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INVARIANTS OF PLANE CURVE SINGULARITIES AND

NEWTON DIAGRAMS

by Pierrette Cassou-Noguès and Arkadiusz P loski

To Professor Kamil Rusek on his 65th birthday

Abstract. We present an intersection-theoretical approach to the invari-
ants of plane curve singularities µ, δ, r related by the Milnor formula
2δ = µ + r − 1. Using Newton transformations we give formulae for µ,
δ, r which imply planar versions of well-known theorems on nondegenerate
singularities.

Introduction

The goal of this paper is to present an elementary, intersection-theoreti-
cal approach to the local invariants of plane curve singularities. We study in
detail three invariants: the Milnor number µ, the number of double points δ
and the number r of branches of a local plane curve. The technique of Newton
diagrams plays an important part in the paper. It is well-known that New-
ton transformations which arise in a natural way when applying the Newton
algorithm provide a useful tool for calculating invariants of singularities.

The formulae for the Milnor number in terms of Newton diagrams and
Newton transformations presented in the paper grew out of our discussion on
Eisenbud–Neumann diagrams. They have counterparts in toric geometry of
plane curve singularities and in the case of two dimensions imply theorems
due to Kouchnirenko, Bernstein and Khovanski.
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The contents of the article are:

1. Plane local curves
2. The Milnor number: intersection theoretical approach
3. Newton diagrams and power series
4. Newton transformations and factorization of power series
5. Newton transformations, intersection multiplicity and the Milnor num-

ber
6. Nondegenerate singularities and equisingularity

1. Plane local curves

Let C{X,Y } be the ring of convergent complex power series in variables X,
Y . For any nonzero power series f =

∑
cαβX

αY β we put supp f = {(α, β) ∈
N2 : cαβ 6= 0}, ord f = inf{α + β : (α, β) ∈ supp f} and in f =

∑
cαβX

αY β

with summation over (α, β) ∈ N2 such that α+ β = ord f .
We put by convention ord 0 = +∞, in 0 = 0. We call c00 the constant

term of the power series f . The power series without constant term form the
unique maximal ideal of C{X,Y }. A power series is a unit if and only if its
constant term is nonzero. We write g = f · unit if there is a unit u such
that g = fu in C{X,Y }. We then also say that f and g are associated. Let
f ∈ C{X,Y } be a nonzero power series without constant term. A local (plane)
curve f = 0 is defined to be the ideal generated by f in C{X,Y }. We say
that a local curve f = 0 is irreducible (reduced) if f ∈ C{X,Y } is irreducible
(f has no multiple factors). The irreducible curves are also called branches.
If f = fm1

1 . . . fmrr with non-associated irreducible factors fi then we refer to
fi = 0 as the branches or components of f = 0. We say that a curve f = 0 is
singular (nonsingular) if ord f > 1 (ord f = 1). We call ord f the multiplicity
of the curve f = 0. The lines defined by the equation in f = 0 are the tangent
lines (in short: tangents) to the curve f = 0.

Let X̃, Ỹ be new variables. A local system of coordinates Φ is a pair of

power series Φ(X̃, Ỹ ) = (aX̃ + bX̃ + · · · , cX̃ + dỸ + · · · ) where ad − bc 6= 0

and the dots denote terms of order higher than 1 in X̃, Ỹ . The map f → f ◦Φ

is an isomorphism of the rings C{X,Y } and C{X̃, Ỹ }.
For any power series f, g ∈ C{X,Y } we define the intersection multiplicity

or intersection number i0(f, g) by putting

i0(f, g) = dimCC{X,Y }/(f, g),

where (f, g) is the ideal of C{X,Y } generated by f and g. If f, g are nonzero
power series without constant terms then i0(f, g) < +∞ if and only if the
curves f = 0 and g = 0 have no common branch. The following properties are
basic
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1. i0(f, g) depends on the ideal (f, g) only. In particular, i0(f, g) = i0(g, f)
and i0(f, g + kf) = i0(f, g).

2. If Φ is a local system of coodinates then i0(f ◦ Φ, g ◦ Φ) = i0(f, g).
3. i0(f, gh) = i◦(f, g) + i◦(f, h).

Let t be a variable. A parametrization is a pair (x(t), y(t)) ∈ C{t}2
of power series without constant terms such that x(t) 6= 0 or y(t) 6= 0 in
C{t}. Two parametrizations (x(t), y(t)) and (x̃(t̃), ỹ(t̃)) are equivalent if there
is a power series τ(t) ∈ C(t), ord τ = 1 such that x(t) = x̃(τ(t)), y(t) = ỹ(τ(t)).
A parametrization (x(t), y(t)) ∈ C{t}2 is good if there is no parametriza-
tion (x1(t1), y1(t1)) ∈ C{t1}2 such that x(t) = x1(τ1(t)), y(t) = y1(τ1(t))
for a power series τ1(t) such that ord τ1(t) > 1.

A parametrization (x(t), y(t)) is a Puiseux parametrization if it is good
and x(t) = tn for an integer n > 0. It may be proved that a parametrization
(tn, y(t)) is a Puiseux parametrization if and only if gcd(n, supp y(t)) = 1.

For any branch f = 0 there is a unique up to equivalence good parametriza-
tion (x(t), y(t)) such that f(x(t), y(t)) = 0. If n = i0(f, x) < +∞ then it is
equivalent to a Puiseux’ parametrization (tn, y(t)). On the other hand, for
any parametrization (x(t), y(t)) there is a unique branch f = 0 such that
f(x(t), y(t)) = 0.

The following important property holds true:

4. If (x(t), y(t)) is a good parametrization of the branch f = 0 then
i0(f, g) = ord g(x(t), y(t)).

This implies

5. Let f = 0 be a branch. Then for any power series g, h ∈ C{X,Y }:
i0(f, g + h) ≥ inf{i0(f, g), i0(f, h)} with equality if i0(f, g) 6= i0(f, h).

Suppose that f = 0 is a branch and consider

Γ(f) = {i0(f, g) : g ∈ C{X,Y } runs over all series

such that f does not divide g}.
Clearly 0 ∈ Γ(f) and a, b ∈ Γ(f)⇒ a+b ∈ Γ(f), since the intersection number
is additive. We call Γ(f) the semigroup of the branch f = 0. Note that
Γ(f) = N if and only if the branch f = 0 is nonsingular.

Two reduced curves f = 0 and g = 0 are equisingular if and only if there
are factorizations f = f1 · · · fr and g = g1 · · · gr with the same numbers r > 0
of irreducible factors fi and gi such that

• Γ(fi) = Γ(gi) for all i = 1, . . . , r,
• i0(fi, fj) = i0(gi, gj) for i, j = 1, . . . , r.

The bijection fi 7→ gi will be called equisingularity bijection. In particular,
two branches are equisingular if and only if they have the same semigroup.
A function defined on the set of reduced curves is an invariant if it is constant
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on equisingular curves. The multiplicity and the number of branches of a plane
local curve are invariants.

Notes
The proofs omitted in this section are given in [8]. A beautiful introduction to
the subject is given in [34]. The book [2] is very well written and contains his-
torical information. For the systematic treatment of plane curve singularities
see [4], [15, Chap. 5] and [37].

2. The Milnor number: intersection theoretical approach

For every power series f ∈ C{X,Y } without constant term we define the
Milnor number µ0(f) by putting

µ0(f) = i0

(
∂f

∂X
,
∂f

∂Y

)
.

Property 2.1. There is µ0(f) = +∞ if and only if f has a multiple factor
in C{X,Y }.

