
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA

doi: 10.4467/20843828AM.12.009.1127 FASCICULUS L, 2012

BLOWUP BEHAVIOR OF THE KÄHLER–RICCI FLOW ON

FANO MANIFOLDS

by Valentino Tosatti

Abstract. We study the blowup behavior at infinity of the normalized
Kähler–Ricci flow on a Fano manifold which does not admit Kähler–Einstein
metrics. We prove an estimate for the Kähler potential away from a multi-
plier ideal subscheme, which implies that the volume forms along the flow
converge to zero locally uniformly away from the same set. Similar results
are also proved for Aubin’s continuity method.

1. Introduction. Let X be a Fano manifold of complex dimension n,
which is a compact complex manifold with positive first Chern class c1(X),
and let ω0 be a Kähler metric on X with [ω0] = c1(X) > 0. Consider the
normalized Kähler–Ricci flow, which is a flow of Kähler metrics ωt in c1(X)
which evolve by

(1.1)
∂ωt
∂t

= −Ric(ωt) + ωt

with initial condition ω0. Its fixed points are Kähler–Einstein (KE) metrics
ωKE which satisfy Ric(ωKE) = ωKE, and it is known [7, 16, 20, 28] that if
X admits a KE metric then the flow (1.1) converges smoothly to a (possibly
different) KE metric. On the other hand not every Fano manifold admits a
KE metric, and a celebrated conjecture of Yau [31] predicts that this happens
precisely when (X,K−1X ) is stable in a suitable algebro-geometric sense. The
precise notion of stability is K-stability, introduced by Tian [25] and refined by
Donaldson [9]. Solutions of this conjecture by Chen–Donaldson–Sun [3] and
Tian [26] have appeared very recently.
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We will also consider a different family of Kähler metrics ω̃t in c1(X) which
solve Aubin’s continuity method [1]

(1.2) Ric(ω̃t) = tω̃t + (1− t)ω0,

with t ranging in an interval inside [0, 1]. We have that ω̃0 = ω0, and if (1.2)
is solvable up to t = 1, then ω̃1 is KE. On the other hand if no KE exists then
(1.2) has a solution defined on a maximal interval [0, R(X)) where R(X) 6 1
is an invariant of X (independent of ω0) characterized by Székelyhidi [22] as
the greatest lower bound for the Ricci curvature of metrics in c1(X).

In this note we consider a Fano manifold X which does not admit a KE
metric, and investigate the question of the behavior in this case of the Kähler–
–Ricci flow (1.1) as t → ∞ or of the continuity method (1.2) as t → R(X).
In several recent works this question has been studied by reparametrizing the
evolving metrics by diffeomorphisms and studying the geometric limiting space
[12, 18, 21, 27, 29]. The key point of this note is that we do not modify the
evolving metrics by diffeomorphisms, but instead we want to understand the
way in which they degenerate as tensors on the fixed complex manifold X.

To state our main result, let us introduce some notation. The Kähler–Ricci
flow (1.1) is equivalent to a flow of Kähler potentials in the following way. We
have that ωt = ω0 +

√
−1∂∂ ϕt where the functions ϕt evolve by

(1.3)
∂ϕt
∂t

= log
ωnt
ωn0

+ ϕt − h0, ϕ0 = c0,

where c0 is a suitable constant (defined in [16, (2.10)]) and where h0 is the Ricci
potential of ω0 (i.e. it satisfies Ric(ω0)−ω0 =

√
−1∂∂h0 and

∫
X(eh0−1)ωn0 = 0).

Let us rewrite (1.3) as the following complex Monge–Ampère equation

(1.4) (ω0 +
√
−1∂∂ ϕt)

n = eh0−ϕt+ϕ̇tωn0 ,

where here and henceforth, we’ll write ϕ̇t = ∂ϕt

∂t . The flow (1.3) has a global
solution ϕt for all t > 0 [2], and since X does not admit KE metrics, we must
have supX×[0,∞) ϕt = ∞ (see e.g. [16]). From now on we fix a sequence of
times ti →∞ such that

(1.5) sup
X×[0,ti]

ϕt = sup
X
ϕti →∞.

For simplicity we’ll write ϕi = ϕti and ωi = ωti .
On the other hand if we write ω̃t = ω0 +

√
−1∂∂ ϕ̃t, then the continuity

method (1.2) is equivalent to the complex Monge–Ampère equation

(1.6) (ω0 +
√
−1∂∂ ϕ̃t)

n = eh0−tϕ̃tωn0 .
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If X does not admit KE metrics then a solution ϕ̃t exists for t ∈ [0, R(X))
with 0 < R(X) 6 1, and supX ϕ̃t → ∞ as t approaches R(X). We then fix a
sequence ti ∈ [0, R(X)) with ti → R(X) and write ϕ̃i = ϕ̃ti and ω̃i = ω̃ti .

