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A REMARK ON FEJÉR AND MITTAG-LEFFLER THEOREMS

by Marek Jarnicki and Józef Siciak

Abstract. We discuss some generalizations of the classical Fejér and
Mittag-Leffler theorems to the case of several complex variables with ap-
plications to the Shilov and Bergman boundaries.

1. Introduction. For a bounded domain D ⊂ CN let A(D) (resp. O(D))
denote the space of all continuous functions f : D −→ C such that f |D is
holomorphic (resp. f extends holomorphically to a neighborhood of D). Let
∂SD (resp. ∂BD) be the Shilov (resp. Bergman) boundary ofD, i.e. the minimal
compact set K ⊂ D such that max

K
|f | = max

D
|f | for every f ∈ A(D) (resp. f ∈

O(D)). Obviously, O(D) ⊂ A(D) and hence ∂BD ⊂ ∂SD ⊂ ∂D. Notice that,
in general, ∂BD  ∂SD, e.g. for the domain D := {(z, w) ∈ C2 : 0 < |z| <
1, |w| < |z|− log |z|} (cf. [6], § 16).

The algebra A(D) endowed with the supremum norm is a Banach algebra.
Then ∂SD coincides with the Shilov boundary of A(D) in the sense of uniform
algebras (cf. [7], Chap. I, Sec. H). Moreover, the Bergman boundary ∂BD
coincides with the Shilov boundary of the uniform algebra B(D) defined as the
uniform closure in A(D) of O(D)|D.

Assume that the envelope of holomorphy D̃ of D is univalent. We are

interested in characterizations of those domains D for which ∂SD = ∂SD̃
(resp. ∂BD = ∂BD̃) (cf. [9]).
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Remark 1.1. (a) It is well known (cf. [8], Remark 1.4.5(h)) that

sup
D̃

|g| = sup
D
|g|, g ∈ O(D̃).(*)

In particular, if D is bounded, then so is D̃.
(b) It is also well known that ifD ⊂ CN is Reinhardt (resp. balanced, resp. star-

like) domain, then D̃ is univalent and D̃ is Reinhardt (resp. balanced,
resp. starlike) (cf. [8], Remark 1.9.6(c,e,f), Corollary 1.9.18).

(c) Let D ⊂ G ⊂ CN be domains such that G is a domain of holomorphy
and (D,G) is a Runge pair, i.e. the space O(G)|D is dense in O(D). Then

the envelope of holomorphy of D is univalent and (D̃,G) is a Runge pair
(cf. [3], see also [8], Proposition 3.1.22). In particular, the result applies if
G = CN and polynomials are dense in O(D).

First, let us recall some known results.

Remark 1.2. (a) Since A(D̃)|D ⊂ A(D) (resp. O(D̃)|D ⊂ O(D)), we get

∂SD̃ ⊂ ∂SD (resp. ∂BD̃ ⊂ ∂BD).

(b) IfA(D)⊂ A(D̃)|D (resp.O(D)⊂ O(D̃)|D), then ∂SD = ∂SD̃ (resp. ∂BD =

∂BD̃).
(c) There exists a bounded Reinhardt domain D ⊂ C∗ ×C such that A(D) 6⊂
A(D̃)|D (cf. [11], Example 6.1). On the other hand, if D ⊂ CN is a

bounded Reinhardt domain, then ∂SD = ∂SD̃ (cf. [11], Corollary 6.2).
(d) If D has a neighborhood basis consisting of domains with univalent en-

velopes of holomorphy, then O(D) ⊂ O(D̃)|D and hence ∂BD = ∂BD̃.

In fact, by (b), we only need to prove that if D ⊂ G ⊂ CN , where G is a

bounded domain with a univalent envelope of holomorphy G̃, then D̃ ⊂ G̃.

For every g ∈ O(G̃), using (*), we get sup
D̃
|g| = supD |g| = maxD |g|.