Proof. If f = h2g in C{X,Y }, ordh > 0, then ∂f
∂X = 2h ∂h

∂X g + h2 ∂g
∂X

and ∂f
∂Y = 2h ∂h∂Y g + h2 ∂g

∂Y . Thus the derivatives ∂f
∂X ,

∂f
∂Y have a common factor

h of a positive order and µ0(f) = i0

(
∂f
∂X ,

∂f
∂Y

)
= +∞. Now suppose that

i0

(
∂f
∂X ,

∂f
∂Y

)
= +∞. Then there exists an irreducible divisor h of the derivatives

∂f
∂X ,

∂f
∂Y . We claim that h divides f : if (x(t), y(t)) is a parametrization of the

branch h = 0, then d
dtf(x(t), y(t)) = ∂f

∂X (x(t), y(t))x′(t) + ∂f
∂Y (x(t), y(t))y′(t) =

0 in C{t}. Therefore, f(x(t), y(t)) = 0 and h divides f . From irreducibility
of h there follows that ordh(X, 0) = ordh or ordh(0, Y ) = ordh. Suppose
that ordh(0, Y ) = ordh. Thus ord ∂h

∂Y = ordh− 1 and the power series h and
∂h
∂Y are coprime in C{X,Y }. Write f = hg. Whence ∂f

∂Y = ∂h
∂Y g + h ∂g

∂Y and h

divides ∂h
∂Y g. Therefore, h divides g and h is a multiple factor of f .

Property 2.2. For any local system of coordinates Φ, µ0(f ◦ Φ) = µ0(f).

Proof. Since JacΦ(0, 0) 6= 0, the ideals
(

∂

∂X̃
(f ◦ Φ), ∂

∂Ỹ
(f ◦ Φ)

)
and(

∂f
∂X ◦ Φ, ∂f∂Y ◦ Φ

)
are equal. Thus we get µ0(f ◦ Φ) = i0

(
∂f
∂X ◦ Φ, ∂f∂Y ◦ Φ

)
=

i0

(
∂f
∂X ,

∂f
∂Y

)
= µ0(f).

The following lemma, due to Teissier ( [31, Chap. II, Théorème 5]; [32,
Chap. II, Prop. 1.2]) plays a crucial role in what follows. It is a particular case
of a formula proved in [31] in the case of hypersurfaces.
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Lemma 2.3 (Teissier’s lemma). Let f ∈ C{X,Y }, f(0, 0) = 0 be such that
f(0, Y ) 6= 0. Then

i0

(
f,
∂f

∂Y

)
= µ0(f) + i0(f,X)− 1.

Proof. Using Property 2.1, it is easy to check that i0

(
f, ∂f∂Y

)
= +∞

if and only if µ0(f) = +∞. Suppose that µ0(f) < +∞ and ∂f
∂Y (0, 0) = 0 (if

∂f
∂Y (0, 0) 6= 0 then the lemma is obvious). Write ∂f

∂Y = g1 · · · gm with irreducible

gi ∈ C{X,Y }. Let (xi(ti), yi(ti)) ∈ C{ti}2 be a good parametrization of the
branch gi = 0. Differentiating and taking orders give ord f(xi(ti), yi(ti)) =

ord ∂f
∂X (xi(ti), yi(ti)) + ordxi(ti) that is i0(f, gi) = i0

(
∂f
∂X , gi

)
+ i0(X, gi) for

i = 1, . . . ,m. Summing up the obtained equalities we get i0

(
f, ∂f∂Y

)
= µ0(f)+

i0

(
X, ∂f∂Y

)
and the lemma follows, since i0

(
X, ∂f∂Y

)
= i0(X, f)− 1.

Property 2.4. Let f ∈ C{X,Y }, f(0, 0) = 0 be a power series without
multiple factors. Then

(i) g = f ·unit implies µ0(g) = µ0(f),
(ii) if f = f1 · · · fm, fi(0) = 0 and fi are pairwise coprime, then

µ0(f) +m− 1 =
m∑
i=1

µ0(fi) + 2
∑

1≤i<j≤m
i0(fi, fj).

Proof. We may assume that f(0, Y ) 6= 0 in C{Y }.
(i) It is easy to check that i0

(
g, ∂g∂Y

)
= i0

(
f, ∂f∂Y

)
and i0(g,X) = i0(f,X).

Then µ0(g) = µ0(f) by Teissier’s lemma.
(ii) The basic properties of intersection multiplicity give

i0

(
f,
∂f

∂Y

)
=

m∑
i=1

i0

(
fi,

∂fi
∂Y

)
+ 2

∑
1≤i<j≤m

i0(fi, fj),

i0(f,X) =

m∑
i=1

i0(fi, X).

Then we use Teissier’s lemma.

In what follows, we need a lemma due to Jung ( [14, Zehntes Kapitel, § 4,
S. 181]).

Lemma 2.5 (Jung’s lemma). Let f(X,Y ) = Y n + a1(X)Y n−1 + · · · +
an(X) ∈ C{X}[Y ] be a distinguished irreducible polynomial of degree n > 1.
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Let D(X) = discY f(X,Y ) be the discriminant of f . Then ordD(X) ≡ n − 1
(mod 2).

Proof. Let ε0 be a primitive n-th root of unity. Then by the Puiseux

Theorem f(tn, Y ) =

n−1∏
k=0

(Y − y(εk0t)), where y(t) ∈ C{t}.

Let Vn(T1, . . . , Tn) =
∏

1≤i<j≤n
(Ti − Tj).

Then D(tn) = discY f(tn, Y ) = vn(t)2, where vn(t) = Vn(y(t), y(ε0t), . . . ,
y(εn−1

0 t)). It is easy to check that vn(ε0t) = (−1)n−1vn(t). Let us distinguish
two cases.

Case 1. n− 1 ≡ 0 (mod 2).
From vn(ε0t) = vn(t) we get vn(t) ∈ C{tn} i.e. vn(t) = d(tn), where d(X) ∈
C{X}. Thus D(X) = d(X)2 and we get ordD(X) ≡ 0 (mod 2).

Case 2. n− 1 ≡ 1 (mod 2).

Then vn(ε0t) = −vn(t) which implies vn(t) ∈ t
n
2 C{tn} i.e. vn(t) = t

n
2 d1(tn),

where d1(X) ∈ C{X}. Thus D(X) = Xd1(X)2 and ordD(X) ≡ 1 (mod 2).
Summing up we get ordD(X) ≡ n− 1 (mod 2).

Now we can prove

Theorem 2.6. Let r0(f) be the number of branches of the reduced local
curve f = 0. Then

µ0(f) + r0(f)− 1 ≡ 0 (mod 2).

Proof. Suppose that f is an irreducible power series. By the Weierstrass
Preparation Theorem it suffices to consider the case where f=Y n+a1(X)Y n−1+
· · ·+ an(X) is a distinguished polynomial. Let D(X) = discY f(X,Y ). By the

classical formula for the intersection multiplicity, i0

(
f, ∂f∂Y

)
= ordD(X). Thus

by Jung’s lemma i0

(
f, ∂f∂Y

)
≡ n− 1 (mod 2) and by Teissier’s lemma we get

µ0(f) = i0

(
f, ∂f∂Y

)
− n+ 1 ≡ 0 (mod 2).

We get the general case from Property 2.4 (ii) applied to the decomposition
of f : f = f1 · · · fr, r = r0(f) into irreducible factors fi.

For any reduced power series f ∈ C{X,Y } we put

δ0(f) =
1

2
(µ0(f) + r0(f)− 1)

and call δ0(f) the double point number of the local curve f = 0.
From the properties of the Milnor number we get



15

Proposition 2.7.

(i) δ0(f) ≥ 0 is an integer, δ0(f) = 0 if and only if f = 0 is nonsingular,
(ii) δ0(f ◦ Φ) = δ0(f) for any local system of coordinates Φ,

(iii) δ0(
∏m
i=1 fi) =

∑m
i=1 δ0(fi) +

∑
1≤i<j≤m i0(fi, fj) where fi are coprime

power series.

Remark 2.8. The reduced curve f = 0 has an ordinary r-fold singularity if
it has r branches, all nonsingular and intersecting each other with multiplicity
1. For such a curve we have µ0 = (r − 1)2 and δ0 = 1

2r(r − 1).

Assume that f ∈ C{X,Y } is a power series with no multiple factors. If
f = f1 · · · fr is a product of irreducible factors fi ∈ C{X,Y }, then we set

ci(f) = µ0(fi) +
∑
j 6=i

i0(fi, fj) for i = 1, . . . , r.