In [14], Nadel proved that there is a proper analytic subvariety S ⊂ X (a
suitable multiplier ideal subscheme [13]) such that the measures ω̃ni converge
(as measures) to zero on compact subsets of X\S. More recently, the same
statement was proved for the measures ωni along the Kähler–Ricci flow by
Clarke–Rubinstein [5, Lemma 6.5] (see also [15] for a weaker statement). It
is natural to ask whether this convergence can be improved. In this note, we
show that away from a possibly larger proper analytic subvariety the measures
ωni and ω̃ni converge to zero uniformly on compact sets. More precisely, we
have:

Theorem 1.1. Assume that X is a Fano manifold that does not admit a
Kähler–Einstein metric, and let ϕi, ωi be defined as above. Then for any ε > 0
there is a proper nonempty analytic subvariety Sε ⊂ X and a subsequence of
ϕi (still denoted by ϕi) such that given any compact set K ⊂ X\Sε there is a
constant C that depends only on K, ε, ω0 such that for all x ∈ K and for all i
we have

(1.7) − ϕi(x) + (1− ε) sup
X
ϕi 6 C.

In particular, ϕi goes to plus infinity locally uniformly outside Sε, and the vol-
ume forms ωni converge to zero in the same sense. Finally, the same properties
hold for ϕ̃i and ω̃i which solve Aubin’s continuity method.

Moreover we can identify the subvariety Sε as follows: from weak compact-
ness of currents, there exists ψ an L1 function on X which is ω0-plurisubhar-
monic, such that a subsequence of ϕi − supM ϕi converges to ψ in L1. Then
we have that

Sε = V

(
I
(
C

ε
ψ

))
,

where C is a constant that depends only on ω0, and I denotes the multiplier
ideal sheaf. We note here that in the results of [14] and [5] the multiplier ideal
sheaf that enters is I(γψ), with n

n+1 < γ < 1, which gives a smaller subvariety.
Finally let us remark that we expect Theorem 1.1 to hold also when ε = 0,

but our arguments below can only prove this when n = 1 (in which case the
theorem is empty because there is just one Fano manifold, CP1, which does
admit a KE metric). In fact more should be true: Tian’s conjectural “partial
C0 estimate” for the continuity method [26] roughly says that −ϕ̃i + supX ϕ̃i
should blow up at most logarithmically as we approach a subvariety. The par-
tial C0 estimate was proved by Tian [24] for Kähler–Einstein Fano surfaces
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and more recently by Chen–Wang [4] for the Kähler–Ricci flow on Fano sur-
faces. Very recently it was proved by Donaldson–Sun [10] for Kähler–Einstein
metrics on Fano manifolds, by Chen–Donaldson–Sun [3] and Tian [26] for
conic Kähler–Einstein metrics and by Phong–Song–Sturm [17] for shrinking
Kähler–Ricci solitons.

Acknowledgements. Most of this work was carried out while the author
was visiting the Morningside Center of Mathematics in Beijing in 2007, which
he would like to thank for the hospitality. He is also grateful to S.-T. Yau
for many discussions, to D. H. Phong for support and encouragement, and to
B. Weinkove for useful comments.

2. Proof of the main theorem. Before we start the proof of the main
theorem, we need to recall a few estimates which are known to hold along the
Kähler–Ricci flow on Fano manifolds. The first one is the bound

(2.8) |ϕ̇t| 6 C,

which holds for all t > 0, and was proved by Perelman (see [20]). It uses
crucially the choice of c0 in (1.3) given by [16, (2.10)]. We will also need the
following uniform Sobolev inequality [32,33]

(2.9)

(∫
X
|f |

2n
n−1ωnt

)n−1
n

6 CS

(∫
X
|∇f |2ωt

ωnt +

∫
X
|f |2ωnt

)
,

which holds for all t > 0 and for all f ∈ C∞(X), for a constant CS that
depends only on ω0. The following Harnack inequality [19] will also be used

(2.10) − inf
X
ϕt 6 C + n sup

X
ϕt,

which again holds for all t > 0. Finally, we will use the following basic result:

Proposition 2.1 (Tian [23]). Let (X,ω) be a compact Kähler manifold.
For any fixed λ > 0 and for any sequence ϕi of Kähler potentials for ω, there
exists a subsequence, still denoted by ϕi, and a proper subvariety S ⊂ X such
that for any p ∈ X\S there exists r, C > 0 that depend only on λ, ω and p,
such that

(2.11)

∫
Bω(p,r)

e−λ(ϕi−supX ϕi)ωn 6 C.

Also, the constants r, C are uniform when p ranges in a compact set of X\S.