Thus D̃ ⊂ D̂O(G̃)
⊂⊂ G̃, where K̂O(Ω) := {z ∈ Ω : ∀g∈O(Ω) : |g(z)| ≤

maxK |g|} (cf. [8], Theorem 1.10.4).
(e) Let B(a, r) denote the Euclidean ball centered at a ∈ CN with radius r > 0;

B(r) := B(0, r). If D ⊂ CN is a bounded balanced (resp. starlike) domain,
then {D+B(ε)}ε>0 gives a neighborhood basis of D consisting of bounded

balanced (resp. starlike) domains. Hence ∂BD = ∂BD̃.

(f) If ∂BD = ∂BD̃ and A(D) = B(D), then ∂SD = ∂SD̃.

Indeed, ∂SD = ∂BD = ∂BD̃ ⊂ ∂SD̃ ⊂ ∂SD.
(g) There exists a bounded Hartogs domain D ⊂ C2 with a univalent envelope

of holomorphy D̃ such that ∂SD 6= ∂SD̃, ∂BD 6= ∂BD̃, and O(D) 6⊂
A(D̃)|D (cf. [9]).
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The paper is organized as follows:
— first, we prove two general theorems on polynomial approximation in

balanced and starlike domains (Theorems 2.1, 3.1); these results are of inde-
pendent interest;

— next, we prove the following result.

Theorem 1.3. (a) If D is a bounded balanced domain, then ∂SD = ∂SD̃

and ∂BD = ∂BD̃.
(b) If D is a bounded strictly starlike domain, then ∂SD = ∂SD̃ and ∂BD =

∂BD̃.

Notice that (a) answers an open problem formulated in [9].
Recall that a bounded starlike domain D ⊂ Cn is said to be strictly starlike

with respect to the origin if D ⊂ (1 + ε)D for every ε > 0. The equality

∂SD = ∂SD̃ for an arbitrary bounded starlike domain D seems to be an open
problem.

2. Fejér theorem for holomorphic functions.

Theorem 2.1 (Fejér theorem). Let D ⊂ CN be a bounded balanced domain,
let f ∈ A(D), and let

f(z) =

∞∑
j=0

Qj(z), z ∈ D,

be the Taylor series development of f in D (Qj is a homogeneous polynomial
of degree j). Put

sn :=
n∑
j=0

Qj , σn :=
s0 + · · ·+ sn−1

n
, n ∈ N.

Then σn −→ f uniformly on D.

Proof. It is known that for arbitrary n ∈ N and z ∈ D we have

σn(z) =
1

2π

∫ π

−π
f(eitz)Fn(t)dt,

where

Fn(t) :=
1

n

(sin 1
2nt

sin 1
2 t

)2
is the n-th Fejér kernel. In particular,

1 =
1

2π

∫ π

−π
Fn(t)dt, n ∈ N.
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Let M := maxD |f |, ω(δ) := max{|f(eitz) − f(z)| : z ∈ D, |t| ≤ δ}, δ > 0.

Since the function D × [−π, π] 3 (z, t) 7−→ f(eitz) is uniformly continuous, we
have limδ→0+ ω(δ) = 0. The standard reasoning gives

|σn(z)− f(z)| ≤ 1

2π

∫
|t|≤δ
|f(eitz)− f(z)|Fn(t)dt

+
1

2π

∫
δ<|t|≤π

|f(eitz)−f(z)|Fn(t)dt ≤ ω(δ) +
2M

n sin2 1
2δ
, z ∈ D, 0 < δ < π.

Consequently, given ε > 0, we first find a δ ∈ (0, π) such that ω(δ) ≤ ε
2 and next

we choose an n0 ∈ N with 2M
n sin2 1

2
δ
≤ ε

2 for n ≥ n0. Finally, |σn(z)− f(z)| ≤ ε

for n ≥ n0 and z ∈ D, and therefore for z ∈ D.