A curve Ψ = 0 is said to be an adjoint to f = 0 if

i0(fi,Ψ) ≥ ci(f) for i = 1, . . . , r.

Remark 2.9. Let f = 0 be an ordinary r-fold singularity. Then Ψ = 0 is
an adjoint to f = 0 if and only if ord Ψ ≥ r − 1.

The following result is known as Noether’s Theorem on the double-point
divisor. Let g, h ∈ C{X,Y }.

Theorem 2.10. Suppose that the local curves f = 0 and g = 0 have no
common component. If h satisfies Noether’s conditions

i0(fi, h) ≥ i0(fi, g) + ci(f) for i = 1, . . . , r

then h belongs to the ideal generated by f, g in the ring C{X,Y }.

Let us write h = Φf + Ψg with Φ,Ψ ∈ C{X,Y }. Then Noether’s condi-
tions imply that Ψ = 0 is an adjoint to f = 0. In connection with Noether’s
Theorem let us note

Theorem 2.11. Let f ∈ C{X,Y } be an irreducible power series. Then
there does not exist Ψ ∈ C{X,Y } such that i0(f,Ψ) = µ0(f) − 1. Let h ∈
C{X,Y } be such that i0(f, h) = i0(f, g) + µ0(f)− 1, then h /∈ (f, g)C{X,Y }.

The second part of (2.11) follows easily from the first. Indeed, if we had
h = Φf + Ψg with Φ,Ψ ∈ C{X,Y } and i0(f, h) = i0(f, g) +µ0(f)− 1, then we
would get io(f,Ψ) = µ0(f)− 1, a contradiction with the first part of (2.11).

Let us now pass to the proofs of Theorems (2.10) and (2.11).
Let F (u, Y ), G(u, Y ), H(u, Y ) ∈ C{u}[Y ] where u is a variable. Assume that
F (u, Y ) =

∏n
i=1 (Y − yi(u)) in C{u}[Y ] and yi(u) 6= yj(u) for i 6= j.
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Lemma 2.12. If ordH(u, yi(u)) ≥ ord ∂F
∂Y (u, yi(u))G(u, yi(u)) for i =

1, . . . , n, then H(u, Y ) ∈ (F (u, Y ), G(u, Y ))C{u}[Y ].

Proof. Let

Ψ(u, Y ) =
n∑
i=1

H(u, yi(u))
∂F
∂Y (u, yi(u))G(u, yi(u))

F (u, Y )

(Y − yi(u))
.

Then Ψ(u, Y ) ∈ C{u}[Y ] and H(u, yi(u)) = Ψ(u, yi(u))G(u, yi(u)) for i =
1, . . . , n. Therefore, H(u, Y ) ≡ Ψ(u, Y )G(u, Y ) mod (Y − yi(u)) for i =
1, . . . , n and H(u, Y ) ≡ Ψ(u, Y )G(u, Y ) mod F (u, Y ) what implies H(u, Y ) ∈
(F (u, Y ), G(u, Y ))C{u}[Y ].

Lemma 2.13. If Ψ(u, Y ) = Ψ0(u)Y n−1 + · · ·+ Ψn−1(u) ∈ C{u}[Y ], then

n∑
i=1

Ψ(u, yi(u))
∂F
∂Y (u, yi(u))

= Ψ0(u).

Proof. The lemma follows immediately from the Lagrange interpolation
formula.

Proof of Theorem 2.10. (cf. [38, Achtes Kapitel]).
We may assume that fi = fi(X,Y ) are Y -distinguished polynomials and (after
replacing g, h by the remainders of division by f) g, h ∈ C{X}[Y ].
We have

i0(fi, g) + ci(f) = i0(fi, g) + µ0(fi) +
∑
j 6=i

i0(fi, fj)

= i0(fi, g)− i0(fi, X) + 1 + i0

(
fi,

∂fi
∂Y

)
+
∑
j 6=i

i0(fi, fj)

= i0(fi, g)− i0(fi, X) + 1 + i0

(
fi,

∂f

∂Y

)
by Teissier’s lemma.
Let ni = i0(fi, X) for i = 1, . . . , r. The Noether conditions are equivalent to

(1) i0(fi, h) ≥ i0(fi, g) + i0

(
fi,

∂f

∂Y

)
− ni + 1 for i = 1, . . . , r.

By Puiseux’ Theorem we can write

fi(t
ni , Y ) = (Y − yi1(t)) · · · (Y − yini(t)) in C{t}[Y ],

where yi1(t), . . . , yini(t) are C{tni}-conjugate, i.e. yij(t) = yi1(εjt) for some εj
such that εnij = 1. Thus for every h(X,Y ) ∈ C{X,Y }:

ordh(tni , yi1(t)) = · · · = ordh(tni , yini(t)) = i0(fi, h)
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and we can rewrite (1) in the form

(2) ordh(tni , yij(t)) ≥ ord g(tni , yij(t)) + ord
∂f

∂Y
(tni , yij(t))− ni + 1

or else

(3) ord(tni−1h(tni , yij(t)) ≥ ord g(tni , yij(t))
∂f

∂Y
(tn, yij(t)).

Let N = n1 · · ·nr and yij(u) = yij(u
N/ni) for i = 1, . . . , r. Obviously, N

ni
(ni −

1) ≤ N − 1. Therefore (3) implies

(4) ord(uN−1h(uN , yij(u))) ≥ ord g(uN , yij(u))
∂f

∂Y
(uN , yij(u))

and we can apply Lemma 2.12 to the polynomials

F (u, Y ) = f(uN , Y ) =
∏

(Y − yij(u)), G(u, Y ) = g(uN , Y )

and H(u, Y ) = uN−1h(uN , Y ).
We get

uN−1H(uN , Y ) ∈ (f(uN , Y ), g(uN , Y ))C{u}[Y ].

It is easy to check that C{u}[Y ] =
∑N−1

i=0 C{uN}Y i is a free C{uN}[Y ]-module,
so

h(uN , Y ) ∈ (f(uN , Y ), g(uN , Y ))C{u}[Y ]

and consequently h(X,Y ) ∈ (f(X,Y ), g(X,Y )C{X}[Y ].

Proof of Theorem 2.11. Suppose that there is a Ψ=Ψ(X,Y )∈C{X,Y }
such that

(5) i0(f,Ψ) = µ0(f)− 1.

We may assume that f = f(X,Y ) is a Y -distinguished polynomial of degree
n ≥ 1 and Ψ ∈ C{X}[Y ] a polynomial of Y -degree ≤ n − 1. By Teissier’s
lemma we can rewrite (5) in the form

(6) i0(f,XΨ) = i0(f,
∂f

∂Y
).

By Puiseux Theorem, f(un, Y ) =
∏
εn=1 (Y − y(εu)).

Then (6) is equivalent to

(7) ordunΨ(un, y(u)) = ord
∂f

∂Y
(un, y(u)).

By (7) we can write in(unΨ(un, y(u))) = c1u
N (c1 6= 0) and in ∂f

∂Y (un, y(u)) =

c2u
N (c2 6= 0) where N = i0

(
f, ∂f∂Y

)
. Therefore, we get

(8) in
unΨ(un, y(εu))
∂f
∂Y (un, y(εu))

=
c1ε

NuN

c2εNuN
= c, c =

c1

c2
.
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On the other hand, by Lemma 2.13 applied to Ψ(un, Y ) and f(un, Y ) we have

(9)
∑
εn=1

unΨ(un, y(εu))
∂f
∂Y (un, y(εu))

= unΨ0(un).

A contradiction, because the left-hand side of (9) is of order zero by (8).

In what follows, we will need

Lemma 2.14. Let f ∈ C{X,Y } be an irreducible power series. Then for
any integer a ∈ Z there exists power series φ, ψ ∈ C{X,Y } such that a =
i0(f, φ)− i0(f, ψ).

