projective space CPn−1 has ordinary singularities
only (see [5] for exact definitions). Then, by the results of J. Gwoździewicz

and A. P loski [5], the set K̃∞(f) is finite. On the other hand, in general, as we
will see in the next example, there exist homogeneous polynomials for which

the set K̃∞(f) is infinite.

Example 1.7. [8, Remark 2.4] Consider the homogeneous polynomial
f(x, y, z) := x2y − xz2 ∈ K[x, y, z] and define the curve

ϕ : (0, 1)→ C3, τ 7→ (τ2,
1

2
τ−4, τ−1).

We have then

lim
τ→0
‖ϕ(τ)‖ =∞, lim

τ→0
f(ϕ(τ)) = −1

2
, lim

τ→0
‖∇f(ϕ(τ))‖ = 0.

Hence, −1
2 ∈ K̃∞(f). By virtue of the homogeneity of the polynomial f, we find

that K̃∞(f) = K. Together with Corollary 1.4, this implies that the polynomial
f does not satisfy the  Lojasiewicz gradient inequality for the exponent 1− 1

d .

The paper is organized as follows. The proof of the results mentioned above
will occupy Section 2. In Section 3 we present a simple elementary proof of the
following result: If f : K2 → K is a quasi-homogeneous polynomial then the set

K̃∞(f) is either empty or reduced to {0}.
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2. Proof of the main result. In the sequel for t > 0, for any w :=
(w1, w2, . . . , wn) ∈ (N− {0})n and x := (x1, x2, . . . , xn) ∈ Kn we denote

t • x := (tw1x1, t
w2x2, . . . , t

wnxn).

Let f : Kn → K, x 7→ f(x), be a quasi-homogeneous polynomial function
with weight w and degree d > 1. Consider the polynomial function g : Kn ×
Km → K, (x, y) 7→ f(x). Then it follows from definitions that for m > 0

ρ(f) = ρ(g), K0(f) = K0(g), and K̃∞(f) ∪K0(f) = K̃∞(g).

Hence, in the sequel, we may without loss of generality assume that the function
f really depends on all the variables. In this case, it is easy to check that d is
uniquely defined by (1.2), and, in particular, we have d ≥ w∗.

Proposition 2.1. Under the above conventions, the set K0(f) of critical

values of f is either empty or reduced to {0}. Moreover, the set K̃∞(f) is finite
if and only if it is either empty or reduced to {0}.

Proof. By the assumption, we have

f(t • x) = tdf(x) for all x ∈ Kn and for t > 0.

Differentiating f(t • x) with respect to the variable t yields

dtd−1f(x) =

n∑
j=1

wjt
wj−1xj

∂f

∂xj
(t • x).

In particular, we have the generalized Euler identity

df(x) =
n∑
j=1

wjxj
∂f

∂xj
(x).

As an immediate corollary, the first assertion follows easily.
Moreover, it is worth noting that the polynomial ∂f

∂xj
is quasi-homogeneous

with weight w and degree d − wj . Together with the assumption, this proves
the second assertion.

Proof of Theorem 1.1. It follows from the assumptions and Proposi-

tion 2.1 that each of the the sets K0(f) and K̃∞(f) is either empty or reduced
to {0}. As a corollary,

K0(f) ∩ S = ∅ and K̃∞(f) ∩ S = ∅,
here S := {λ ∈ K | |λ| = 1}.

Put

c := inf
x∈f−1(S)

‖∇f(x)‖ <∞.
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We first show that c > 0. Indeed, by contradiction, assume that c = 0. This
means that there is a sequence of points xk ∈ Kn such that f(xk) ∈ S and
‖∇f(xk)‖ → 0.

If a sequence xk is bounded, then there is a subsequence xkj → x0. We
have

f(x0) ∈ S and ‖∇f(x0)‖ = 0.

This implies that f(x0) ∈ K0(f) ∩ S, which is a contradiction.
If a sequence xk is unbounded, then there is subsequence xkj → ∞ such

that f(xkj ) → λ ∈ S. Since ‖∇f(xkj )‖ → 0, the value λ belongs to K̃∞(f),
which is a contradiction. Therefore c > 0.

On the other hand, there exists a positive number δ such that max
‖x‖≤δ

|f(x)|<1

because f(0) = 0. We shall prove

‖∇f(x)‖ ≥ c|f(x)|1−
w∗
d for all ‖x‖ ≤ δ.