Proof of Theorem 1.1. The starting point is the parabolic analogue of
the Aubin–Yau’s C2 estimate (see e.g. [2, 30]), which says that there exists a
constant C that depends only on ω0 such that for all t > 0 we have

(2.12) trω0ωt 6 CeCϕt−(C+1) infX×[0,t] ϕs .
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Here and in the following we will denote by C a uniform positive constant
which might change from line to line. Combining (2.12) with (2.10) and (1.5)
we get

trω0ωi 6 CeC supX ϕi+C supX×[0,ti]
ϕs = CeC supX ϕi .

Notice that for any two Kähler metrics η, χ we always have that

trηχ 6
1

(n− 1)!
(trχη)n−1

χn

ηn
,

and so in our case

trωiω0 6 CeC supX ϕi
ωn0
ωni
.

Using the Monge–Ampère equation (1.4) and the estimate (2.8) we get

(2.13) trωiω0 6 CeC supX ϕi+ϕi 6 C0e
D supX ϕi ,

where C0 and D are uniform constants. An alternative derivation of (2.13) can
be obtained by evolving the quantity log trωtω0−Aϕt, with A large, to obtain

trωtω0 6 CeA(ϕt−infX×[0,t] ϕs),

and using again (2.10). As an aside, note that when n = 1 we can actually
choose D = 1.

Let A > 0 be a constant, to be determined later, and compute

(2.14) ∆ωie
−Aϕi > −Ae−Aϕi∆ωiϕi > −nAe−Aϕi .

Proposition 2.2. For any x ∈ X and 0 < r < diam(X,ωi)/2 there is a
constant C that depends only on A,ω0 such that

(2.15) sup
Bωi (x,r/2)

e−Aϕi 6
C

r2n

∫
Bωi (x,r)

e−Aϕiωni ,

holds for all i.

Proof. We apply the method of Moser iteration to the inequality (2.14).
The method is standard, except for the fact that r could be bigger than the
injectivity radius of ωi and so the balls Bωi(x, r) need not be diffeomorphic to
Euclidean balls, and in fact might not even be smooth domains. From now on
let i be fixed, and fix two positive numbers ρ < R < diam(X,ωi)/2. Then let
η be a cutoff function of the form η(y) = ψ(distωi(y, x)) where ψ is a smooth
nonincreasing function from R to R such that ψ(y) = 1 for y 6 ρ, ψ(y) = 0 for
y > (R+ ρ)/2 and

sup
R
|ψ′| 6 4

R− ρ
.
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Then η is Lipschitz, equal to 1 on Bωi(x, ρ), supported inside Bωi(x,R) and
satisfies

|∇η|ωi 6
4

R− ρ
almost everywhere. For simplicity of notation we will let f = e−Aϕi and
suppress all references to the metric ωi. So we can write (2.14) as

(2.16) ∆f > −nAf.

Then for any p > 2 we compute∫
B(x,R)

η2|∇(fp/2)|2 =
p2

4(p− 1)

∫
B(x,R)

η2〈∇(fp−1),∇f〉.

At this point we want to integrate by parts, and we can do this because of the
following argument: we can exhaust B(x,R) with an increasing sequence of
subdomains Bj , j = 1, 2, . . . , that have smooth boundary. Then we can apply
Stokes’ Theorem to each Bj , and when j is sufficiently large η will vanish on
∂Bj so we get∫

Bj

η2〈∇(fp−1),∇f〉 = −2

∫
Bj

ηfp−1〈∇η,∇f〉 −
∫
Bj

η2fp−1∆f.

Then we can let j go to infinity and by dominated convergence the integrals
on Bj converge to the same integrals on B(x,R). Thus∫

B(x,R)
η2|∇(fp/2)|2 = − p2

4(p− 1)

∫
B(x,R)

ηfp−1(2〈∇η,∇f〉+ η∆f).

Using (2.16) and the Cauchy–Schwarz and Young inequalities we have that∫
B(x,R)

η2|∇(fp/2)|2 6 Cp

∫
B(x,R)

η2fp + p

∫
B(x,R)

fp|∇η|2

+
p

4

∫
B(x,R)

η2fp−2|∇f |2,
(2.17)

where C depends only on A,n.
The last term in (2.17) is equal to 1

p

∫
B(x,R) η

2|∇(fp/2)|2 and so can be

absorbed in the left hand side. We thus get∫
B(x,R)

η2|∇(fp/2)|2 6 Cp

∫
B(x,R)

η2fp +
Cp

(R− ρ)2

∫
B(x,R)

fp

6
Cp

(R− ρ)2

∫
B(x,R)

fp,

(2.18)
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as long as R−ρ is small. Now we use the Cauchy–Schwarz and Young inequal-
ities again to bound∫

B(x,R)
|∇(ηfp/2)|2 6 2

∫
B(x,R)

η2|∇(fp/2)|2 + 2

∫
B(x,R)

fp|∇η|2

6 2

∫
B(x,R)

η2|∇(fp/2)|2 +
C

(R− ρ)2

∫
B(x,R)

fp.