Proof. Let (x(t), y(t)) be a good parametrization of the branch f = 0.
Then the rings C{x(t), y(t)} and C{t} have the same field of fractions (see [15,

Theorem 5.1.3.]). Then ta = φ(x(t),y(t))
ψ(x(t),y(t)) for some φ, ψ ∈ C{X,Y } and taking

orders gives a = i0(f, φ)− i0(f, ψ).

Theorem 2.15. The semigroup Γ(f) of the branch f = 0 contains all
integers greater than or equal to the Milnor number µ0(f). The number µ0(f)−
1 does not belong to Γ(f).

Proof. Let a be an integer such that a ≥ µ0(f). By Lemma 2.14 we
can write a = i0(f, φ) − i0(f, ψ) for some φ, ψ ∈ C{X,Y }. Then i0(f, φ) =
i0(f, ψ) + a ≥ i0(f, ψ) + µ0(f) and by Noether’s Theorem φ = Af + Bψ for
some A,B ∈ C{X,Y }. Thus a = i0(f,Af + Bψ)− i0(f, ψ) = i0(f,B) ∈ Γ(f)
and we are done.
The second part of 2.15 follows immediately from Theorem 2.11.

Using Theorem 2.15 and Property 2.4 (ii) we get

Theorem 2.16. The Milnor number is an invariant of singularity.

Notes
Milnor introduced and studied µ in the general case of isolated hipersurface
singularities in his celebrated book [26]. A topological treatment of the Milnor
number in the case of plane curve singularities is given in [37]. The invariant
δ was defined in algebraical terms by Hironaka in [13]. The formula 2δ =
µ + r − 1, which in our approach served as the definition of δ, was proved
in [26] by topological methods and in [30] in an algebraic way. The classical
texts [14] and [38] where the Milnor number is implicit were very helpful when
writing this article. Teissier’s lemma has interesting generalizations involving
the Jacobian (see the articles by Lê Dung Trang and Greuel quoted in [33]).
For application of the Milnor number to singularities of plane algebraic curves
see [12,24] and the references given therein.
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3. Newton diagrams and power series

Let R+ = {a ∈ R : a ≥ 0}. For any subsets E,F ⊂ R2
+, we consider

the Minkowski sum E + F = {u + v : u ∈ E and v ∈ F}. Let E ⊂ N2

and let us denote by ∆(E) the convex hull of the set E + R2
+. A subset

∆ ⊂ R2
+ is a Newton diagram (or polygon) if there is a set E ⊂ N2 such that

∆ = ∆(E). The smallest set E0 ⊂ N2 such that ∆ = ∆(E0) is called the
set of vertices of the Newton diagram ∆. It is always finite and we can write
E0 = {v0, v1, . . . , vm} where vi = (αi, βi) and αi−1 < αi, βi−1 > βi for all
i = 1, . . . ,m. The Newton diagram with one vertex v = (α, β) is the quadrant

(α, β) +R2
+. After Teissier (see [33,34]), for two positive integers a, b, by

{
a

b

}
we denote the Newton diagram with vertices (0, b) and (a, 0). We also denote

by
{
a

∞

}
and

{
∞
b

}
the quadrant with vertex (a, 0) and (0, b), respectively.

Figure 1.

We call a segment E ⊂ R2
+ a Newton edge if its vertices (α, β), (α′, β′) lie in

N2 and α < α′, β′ < β. We put |E|1 = α′ − α and |E|2 = β − β′ and call
|E|1/|E|2 the inclination of E. We denote by a(E) and b(E) the distances of
E to the vertical and horizontal axes respectively.

Figure 2.
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The vertices of a Newton edge E are (a(E), |E|2+b(E)) and (a(E)+|E|1, b(E)).
For any Newton diagram ∆ we consider the set n(∆) of 1-dimensional compact
faces of the boundary of ∆. Note that n(∆) = ∅ if and only if ∆ is a quadrant.
If ∆ has vertices v0, . . . , vm (m > 0) then n(∆) = {E1, . . . , Em} where Ei is
the edge with vertices vi−1, vi.

Let a(∆) and b(∆) denote the distances of ∆ to the vertical and horizontal
axes respectively. The diagram is convenient if a(∆) = b(∆) = 0. The reader
will check the following two properties of Newton diagrams.

Property 3.1. The Newton diagrams form a semigroup with respect to
the Minkowski sum. For any Newton diagram ∆ there is the minimal de-
composition

(∗) ∆ =

{
a(∆)

∞

}
+

∑
S∈n(∆)

{
|S|1
|S|2

}
+

{
∞
b(∆)

}
.

Property 3.2. The line with the slope −1/θ (θ > 0) supporting the Newton
diagram ∆ with the minimal decomposition (∗) intersects the horizontal axis
at the point with abscissa

a(∆) +
∑

S∈n(∆)

inf{|S|1, θ|S|2}+ θb(∆).

Figure 3. α+ θβ = ν

For any nonzero power series f =
∑
cαβX

αY β ∈ C{X,Y } we put ∆(f) =
∆(supp f) and N (f) = n(∆(f)). We call ∆(f) the Newton diagram of f . The
following property is of key importance.

Property 3.3. For any nonzero power series f, g ∈ C{X,Y }:

∆(fg) = ∆(f) + ∆(g).

We refer the reader to [22] for a proof of 3.3.
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In particular, if g = f · unit, then ∆(g) = ∆(f) since ∆(u) = R2
+ (the zero

of the semigroup of Newton’s diagrams) if u(0) 6= 0 and we may speak about
the Newton diagram of the local curve f = 0. A power series f is convenient
if the diagram ∆(f) is convenient. Obviously, f is convenient if and only if the
branches of the curve f = 0 are different from axes.

Observe that n(f) = ∅ if and only if f = Xα0Y β0 · unit. Suppose that
n(f) 6= ∅. For any face S ∈ n(f) we consider the initial part in(f, S) of f
corresponding to S:

in(f, S) =
∑

(α,β)∈S

cαβX
αY β.

Note that n(in(f, S)) = S. If a(S) and b(S) are the distances of S to the

axes, then Xa(S)Y b(S) is the monomial of maximal degree dividing in(f, S).
Let r(S) = gcd(|S|1, |S|2). Then r(S) = #(S ∩ N2)− 1. Let mS = |S|1/r(S),
nS = |S|2/r(S). It is easy to check that

in(f, S) = Xa(S)Y b(S)ΦS(XmS , Y nS ),

where ΦS(U, V ) ∈ C[U, V ] is a homogeneous form of degree r(S) such that
ΦS(U, 0)ΦS(0, V ) 6= 0 in C[U, V ]. Therefore, we may write

in(f, S) = cXa(S)Y b(S)
r∏
i=1

(Y nS − aiXmS )di ,

where ai 6= aj for i 6= j, c 6= 0 are constants.
We put r(f, S) = r. Since r(S) =

∑r
i=1 di, then r(f, S) ≤ r(S) with

equality if and only if d1 = . . . = dr = 1. We say that f is nondegenerate
on S if r(f, S) = r(S). A power series f is nondegenerate on S if and only
if the system of equations ∂

∂X in(f, S) = ∂
∂Y in(f, S) = 0 has no solutions in

(C\{0})×(C\{0}). The power series f is nondegenerate if it is nondegenerate
on each S ∈ n(f). A binomial curve Y n−aXm = 0, gcd(n,m) = 1, a 6= 0, will
be called a quasi-tangent to f = 0 of (tangential) multiplicity d if Y n−aXm is a
factor of multiplicity d of the initial form in(f, S). We say that Y nS−aiXmS =
0, i = 1, . . . , r, are quasi-tangents to f = 0 corresponding to the face S ∈ n(f).