Indeed, let x ∈ Kn be such that ‖x‖ ≤ δ and f(x) 6= 0. Then

0 < |f(x)| < 1.

Consequently, |f(t • x)| = 1, where t := |f(x)|−
1
d > 1. Hence, by the definition

of c,

c ≤ ‖∇f(t • x)‖.
Since the polynomial ∂f

∂xj
is quasi-homogeneous with weight w and degree d−

wj , this gives

c ≤ max
j=1,2,...,n

∣∣∣∣td−wj ∂f∂xj (x)

∣∣∣∣
≤ max

j=1,2,...,n
td−wj max

j=1,2,...,n

∣∣∣∣ ∂f∂xj (x)

∣∣∣∣ = td−w∗‖∇f(x)‖.

(The second inequality follows from t > 1 and w∗ = minj=1,2,...,nwj .)
We obtain

‖∇f(x)‖ ≥ ct−d+w∗ = c|f(x)|1−
w∗
d .

It is clear that the above inequality also holds for all x such that f(x) = 0.
Hence, by the definition of ρ(f), we get ρ(f) ≤ 1− w∗

d . The proof is complete.

Proof of Corollary 1.4. It is trivial that (iv) ⇒ (i) ⇒ (ii). Clearly,
(v) ⇒ (iv) ⇒ (vi). By a similar argument as in [5], we get (iv) ⇒ (v). On
the other hand, it follows from Theorem 4.1 in [9] that ρ(f) ≥ 1 − w∗

d . But
w∗ = w∗ = 1 because f is homogeneous. Hence, in view of Theorem 1.1, we
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obtain the implication (ii) ⇒ (iii). We shall show the implications (iii) ⇒ (iv)
and (vi) ⇒ (i).

(iii) ⇒ (iv): Indeed, by definition of ρ(f) and [2], there exist two positive
constants c, r such that

‖∇f(x)‖ ≥ c|f(x)|1−
1
d for all ‖x‖ ≤ r.

Let x be an element of Kn, x 6= 0. Let t := r
‖x‖ . Then it is easy to check

that ‖(t • x)‖ = r. Hence

‖∇f(t • x)‖ ≥ c|f(t • x)|1−
1
d .

This gives

‖td−1∇f(x)‖ ≥ c|tdf(x)|1−
1
d .

Consequently,

‖∇f(x)‖ ≥ c|f(x)|1−
1
d ,

which proves (iv).
(vi) ⇒ (i): Let xk be a sequence of points in Cn such that

(2.1) xk →∞, f(xk)→ λ and ‖∇f(xk)‖ → 0.

Let t be a positive number such that td|λ| > R. Then |f(t•xk)| = td|f(xk)| ≥ R
for k large enough. Hence, condition (vi) implies that

‖∇f(t • xk)‖ ≥ c|f(t • xk)|q = ctdq|f(xk)|q.

Let us note that the polynomial ∂f
∂xj

is a quasi-homogeneous polynomial with

weight w and degree d−wj . This, together with (2.1), implies that lim
k→∞

‖∇f(t•

xk)‖ = 0. Therefore,

0 ≥ ctdq|λ|q,
which yields λ = 0. This proves condition (i).

3. The Fedoryuk condition for quasi-homogeneous polynomials
in two variables. The main result of this section is the following:

Proposition 3.1. Let f : K2 → K be a quasi-homogeneous polynomial.

Then K̃∞(f) is either empty or reduced to {0}.

In the first step, it suffices to study the proposition for the case K = C.

Lemma 3.2. If Proposition 3.1 holds in the case K = C then it also holds
in the case K = R.
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Proof. Indeed, let f : R2 → R be a quasi-homogeneous polynomial. Let
fC : C2 → C be the complexification of the polynomial f. Then it follows from
definitions that

K̃∞(f) ⊂ K̃∞(fC).

This relation proves the statement.

We next prove Proposition 3.1 in a special case.

Lemma 3.3. Let f : C2 → C be a homogeneous polynomial of degree d.

Then K̃∞(f) is either empty or reduced to {0}.

Proof. Suppose that K̃∞(f) 6= ∅. Let λ ∈ K̃∞(f). We shall show that
λ = 0. By definition, there exists a sequence of points (xk, yk) ∈ C2 such that

lim
k→∞

‖(xk, yk)‖ =∞, lim
k→∞

f(xk, yk) = λ, lim
k→∞

‖∇f(xk, yk)‖ = 0.