(2.19)

Combining (2.18) and (2.19) we have∫
B(x,R)

|∇(ηfp/2)|2 6 Cp

(R− ρ)2

∫
B(x,R)

fp.

This together with the Sobolev inequality (2.9) gives(∫
B(x,R)

η2βfpβ

)1/β

6 C

∫
B(x,R)

|∇(ηfp/2)|2 + C

∫
B(x,R)

η2fp

6
Cp

(R− ρ)2

∫
B(x,R)

fp,

(2.20)

where we write β = n/(n− 1) > 1. Raising this to the 1/p gives

(2.21)

(∫
B(x,ρ)

fpβ

)1/pβ

6
C1/pp1/p

(R− ρ)2/p

(∫
B(x,R)

fp

)1/p

.

For each j > 0 we now set pj = 2βj and Rj = ρ+ R−ρ
2j

. Setting p = pj , R = Rj ,

ρ = Rj+1 in (2.21) and iterating (notice that (Rj+1 − Rj) = (R − ρ)2−j−1 is
small) we easily get

sup
B(x,ρ)

f 6
C

(R− ρ)n

(∫
B(x,R)

f2

)1/2

6
C

(R− ρ)n

(
sup
B(x,R)

f

)1/2(∫
B(x,R)

f

)1/2

.

Using Young’s inequality we see that

sup
B(x,ρ)

f 6
1

2
sup
B(x,R)

f +
C

(R− ρ)2n

∫
B(x,R)

f.

From here a standard iteration argument (see e.g. [11, Lemma 3.4]) implies
that

sup
B(x,ρ)

f 6
C

(R− ρ)2n

∫
B(x,R)

f,

and finally setting ρ = r/2, R = r we get (2.15).
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We now apply Proposition 2.1 with λ = A+1 and get an analytic subvariety
S with the property that given any compact set K ⊂ X\S there exists r0 > 0
such that for any x ∈ K we have that Bω0(x, r0) b X\S and

(2.22)

∫
Bω0 (x,r0)

e−(A+1)(ϕi−supX ϕi)ωn0 6 C

holds for all i. We now let ri = r0(C0e
D supX ϕi)−1/2, so that (2.13) implies

that

(2.23) Bωi(x, ri) ⊂ Bω0(x, r0),

so in particular ri < diam(X,ωi)/2. Therefore we can apply Proposition 2.2,
and combining (2.15), (2.22) and (2.23) we obtain

e−Aϕi(x) 6 sup
Bωi (x,ri/2)

e−Aϕi

6
C

r2ni

∫
Bωi (x,ri)

e−Aϕiωni

6 CenD supX ϕi

∫
Bω0 (x,r0)

e−(A+1)ϕiωn0

= Ce(nD−A−1) supX ϕi

∫
Bω0 (x,r0)

e−(A+1)(ϕi−supX ϕi)ωn0

6 Ce(nD−A−1) supX ϕi ,

where C depends only on given data and A. Taking log gives

−Aϕi(x) + (A− nD + 1) sup
X
ϕi 6 C.

We now let A = nD
ε and divide by A (keeping in mind that supX ϕi > 0), and

obtain the desired bound

−ϕi(x) + (1− ε) sup
X
ϕi 6 C,

where C does not depend on i or on x ∈ K ⊂ X\S, and where the subvariety
S = Sε now depends on ε. This, together with (2.8), immediately implies that
the volume form ωni = ωn0 e

h0−ϕi+ϕ̇ti goes to zero locally uniformly on X\S.

We now identify the subvariety Sε: from its definition, that is from Proposition
2.1, we see that Sε is equal to the multiplier ideal subscheme of the sequence ϕi
with exponent (nD/ε+ 1) as defined by Nadel in [13]. But the main Theorem
in [8] then shows that this is the same as the multiplier ideal subscheme defined
by (nD/ε+ 1)ψ where ψ is a weak limit of ϕi − supM ϕi.

The same proof as above goes through with minimal changes in the case of
Aubin’s continuity method, that is for the functions ϕ̃i and the metrics ω̃i. We
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just need to justify why estimates analogous to (2.9) and (2.10) hold. To see
these, note that the metrics ω̃i satisfy Ric(ω̃i) > C−1ω̃i > 0, so the Bonnet–
–Myers theorem gives us the estimate diam(X, ω̃i) 6 C, which together with
the fact that their volume is fixed allows us to apply a result of Croke [6] which
gives a uniform Sobolev inequality of the form (2.9) for the metrics ω̃i. The
Harnack inequality (2.10) in this case is proved in [23].
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