Remark 3.4. If ord f(X, 0) = ord f(0, Y ) = ord f (this condition means
that the axes Y = 0 and X = 0 are not tangent to the curve f = 0) then

∆(f) =

{
ord f

ord f

}
and the initial form corresponding to the unique face of ∆(f)

is in f = c
∏r
i=1 (Y − aiX)di where ai 6= aj for i 6= j. In this case the quasi-

tangents to f = 0 are ordinary tangents Y − aiX = 0, i = 1, . . . , r.
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Remark 3.5. If f ∈ C{X,Y } is a convenient power series, then the local
curve f = 0 has exactly one quasi-tangent if and only if

f = c(Y n − aXm)d +
∑

cαβX
αY β, gcd(n,m) = 1,

where the summation is over (α, β) such that αn+ βm > dmn.

We have ∆(f) =

{
i0(f, Y )

i0(f,X)

}
=

{
md

nd

}
.

Remark 3.6. Let mult(f, τ) be the tangential multiplicity of the quasi-
tangent τ to the local curve f = 0. We put mult(f, τ) = 0 if a binomial curve
τ is not a quasi-tangent to f = 0. Then, for any nonzero power series f, g:
mult(fg, τ) = mult(f, τ) + mult(g, τ).

Notes
An interesting algebra of the Newton diagrams is developed in [33]. Newton
introduced his diagrams to solve equations f(X,Y ) = 0 (see [2]). The notion of
nondegeneracy appeared in a very general setting in [16,18,35]. The authors
are responsible for the term “quasi-tangent.”

4. Newton transformations and factorization of power series

Let n,m > 0 be coprime integers and let c 6= 0 be a complex number.
The Newton transformation (in short: the N-transformation) is defined by the
following equations

X = Xn
1 ,

Y = (c+ Y1)Xm
1 ,

(10)

where (X1, Y1) are new variables.
N-transformation (10) may be viewed as a deformation of the parametrization

X = Xn
1 ,

Y = cXm
1

(11)

of the binomial curve Y n − cnXm = 0.
We omit the simple proof of the following

Lemma 4.1. Let f = f(X,Y ) ∈ C{X,Y } be a nonzero power series with-
out constant term. Then there is a unique power series f1 = f1(X1, Y1) ∈
C{X1, Y1} and an integer k > 0 such that

f(Xn
1 , (c+ Y1)Xm

1 ) = Xk
1 f1(X1, Y1), f1(0, Y1) 6= 0

in C{X1, Y1}.
The line αn + βm = k is a supporting line of ∆(f). Moreover, the series

f1 is without constant term if and only if the curve Y n − cnXm = 0 is a
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quasi-tangent to curve f = 0. Its tangential multiplicity equals i0(f1, X1) =
ord(f1(0, Y1)).

In what follows we call f1 = f1(X1, Y1) the strict transform of the series
f = f(X,Y ) by N-transformation (10).

The following lemma gives a necessary condition for a power series to be
irreducible.

Lemma 4.2. Let f = f(X,Y ) ∈ C{X,Y } be a convenient irreducible power
series. Then the local curve f = 0 has exactly one quasi-tangent.

Proof. Let N = ord f(0, Y ), M = ord f(X, 0). By the Weierstrass Prepa-
ration Theorem, f = (Y N+a1(X)Y N−1+· · ·+aN (X))·unit. By Puiseux Theo-
rem Y N +a1(tN )Y N−1+· · ·+aN (tN ) =

∏
εN=1 (Y − y(εt)), where y(t) ∈ C{t}.

A simple calculation shows that ord ai(X) ≥ iMN with equality for i = N .

Therefore, ∆(f) =

{
M

N

}
. Let I = {i ∈ [1, N ] : ord ai = iMN }. Then

the initial form of f corresponding to the unique face of ∆(f) is equal to
const.(Y N +

∑
i∈I in ai(X)Y N−i) = const.(Y n − cnXm)d where N = nd,

M = md and in y(t) = ctM . This proves the lemma.

We can use the N-transformations to verify in a finite number of steps if
a power series is irreducible.

Lemma 4.3. Suppose that f = f(X,Y ) ∈ C{X,Y } is a convenient power
series such that the curve f = 0 has exactly one quasi-tangent Y n−cnXm = 0.
Let f1 = f1(X1, Y1) ∈ C{X1, Y1} be the strict transform of f = f(X,Y ) by N-
transformation (10). Then f is irreducible if and only if f1 is irreducible.

Proof. Let d be the tangential multiplicity of the quasi-tangent Y n −
cnXm = 0. Then ord f1(0, Y1) = d. First assume that f = f(X,Y ) is an
irreducible power series. Let (te, ϕ(t)) be a Puiseux parametrization of an
irreducible factor of f1(X1, Y1). Then e ≤ ord f1(0, Y1) = d. On the other
hand, by the definition of the strict transform, we get f(ten, ctem+temϕ(t)) = 0
in C{t}. Since f is irreducible, we get en ≥ ord f(0, Y ) = dn and e ≥ d. Thus
e = d and f1 is an irreducible power series.

To check that the irreducibility of f1 implies the irreducibility of f , assume
that f1 is irreducible. Then the branch f1 = 0 has a Puiseux parametrization
(td, ϕ(t)) where d = ord f1(0, Y ). By the definition of the strict transform we
get f(tdn, ctdm + tdmϕ(t)) = 0 in C{t}. Since ord f(0, Y ) = dn, it suffices
to check that (tdn, ctdm + tdmϕ(t)) is a Puiseux parametrization. We have
gcd(dn, supp(ctdm + tdmϕ(t))) = 1 since gcd(d, suppϕ(t)) = 1. Therefore, the
power series f is irreducible.
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Corollary 4.4. Every power series f of the form f = Y n − aXm +∑
cαβX

αY β, gcd(n,m) = 1, where the summation is over (α, β) such that
αn+ βm > nm, is irreducible.

Proof. The strict transform f1 of f by N-transformation (10) with c such

that cn = a is of order 1, since ∂f1
∂Y1

(0, 0) 6= 0. Therefore, by Lemma 4.3 the
series f is irreducible.

Example 4.5 (see [19]). Let f = (X2 − Y 3)2 − Y 7 and g = (X2 − Y 3)2 −
XY 5. The both series have the unique quasi-tangent Y 3−X2 = 0 (of tangential
multiplicity 2). The strict transforms of f and g by the N-transformation
X = X3

1 , Y = (1 + Y1)X2
1 are f1(X1, Y1) = (3Y1)2 −X2

1 + terms of order > 2
and g1(X1, Y1) = −X1+ terms of order > 1. Thus by Lemma 4.3 the series f
is reducible (since f1 has two tangents) and the series g is irreducible.

With any binomial curve τ : Y n − aXm = 0, a 6= 0, gcd(n,m) = 1, we
associate the N-transformation

X = Xn
τ ,

Y = (a1/n + Yτ )Xm
τ ,

where (Xτ , Yτ ) are new variables and a1/n = |a|1/n exp(iαn ) if a = |a| exp(iα)
with 0 ≤ α < 2π. We denote by fτ = fτ (Xτ , Yτ ) the strict transform of
f = f(X,Y ) by the N-transformation associated with τ .

The following property follows easily from the definitions.

Property 4.6. Let f, g be nonzero power series without constant terms.
Then

(i) a binomial curve τ is a quasi-tangent to the curve f = 0 if and only if
fτ (0) = 0,

(ii) (fg)τ = fτgτ for any binomial curve τ ,
(iii) if f = f1 · · · fr is a decomposition of f into irreducible factors, then for

any binomial curve τ , τ is a quasi-tangent to the curve f = 0 if and
only if τ is a quasi-tangent to a branch fi = 0 for some i ∈ {1, . . . , r}.

If f = f1 · · · fr is a decomposition of a nonzero power series f without
constant term into irreducible factors, then we put r0(f) = r, i.e. r0(f) is the
number of irreducible factors of f counted with multiplicities.

Proposition 4.7. If f ∈ C{X,Y } is a convenient power series, then
r0(f) =

∑
τ r0(fτ ), where the summation is over all quasi-tangents τ to the

curve f = 0.
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Proof. Let f = f1 · · · fr be a factorization of f into irreducible factors fi.
Let τ be a quasi-tangent to f = 0 and let

Iτ = {i ∈ [1, r] : the branch fi = 0 has the quasi-tangent τ}.