Without loss of generality we may assume that xk →∞.
There are two cases to be considered.
Case 1: The sequence yk is bounded. In this case, we have

lim
k→∞

yk
xk

= 0.

On the other hand, since f is a homogeneous polynomial of degree d, we
may write

f(x, y) = yl(a1x− b1y)(a2x− b2y) · · · (ad−lx− bd−ly),

where l ∈ N, ai, bi ∈ C and ai 6= 0 for i = 1, 2, . . . , d− l.
If l = 0 then

f(xk, yk) = xd−lk

(
a1 − b1

yk
xk

)(
a2 − b2

yk
xk

)
· · ·
(
ad−l − bd−l

yk
xk

)
→∞ as k →∞,

which contradicts the fact that f(xk, yk)→ λ ∈ C. Thus l > 0.
On the other hand, it is easy to see that we may also expand

∂f

∂y
(x, y) = yl−1(α1x− β1y)(α2x− β2y) · · · (αd−lx− βd−ly),

where αi, βi ∈ C and αi 6= 0 for i = 1, 2, . . . , d− l.
We may then rewrite, for x 6= 0,

f(x, y) = ylxd−l
(
a1 − b1

y

x

)(
a2 − b2

y

x

)
· · ·
(
ad−l − bd−l

y

x

)
,

∂f

∂y
(x, y) = yl−1xd−l

(
α1 − β1

y

x

)(
α2 − β2

y

x

)
· · ·
(
αd−l − βd−l

y

x

)
.
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This implies that

f(xk, yk) = yk
∂f

∂y
(xk, yk)

(
a1 − b1 ykxk

)(
a2 − b2 ykxk

)
· · ·
(
ad−l − bd−l ykxk

)
(
α1 − β1 ykxk

)(
α2 − β2 ykxk

)
· · ·
(
αd−l − βd−l ykxk

) .
An immediate consequence of this representation is

λ = lim
k→∞

f(xk, yk) = 0

because yk is bounded and

lim
k→∞

∂f

∂y
(xk, yk) = 0,

lim
k→∞

(
a1 − b1 ykxk

)(
a2 − b2 ykxk

)
· · ·
(
ad−l − bd−l ykxk

)
(
α1 − β1 ykxk

)(
α2 − β2 ykxk

)
· · ·
(
αd−l − βd−l ykxk

) =
a1a2 . . . ad−l
α1α2 . . . αd−l

.

Case 2: The sequence yk is unbounded.
Having selected a subsequence, we may assume that limk→∞ yk =∞.
Since ∂f

∂y is homogeneous polynomial of degree d− 1, we may write

∂f

∂y
(x, y) = (α1x− β1y)(α2x− β2y) · · · (αd−1x− βd−1y),

where αi, βi ∈ C and (αi, βi) 6= (0, 0) for i = 1, 2, . . . , d− 1.

Since limk→∞
∂f
∂y (xk, yk) = 0, there exists i0 ∈ {1, 2, . . . , d− 1} such that

lim
k→∞

αi0xk − βi0yk = 0.

In particular, we have that βi0 6= 0 because limk→∞ xk =∞.
We change the coordinates in the following way:

x = x, u = αi0x− βi0y.

Let

f̃(x, u) := f

(
x,
αi0x− u
βi0

)
.

Then f̃ is homogeneous polynomial of degree d. Moreover, it is easy to check
that the following conditions hold

(i) limk→∞ xk =∞ and limk→∞ uk = 0, where uk := αi0xk − βi0yk;
(ii) limk→∞ f̃(xk, uk) = limk→∞ f(xk, yk) = λ;

(iii) limk→∞
∂f̃
∂x (xk, uk) = limk→∞

∂f
∂x (xk, yk) = 0; and

(iv) limk→∞
∂f̃
∂u(xk, uk) = limk→∞

[
− 1
βi0

∂f
∂y (xk, yk)

]
= 0.
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Hence, by applying Case 1 to the homogeneous polynomial f̃ and the sequence
of points (xk, uk) ∈ C2, we obtain λ = 0.

Now we can pass to a proof of Proposition 3.1.

Proof of Proposition 3.1. By Lemma 3.2, it suffices to prove the claim
in the case K = C.

Let f : C2 → C be a quasi-homogeneous polynomial with weight w :=
(w1, w2) and degree d. If w1 = w2 (i.e., if the polynomial f is homogeneous),
then Lemma 3.3 applies and there is nothing to prove. Thus, with no loss of
generality, we may as well assume that w1 > w2.