3. Mittag-Leffler theorem.

Theorem 3.1 (Mittag-Leffler theorem, cf. [5]). There exist numbers cn,j ∈
C, n ∈ N, j ∈ {0, . . . , kn}, such that for every N ∈ N, for every starlike domain
D ⊂ CN , and for every f ∈ O(D) with the Taylor development

f(z) =
∞∑
j=0

Qj(z)

in a neighborhood of 0, the sequence of polynomials

σn :=

kn∑
j=0

cn,jQj , n ∈ N,

converges to f locally uniformly in D. In particular, the sequence {σn}∞n=1 is
locally uniformly convergent in the maximal starlike domain Gf to which f is
analytically continuable (Gf is called the Mittag-Leffler star).

Remark 3.2. (a) The case N = 1 is due to Mittag-Leffler (cf. [12]).
(b) Our proof of Theorem 3.1 will be based on a method proposed (for N = 1)

by E. Borel (cf. [2]).
(c) Generalizations of the Mittag-Leffler theorem to the case N ≥ 2 were

studied (using various methods) by several authors (cf. e.g. [1], [10], [5]).
(d) Theorem 3.1 implies that polynomials are dense in O(D) (see also [4]). In

particular, the envelope of holomorphy D̃ of D is a starlike Runge domain
(cf. Remark 1.1(c)).

Proof of Theorem 3.1. By Runge’s theorem there exists a sequence
{Wn}∞n=1 of polynomials that converges locally uniformly in C \ [1,+∞) to
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the function W (λ) := 1
1−λ . Let

Wn(λ) =

kn∑
j=0

cn,jλ
j , n ∈ N.

Fix f ∈ O(D) and a ∈ D. Since [0, 1] · a is a compact subset of D there
exists an r > 0 such that ∆ · B(a, r) ⊂ D, where

∆ := {x+ iy ∈ C : −r ≤ x ≤ 1 + r, |y| ≤ r}.
For every z ∈ B(a, r), the function λ 7−→ f(λz) is holomorphic in a neighbor-
hood of ∆. In particular,

f(z) =
1

2πi

∫
Γ

f(λz)dλ

λ− 1
, z ∈ B(a, r),

where Γ is the positively oriented boundary of ∆. On the other hand, for
z ∈ B(a, r) we get

σn(z) =

kn∑
j=0

cn,j
1

2πi

∫
Γ

f(λz)dλ

λj+1
=

1

2πi

∫
Γ
f(λz)Wn

( 1

λ

)dλ
λ
.

Consequently,

f(z)− σn(z) =
1

2πi

∫
Γ

f(λz)

λ

( 1

1− 1
λ

−Wn

( 1

λ

))
dλ, z ∈ B(a, r).

Since Wn( 1
λ) −→ 1

1− 1
λ

uniformly for λ ∈ ∂∆, we conclude that σn −→ f

uniformly on B(a, r).

4. Proof of Theorem 1.3. The case of the Bergman boundary follows
from Remark 1.2(e).

(a) It suffices to show that A(D) ⊂ A(D̃)|D (cf. Remark 1.2(b)). Fix an
f ∈ A(D) and let {σn}∞n=1 be as in § 2. Using Theorem 2.1 and the equation (*)
of Remark 1.1 we conclude that the sequence {σn}∞n=1 is uniformly convergent

on G̃ to a function f̃ ∈ A(D̃), which completes the proof of (a).
(b) Fix a sequence εn ↘ 0 and let Dn := (1 + εn)D ⊃ D, n ∈ N. Take

an f ∈ A(D) and let fn(z) := f( z
1+εn

), z ∈ Dn. Then fn|D ∈ O(D) and

fn|D −→ f uniformly on D. Thus f ∈ B(D). Now, the result follows from
Remark 1.2(e)(f).

Remark 4.1. Observe that Theorem 1.3(b) may be also proved via Theo-
rem 3.1. In fact, applying Theorem 3.1 to (Dn, fn), we conclude that for each
n ∈ N, there exists a polynomial Pn such that |fn(z) − Pn(z)| ≤ 1

n , z ∈ D.

Thus the sequence {Pn}∞n=1 converges to f uniformly on D. Now, we can finish
the proof as in (a).
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