Thus the sets Iτ are nonempty, pairwise disjoint and
⋃
τ

Iτ = [1, r].

Let Icτ = [1, r] \ Iτ . By Property 4.6 (ii) we get fτ =
∏
i∈Iτ (fi)τ · unit, since

(fi)τ (0) 6= 0 for i ∈ Icτ . Therefore, we obtain r0(fτ ) =
∑

i∈Iτ r0((fi)τ ) =
#Iτ since r0((fi)τ ) = 1 for i ∈ Iτ by Lemma 4.2 and we have

∑
τ r0(fτ ) =∑

τ (#Iτ ) = #[1, r] = r = r0(f).

For any convenient power series f ∈ C{X,Y } we put

r(f,∆(f)) =
∑

S∈n(f)

r(f, S) = the number of quasi-tangents to the curve f = 0

r(∆(f)) =
∑

S∈n(f)

r(S) = the number of quasi-tangents counted with

tangential multiplicities to the curve f = 0.

Obviously, r(f,∆(f)) ≤ r(∆(f)) with equality if and only if f is nonde-
generate. Note also that r(∆(f)) = the number of integral points lying on⋃
n(f)− 1. Hence the integral points divide

⋃
n(f) into r(∆(f)) segments.

Proposition 4.8. For any convenient power series f ∈ C{X,Y } we have

r(f,∆(f)) ≤ r0(f) ≤ r(∆(f)).

If f is nondegenerate, then r0(f) = r(∆(f)) and the quasi-tangents to the
branches of the local curve f = 0 have tangential multiplicity equal to 1. Dif-
ferent branches have different quasi-tangents.

Proof. By Proposition 4.7 we have r0(f) =
∑

τ r0(fτ ). Therefore,
r0(f,∆(f)) =

∑
τ 1 ≤ r0(f) ≤

∑
τ ord fτ ≤

∑
τ ord fτ (0, Yτ ) = r(∆(f)) since

ord fτ (0, Yτ ) equals the tangential multiplicity of τ (by Lemma 4.1) and the
number of quasi-tangents counted with multiplicities associated with the face S
is equal to r(S). Suppose that f is nondegenerate. Then r(f,∆(f)) = r(∆(f))
and r(f) = r(∆(f)) by the first part of the proposition. We have mult(f, τ) =∏r
i=1 mult(fi, τ) by Remark 3.6 and the assertion about the branches of the

local curve f = 0 follows.

Example 4.9. Let f = X7 +X5Y +X3Y 2 + 2X2Y 3 +XY 4 + Y 6. Then
the local curve f = 0 has four quasi-tangents: Y 2 + X = 0, Y − εX2 = 0,
Y − εX2 = 0, (ε2 + ε+ 1 = 0), Y +X = 0. The quasi-tangent τ : Y +X = 0
is of tangential multiplicity 2, the remaining quasi-tangents are of tangential
multiplicity 1. Then 4 ≤ r0(f) ≤ 5. By Proposition 4.8, r0(f) = 3 + r0(fτ ).
To calculate r0(fτ ) we use the N-transformation X = Xτ , Y = (−1 + Yτ )Xτ .



26

We get f(Xτ , (−1 + Yτ )Xτ ) = X5
τ fτ (Xτ , Yτ ), where fτ = −Xτ+higher order

terms. We have ord fτ = 1 and fτ is irreducible, i.e. r0(fτ ) = 1. Consequently,
r0(f) = 3 + 1 = 4.

Notes
Although the Newton transformations appear when using the Newton algo-
rithm [6,15,23], a systematic treatment of this notion was given quite recently
in [5].

5. Newton transformations, intersection multiplicity and the
Milnor number

The Minkowski double area [∆,∆′] ∈ N∪{∞} of the pair ∆,∆′ of Newton
diagrams is uniquely determined by the following conditions

(M1) [∆1 + ∆2,∆
′] = [∆1,∆

′] + [∆2,∆
′],

(M2) [∆,∆′] = [∆′,∆],

(M3)

[{
a

b

}
,

{
a′

b′

}]
= inf{ab′, a′b}.

Lemma 5.1. If ∆ =
∑

S∈n(∆)

{
|S|1
|S|2

}
is a convenient Newton diagram then

(i) [∆,∆] = 2 area (R2
+ \∆)

(ii) [∆,∆] =
∑

S∈n(∆)

(|S|1|S|2 + a(S)|S|2 + b(S)|S|1).

Proof. By (M1) and (M3) we get

[∆,∆] =
∑

S,T∈n(∆)

inf{|S|1|T |2, |S|2|T |1)},

which implies (i).
To check (ii) observe that |S|1|S|2 + a(S)|S|2 + b(S)|S|1 equals to the double
area of triangle with vertices (0, 0), (a(S), |S|2 + b(S)) and (a(S) + |S|1, b(S))
and use (i).

Lemma 5.2. Let ∆ be a Newton diagram. Then for every of Newton’s edge
E the supporting line of ∆ parallel to E is described by the equation

|E|2α+ |E|1β =

[{
|E|1
|E|2

}
,∆

]
.

Proof. The lemma follows from Property 3.2 by putting θ = |E|1
|E|2 into the

formula for the abscissa of the point at which the supporting line intersects
the axis β = 0.
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Theorem 5.3. Let f be a nonzero power series without constant term.
Then for every convenient power series h:

i0(f, h) = [∆(f),∆(h)] +
∑
τ

i0(fτ , hτ ),

where the summation is over all quasi-tangents τ to the curve h = 0.

Proof. Fix a nonzero power series f without constant term. It is easy to
check that if the theorem is true for two power series h1, h2, then it is true for
their product h1h2. Thus it suffices to prove the theorem for irreducible power
series h.

Let h be a convenient irreducible power series and let τ : Y n − aXm = 0
be the unique quasi-tangent to the branch h = 0 of tangential multiplicity d.

Let c = a1/n. Then ∆(h) =

{
dn

dm

}
, h(Xn

τ , (c + Yτ )Xm
τ ) = Xdmn

τ hτ (Xτ , Yτ ),

ordhτ (0, Yτ ) = d and f(Xn
τ , (c + Yτ )Xm

τ ) = Xk
τ fτ (Xτ , Yτ ), fτ (0, Yτ ) 6= 0 in

C{Yτ}.
Let (td, ϕ(t)) be a Puiseux parametrization of hτ (Xτ , Yτ ) = 0.

Then (tdn, (c+ ϕ(t)tdm) is a Puiseux parametrization of h(X,Y ) = 0 and
i0(f, h) = ord f(tdn, (c+ ϕ(t))tdm) = dk + ord fτ (td, ϕ(t)) = dk + i0(fτ , hτ ) =
= [∆(h),∆(f)] + i0(fτ , hτ ) by Lemma 5.2, since αdn + βdm = dk is the sup-
porting line of ∆(f) parallel to the unique face of ∆(h).

Example 5.4. Let f = Y 3+X4Y−X7, g = XY−(X2+Y 2)2. Then ∆(f) ={
4

2

}
+

{
3

1

}
, ∆(g) =

{
1

3

}
+

{
3

1

}
and [∆(f),∆(g)] = inf{4 · 3, 1 · 2}+ inf{4 ·

1, 2 ·3}+inf{3 ·3, 1 ·1}+inf{3 ·1, 1 ·3} = 10. The local curves f = 0 and g = 0
have exactly one common quasi-tangent τ : Y −X3 = 0. The N-transformation
associated with τ is X = Xτ , Y = (1 + Yτ )X3

τ . A simple calculation shows
that fτ = Yτ + (1 + Yτ )3X2

τ and gτ = Yτ − 2X4
τ (1 + Yτ )2 − (1 + Yτ )3X5

τ .

Thus, ∆(fτ ) =

{
2

1

}
, ∆(gτ ) =

{
4

1

}
, the local curves fτ = 0, gτ = 0 have no

common quasi-tangent and i0(fτ , gτ ) = [∆(fτ ),∆(gτ )] = inf{2 · 1, 1 · 4} = 2.
By Theorem 5.3 we get i0(f, g) = [∆(f),∆(g)] + [∆(fτ ),∆(gτ )] = 10 + 2 = 12.