Suppose that K̃∞(f) 6= ∅. Let λ ∈ K̃∞(f). We need to show that λ = 0.
By definition, there exists a sequence of points (xk, yk) ∈ C2 such that

lim
k→∞

‖(xk, yk)‖ =∞, lim
k→∞

f(xk, yk) = λ, lim
k→∞

‖∇f(xk, yk)‖ = 0.(3.1)

There are two cases to be considered.
Case 1: The sequence yk is bounded. Note that f(x, 0) = cxm for some

c ∈ C and m ∈ N. Hence, if yk ≡ 0 for k large enough, then from (3.1) it is
easily seen that λ = c = 0 and there is nothing to prove. Thus, with no loss
of generality, we may as well assume that yk 6= 0 for large k. Let (uk, vk) ∈ C2

be such that

uw1
k = xk,

vw2
k = yk.

Then limk→∞ uk =∞ and the limit limk→∞
yk
uk

is finite (= 0).

Note that

df(x, y) = w1x
∂f

∂x
(x, y) + w2y

∂f

∂y
(x, y).

Hence, it follows from (3.1) that

lim
k→∞

xk
uk

∂f

∂x
(xk, yk) = 0,

lim
k→∞

yk
vk

∂f

∂y
(xk, yk) = 0.

We next need to introduce an auxiliary polynomial function g : C2 → C by

g(u, v) := f(uw1 , vw2).



55

Clearly, the polynomial g is homogeneous of degree d and limk→∞ g(uk, vk) =
λ. Moreover, it is not hard to show that

lim
k→∞

∂g

∂u
(uk, vk) = lim

k→∞
w1
xk
uk

∂f

∂x
(xk, yk) = 0,

lim
k→∞

∂g

∂v
(uk, vk) = lim

k→∞
w2
yk
vk

∂f

∂y
(xk, yk) = 0.

In other words, λ ∈ K̃∞(g). By Lemma 3.3, we get λ = 0.
Case 2: The sequence yk is unbounded. Having selected a subsequence,

we may assume that limk→∞ yk =∞. Assume that we have proved:

Lemma 3.4. There exists a homogeneous polynomial function h : C2 → C
of degree d such that

h(u, vw1) = [f(u, vw2)]w1 .

This, of course, implies that

∂h

∂u
(u, vw1) = w1[f(u, vw2)]w1−1∂f

∂x
(u, vw2),

∂h

∂v
(u, vw1) = w2[f(u, vw2)]w1−1vw2−w1

∂f

∂y
(u, vw2).

Let (uk, vk) ∈ C2 be such that

uk = xk,

vw2
k = yk.

Then it is easy to check that limk→∞ ‖(uk, vw1
k )‖ = ∞, limk→∞ h(uk, v

w1
k ) =

λw1 and

lim
k→∞

∂h

∂u
(uk, v

w1
k ) = lim

k→∞
w1[f(xk, yk)]

w1−1∂f

∂x
(xk, yk) = 0,

lim
k→∞

∂h

∂v
(uk, v

w1
k ) = lim

k→∞
w2[f(xk, yk)]

w1−1vw2−w1
k

∂f

∂y
(xk, yk) = 0.

(Note that w1 > w2 and limk→∞ |vk| = limk→∞ |yk|
1
w2 = ∞.) In other words,

λw1 ∈ K̃∞(h). Therefore, by Lemma 3.3, λw1 = 0 and hence λ = 0. This
completes the proof.

So we are left with proving Lemma 3.4. Let us define the polynomial
f̃ : C2 → C, (u, v) 7→ f̃(u, v), by

f̃(u, v) := [f(u, vw2)]w1 .
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So f̃ is quasi-homogeneous with weight (w1, 1) and degree w1d. Then we may
write (cf. Proposition 2.1 in [9])

f̃(u, v) =
∑

w1i+j=w1d

aiju
ivj =

∑
aiju

ivw1(d−i).

Let h(u, v) :=
∑
aiju

iv(d−i). Then the polynomial h satisfies the conditions of
the lemma. This completes the proof of the lemma and hence of Proposition
3.1.

Remark 3.5. Proposition 3.1 is actually a consequence of a result of Hà
Huy Vui [10] (see also [3, 7, 12, 18]). We give the present proof in order to
keep our paper self-contained.
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