A pair of power series f, h is nondegenerate if the local curves f = 0,
h = 0 have no common quasi-tangent. It is easy to check that the pair f, h is
nondegenerate if and only if for S ∈ n(f) and T ∈ n(h) there is:

(a) either S and T are not parallel, i.e. |S|1|T |2 6= |S|2|T |1, or
(b) the faces S and T are parallel and the system of equations in(f, S)(X,Y )=

0, in(h, T )(X,Y ) = 0 has no solutions in (C \ {0})× (C \ {0}).
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Corollary 5.5 (see [1,17]). Let f, h be nonzero power series without con-
stant terms. Suppose that f or h is convenient. Then i0(f, h) ≥ [∆(f),∆(h)]
with equality if and only if the pair (f, h) is nondegenerate.

For any convenient Newton diagram ∆ =
∑

S∈n(∆)

{
|S|1
|S|2

}
we put |∆|1 =∑

S∈n(∆) |S|1, |∆|2 =
∑

S∈n(∆) |S|2. Then ∆ intersects the axes at the points

(0, |∆|2) and (|∆|1, 0).

Theorem 5.6. For any convenient power series h ∈ C{X,Y }:

i0

(
h,
∂h

∂Y

)
= [∆(h),∆(h)]− |∆(h)|1 +

∑
τ

i0

(
hτ ,

∂hτ
∂Yτ

)
,

where the summation is over all quasi-tangents τ to the local curve h = 0.

Proof. We may assume that ∂h
∂Y (0, 0) = 0. We will check that

(i) [∆(h),∆
(
∂h
∂Y

)
] = [∆(h),∆(h)]− |∆(h)|1,

(ii) if τ is a quasi-tangent to the curve h = 0 then
(
∂h
∂Y

)
τ

= ∂hτ
∂Yτ

.

Proof of (i). We have [∆(h),∆
(
∂h
∂Y

)
] =

∑
S∈n(∆)

[{
|S|1
|S|2

}
,∆
(
∂h
∂Y

)]
. The line

α|S|2+β|S|1 =

[{
|S|1
|S|2

}
,∆
(
∂h
∂Y

)]
supporting the diagram ∆

(
∂h
∂Y

)
and parallel

to S passes through the point (a(S), |S|2 + b(S)− 1). Thus, a(S)|S|2 + (|S|2 +

b(S)−1)|S|1 =

[{
|S|1
|S|2

}
,∆
(
∂h
∂Y

)]
and we get

[
∆(h),∆

(
∂h
∂Y

)]
=
∑

S(a(S)|S|2+

|S|2|S|1 + b(S)|S|1 − |S|1) = [∆(h),∆(h)]− |∆(h)|1 by Lemma 5.1 (ii).
Proof of (ii). Let τ : Y n − aXm = 0 be a quasi-tangent to the curve h = 0.

Let c = a1/n. There is

( ) h(Xn
τ , (c+ Yτ )Xm

τ ) = Xk
τ hτ (Xτ , Yτ ) in C{Xτ , Yτ},

where αn+ βm = k is a supporting line of ∆(h).
Then k > m and the line αn + βm = k − m supports the diagram ∆

(
∂h
∂Y

)
.

Differentiating ( ) with respect to Yτ , we get ∂h
∂Y (Xn

τ , (c + Yτ )Xm
τ )Xm

τ =

Xk
τ
∂hτ
∂Yτ

(Xτ , Yτ ) and ∂h
∂Y (Xn

τ , (c + Yτ )Xm
τ ) = Xk−m

τ
∂hτ
∂Yτ

(Xτ , Yτ ). Therefore,(
∂h
∂Y

)
τ

= ∂hτ
∂Yτ

and (ii) follows.

Now from Theorem 5.3 and properties (i), (ii) there follows:

i0

(
h,
∂h

∂Y

)
=

[
∆(h),∆

(
∂h

∂Y

)]
+
∑
τ

i0

(
hτ ,

(
∂h

∂Y

)
τ

)
= [∆(h),∆(h)]− |∆(h)|1 +

∑
τ

i0

(
hτ ,

∂hτ
∂Yτ

)
.
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For any convenient Newton diagram ∆ we put

µ(∆) = [∆,∆]− |∆|1 − |∆|2 + 1,

δ(∆) =
1

2
(µ(∆) + r(∆)− 1).

Theorem 5.7. Let f ∈ C{X,Y } be a convenient power series. Then

(i) µ0(f) = µ0(∆(f)) + r(∆(f)) +
∑

τ (µ0(fτ )− 1),

(ii) δ0(f) = δ(∆(f)) +
∑
τ

δ0(fτ ),

where the summation is over all quasi-tangents τ to the local curve f = 0.

Proof. (i) By Teissier’s lemma and Theorem 5.6 applied to the power
series f we get

µ0(f) = i0

(
f,
∂f

∂Y

)
− i0(f,X) + 1

= [∆(f),∆(f)]− |∆(f)|1 − |∆(f)|2 + 1 +
∑
τ

i0

(
fτ ,

∂fτ
∂Yτ

)
= µ(∆(f)) +

∑
τ

i0

(
fτ ,

∂fτ
∂Yτ

)
= µ(∆(f)) +

∑
(µ0(fτ ) + i0(fτ , X)− 1)

= µ(∆(f)) + r(∆(f)) +
∑
τ

(µ0(fτ )− 1).

2δ0(f) = µ0(f) + r0(f)− 1(ii)

= µ(∆(f)) + r(∆(f)) +
∑
τ

(µ0(fτ )− 1) +
∑
τ

r0(fτ )− 1

= µ(∆(f)) + r(∆(f))− 1 +
∑
τ

(µ0(fτ ) + r0(fτ )− 1)

= 2δ(∆(f)) + 2
∑
τ

δ0(fτ )

and (ii) follows.

We can rewrite formula 5.7 (i) for the Milnor number in the form

µ0(f) = µ(∆(f)) + r(∆(f))− r(f,∆(f)) +
∑
τ

µ0(fτ ).

Then we get
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Corollary 5.8. For any convenient power series f ∈ C{X,Y }:
(i) µ0(f) ≥ µ(∆(f)) + r(∆(f))− r(f,∆(f)) with equality if and only if all

strict transforms fτ corresponding to the quasi-tangents τ of the curve
f = 0 are nonsingular,

(ii) δ0(f) ≥ δ(∆(f)) with equality if and only if µ0(f) = µ(∆(f))+r(∆(f))−
r(f,∆(f)).

Corollary 5.9 (Kouchnirenko’s Planar Theorem, see [18]).
For any convenient power series f ∈ C{X,Y }:
µ0(f) ≥ µ(∆(f)) with equality if and only if f is nondegenerate.

Example 5.10. (cf. Example 4.9)
Let f = X7 +X5Y +X3Y 2 + 2X2Y 3 +XY 4 +X6 and ∆ = ∆(f).
Then µ(∆) = 18, r(∆) = 5, r(f,∆) = 4, δ(∆) = 11. All strict transforms
of f by N-transformations corresponding to the quasi-tangents to f = 0 are
nonsingular. Therefore, µ0(f) = µ(∆) + r(∆) − r(f,∆) = 19 and δ0(f) =
δ(∆) = 11.

Example 5.11. (cf. Example 4.5)
Let f = (X2−Y 3)2−Y 7 and g = (X2−Y 3)2−XY 5. Then ∆(f) = ∆(g) = ∆ =

=

{
6

4

}
, µ(∆) = 15, r(f,∆) = r(g,∆) = 1 and r(∆) = 2.

The strict transforms f1 and g1 of f and g by the N-transformation correspond-
ing to the unique quasi-tangent Y 3−X2 = 0 of f and g are f1 = (3Y1)2−X2

1 +
· · · and g1 = −X1 + · · · . Therefore we get µ0(f) = µ(∆) + r(∆)− r(f,∆) +
µ0(f1) = 16+µ0(f1) = 16+1 = 17 and µ0(g) = µ(∆)+r(∆)−r(f,∆)+µ0(g1) =
16 + µ0(g1) = 16 + 0 = 16.

We say that a local curve f = 0 is in a general position with respect to
coordinates (X,Y ) if the axes Y = 0 and X = 0 are not tangent to f = 0 (see
Remark 3.4). Let t0(f) be the number of tangents to the curve f = 0.

Corollary 5.12 (see [4] and appendix to [29]).
Suppose that the local curves f = 0 and g = 0 are in a general position with
respect to (X,Y ). Let n = ordf and m = ordg.
Then

(i) i0(f, g) = nm+
∑

τ i0(fτ , gτ ),

(ii) δ0(f) = 1
2n(n− 1) +

∑
τ δ0(fτ ),

(iii) i0(f, ∂f∂Y ) = n(n− 1) +
∑

τ i0(fτ ,
∂fτ
∂Yτ

),

(iv) µ0(f) + t0(f)− 1 = n(n− 1) +
∑

τ µ0(fτ ).

Notes
The formulae for the local invariants in terms of the Newton diagrams and New-
ton transformations (Theorems 5.3, 5.6, 5.7) are very close to Gwoździewicz’s
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formulae [10] in toric geometry of plane curve singularities (see also [27]) and
like Newton trees and Newton process developed by Pi. Cassou-Noguès and
Veys in [5] provide an effective method of calculations. The Newton number
µ(∆) can be defined for all Newton diagrams ∆ in such a way that Kouch-
nirenko’s theorem holds for any reduced power series (see [7,21,36]. Corollary
5.8 provides a new characterization of weakly Newton nondegenerate singular-
ities (see [9], Theorem 3.3).

6. Nondegenerate singularities and equisingularity

In this section we will prove that the equisingularity class of the curve
f = 0 can be recovered form the Newton diagram ∆(f), provided that f is
a convenient and nondegenerate power series.

Lemma 6.1. Let f ∈ C{X,Y } be a convenient power series such that the
curve f = 0 has exactly one quasi-tangent. If its tangential multiplicity is equal
to 1, then f is irreducible and Γ(f) = i0(f,X)N + i0(f, Y )N.

Proof. Let m = i0(f, Y ), n = i0(f,X). Then gcd(m,n) = 1 and after
multiplying f by a constant, we may assume (see Remark 3.5) that f = Y n +
aXm +

∑
cαβX

αY β where a 6= 0 and the summation is over (α, β) such that
αn+ βm > mn. The power series f is irreducible by Corollary 4.4.

To prove that Γ(f) = Nn + Nm, we follow [39] (proof of Theorem 3.9).
Consider the intersection number i0(f, g) where g ∈ C{X,Y } is not a mul-
tiple of f . By the Weierstrass Division Theorem we may assume that g =
g0(X) +g1(X) + · · ·+gn−1(X)Y n−1 ∈ C{X}[Y ]. We have i0(f, gk(X)Y n−k) =
(ord gk)n + (n − k)m ≡ (n − k)m (mod n). If k, l < n and k 6= l, then
(k − l)m 6≡ 0 (mod n). Thus i0(f, gk(X)Y n−k) 6= i0(f, gl(X)Y n−l) for k 6= l
and by Property 5 of intersection multiplicity (Section 1) we get i0(f, g) =
i0(f, gk(X)Y n−k) for a k ∈ [0, n − 1], which implies Γ(f) ⊂ Nn + Nm. Since
n,m ∈ Γ(f), there is Γ(f) = Nn+ Nm.

Lemma 6.2. Let f ∈ C{X,Y } be a convenient, nondegenerate power series
and let f =

∏r
i=1 fi with fi ∈ C{X,Y } irreducible. For any S ∈ n(f) we put

I(S) = {i ∈ [1, r] : i0(fi,Y )
i0(fi,X) = mS

nS
}. Then

(1) Γ(fi) = nSN +mSN for i ∈ I(S),
(2) i0(fi, fj) = inf{mSnT ,mTnS} for (i, j) ∈ I(S)× I(T ), i 6= j.

Proof. By Proposition 4.8 the irreducible factors fi, i = 1, . . . , r satisfy
the assumptions of Lemma 6.1. Thus Γ(fi) = i0(fi, X)N+ i0(fi, Y )N = nSN+
mSN (we have i0(fi, X) = mS , i0(fi, Y ) = nS since i0(f,X), i(fi, X) and
mS = |S|1/r(S), nS = |S|2/r(S) are coprime) and we get (1). By Proposition
4.8 the pairs fi, fj , i 6= j are nondegenerate, then (2) follows from Corollary
5.5.
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Remark 6.3. The quasi-tangents to the branches fi = 0, i ∈ I(S) are
exactly the quasi-tangents to the curve f = 0 corresponding to the face S ∈
n(f). Therefore, #I(S) = r(S) and

⋃
S∈n(f) I(S) = [1, r].

Theorem 6.4 (see [21]).
Let f, g ∈ C{X,Y } be convenient power series such that ∆(f) = ∆(g). Then

(i) if f, g are nondegenerate, then the curves f = 0 and g = 0 are equisin-
gular,

(ii) if f is nondegenerate, but g is degenerate, then the curves f = 0 and
g = 0 are not equisingular.

Proof. Let ∆ = ∆(f) = ∆(g) and r = r(∆).
(i) We have r(f) = r(g) = r by Proposition 4.8. Moreover, we can label the
irreducible factors fi of f and gi of g (i = 1, . . . , r) in such a way that

i0(fi, Y )

i0(fi, X)
=
i0(gi, Y )

i0(gi, X)
for i = 1, . . . , r.

Therefore, Γ(fi) = Γ(gi) for all i = 1, . . . , r and i0(fi, fj) = i0(gi, gj) for
i, j ∈ {1, . . . , r} by Lemma 6.2, that is fi 7→ gi is an equisingularity bijection
and the curves f = 0 and g = 0 are equisingular.
(ii) By Kouchnirenko’s theorem (Corollary 5.9) we have µ0(f) = µ(∆) and
µ0(g) > µ(∆). Therefore, µ0(f) 6= µ0(g) and the curves f = 0 and g = 0 are
not equisingular by Theorem 2.16.

Remark 6.5. We have proved that if f and g are nondegenerate, then
the equisingularity bijection fi 7→ gi preserves the intersection multiplicities
of the branches with the axes: i0(fi, X) = i0(gi, X), i0(fi, Y ) = i0(gi, Y ) for
i = 1, . . . , r.

Remark 6.6. We can weaken the assumption “f, g convenient” of Theorem
6.4 by assuming only that f, g have no multiple factors. To prove this it suffices
to use Theorem 6.4 and Remark 6.5.

Example 6.7. Let ∆ ∈ R2
+ be a convenient Newton diagram with vertices

(α0, β0), . . . , (αm, βm) where 0 = α0 < α1 < · · · < αm and β0 > β1 > · · · >
βm = 0.
Then the series f0 = Xα0Y β0 +· · ·+XαmY βm is nondegenerate and ∆(f0) = ∆.

Let us consider an invariant I of equisingularity. For every convenient
Newton diagram ∆, we put I(∆) = I(∆(f)) where f is a nondegenerate power
series. According to Theorem 6.4, I(∆) is defined correctly (does not depend
on f). There is a natural problem: calculate I(∆) effectively in terms of
∆. The best known result of this kind is due to Kouchnirenko, see [18] and
Corollary 5.9 in this note.
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Notes
The nondegenerate plane curve singularities may be characterized without
refering to the coordinates [7]. An unexpected example of degeneracy is dis-
cussed in [3]. A lot of invariants of nondegenerate singularities are computed in
terms of their Newton diagrams: see survey articles [28] and [11]. A descrip-
tion of the adjoints to the local nondegenerate hypersurface is given in [25].
The Newton diagrams and the notion of non-degeneracy are also useful in real
analytic geometry [20].
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