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ALGEBRA OF OPERATORS AFFILIATED WITH A FINITE

TYPE I VON NEUMANN ALGEBRA

by Piotr Niemiec and Adam Wegert

Abstract. The aim of the paper is to prove that the ∗-algebra of all (closed
densely defined linear) operators affiliated with a finite type I von Neumann
algebra admits a unique center-valued trace, which turns out to be, in a
sense, normal. It is also demonstrated that for no other von Neumann
algebras similar constructions can be performed.

1. Introduction. With every von Neumann algebra A one can associate
the set Aff(A) of operators (unbounded, in general) which are affiliated with A.
In [11] Murray and von Neumann discovered that, surprisingly, Aff(A) turns
out to be a unital ∗-algebra when A is finite. This was in fact the first example
of a rich set of unbounded operators in which one can define algebraic binary op-
erations in a natural manner. This concept was later adapted by Segal [17,18],
who distinguished a certain class of unbounded operators (namely, measurable
with respect to a fixed normal faithful semi-finite trace) affiliated with an ar-
bitrary semi-finite von Neumann algebra and equipped it with a structure of
a ∗-algebra (for an alternative proof see e.g. [12] or §2 in Chapter IX of [21]).
A more detailed investigations in algebras of the form Aff(A) were initiated by
a work of Stone [19], who described their models for commutative A in terms
of unbounded continuous functions densely defined on the Gelfand spectrum X
of A. Much later Kadison [6] studied this one-to-one correspondence between
operators in Aff(A) and functions on X. Recently Liu [9] established an in-
teresting property of Aff(A) concerning the Heisenberg uncertainty principle.

2010 Mathematics Subject Classification. Primary 46L10; Secondary 47C15.
Key words and phrases. Finite type I von Neumann algebra; operator affiliated with a

von Neumann algebra; center-valued trace.
The first author is supported by the Polish National Science Centre (NCN), Decision

No. DEC-2013/11/B/ST1/03613.



40

Namely, she showed that the canonical commutation relation, which has the
form AB − BA = I, fails to hold for any A,B ∈ Aff(A), provided A is finite.
For finite type I algebras this result is a simple corollary of a fact, more or less
known to the experts, that Aff(A) has a uniquely determined center-valued
trace, provided A is a finite type I von Neumann algebra. In this paper we
give a proof of this fact. Our result reads as follows:

Theorem 1.1. Let A be a finite type I von Neumann algebra and let Aff(A)
be the ∗-algebra of all operators affiliated with A. Then there is a unique linear
map trAff : Aff(A)→ Z(Aff(A)) such that

(tr1) trAff(A) is non-negative, provided A ∈ Aff(A) is so;
(tr2) trAff(X ··· Y ) = trAff(Y ···X) for any X,Y ∈ Aff(A);
(tr3) trAff(Z) = Z for each Z ∈ Z(Aff(A)).

Moreover,

(1-1) Z(Aff(A)) = Aff(Z(A))

and

(tr4) trAff(A) 6= 0 provided A ∈ Aff(A) is non-zero and non-negative;
(tr5) trAff(X ··· Z) = trAff(X) ··· Z for any X ∈ Aff(A) and Z ∈ Z(Aff(A));
(tr6) every increasing net (Aσ)σ∈Σ of self-adjoint members of Aff(A) which is

majorized by a self-adjoint operator in Aff(A) has its least upper bound
in Aff(A), and

(1-2) sup
σ∈Σ

trAff(Aσ) = trAff

(
sup
σ∈Σ

Aσ

)
.

The above result, in a little bit different settings, was earlier established by
Berberian [1], who used totally different methods. Besides, we establish more
properties of the trace than he did. All they (as well as (1-1), which holds
for all finite von Neumann algebras A and most of the content of Sections 2
and 3) are, however, more or less known to the experts and can be deduced
from the possibility of modelling Aff(A) as a direct sum of finite-dimensional
matrix algebras over corresponding algebras of bounded measurable functions
(cf. [15] for a similar result in a more general setting). Nevertheless, it is likely
that this result nowhere appears explicitly. For the reader’s convenience, we
prove most of auxiliary results here.

It is worth noting that (1-2) is a natural counterpart of normality (in the
terminology of Takesaki – see Definition 2.1 in Chapter V of [20]) of center-
valued traces in finite von Neumann algebras. The existence of the l.u.b.
in item (tr6) was established by Yeadon [22] for more general algebras than
Aff(A).

It is natural to ask whether the above result may be generalised to a wider
class of von Neumann algebras (e.g. for all finite ones). Our second goal is
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to show that the answer is negative, which is somewhat surprising. A precise
formulation of the result is stated below. We recall that, in general, the set
Aff(A) admits no structure of a vector space, nevertheless, it is always ho-
mogeneous and for any T ∈ Aff(A) and S ∈ A the operator T + S is a (well
defined) member of Aff(A). Based on this observation, we may formulate our
result, which appears to be new, as follows.

Proposition 1.2. Let A be a von Neumann algebra and let Aff(A) be
the set of all operators affiliated with A. Assume there exists a function
ϕ : Aff(A)→ Aff(A) with the following properties:

(a) if A,B ∈ A are such that ϕ(A) ∈ A, then ϕ(αA+ βB) = αϕ(A) + βϕ(B)
for any scalars α, β ∈ C;

(b) ϕ(A) is non-negative, provided A ∈ Aff(A) is so;
(c) if A ∈ Aff(A) and B ∈ A are non-negative, and ϕ(B) ∈ A, then ϕ(A+B) =

ϕ(A) + ϕ(B);
(d) ϕ(AB) = ϕ(BA) for all A,B ∈ A;
(e) ϕ(Z) = Z for each Z ∈ Z(A);
(f) if A and U are members of A and U is unitary, then U∗ϕ(A)U = ϕ(A).

Then A is finite and type I.

The paper is organized as follows. In the next section we establish an inter-
esting property of finite type I von Neumann algebras, which is crucial in this
paper, since all other results, apart from Proposition 1.2, are its consequences.
Its proof involves measure-theoretic techniques, which is in contrast to all other
parts of the paper, where all arguments are, roughly speaking, intrinsic and
algebraic. In Section 3 we establish most relevant properties of the set Aff(A)
(for a finite type I algebra A), including a new proof of the fact that Aff(A)
admits a structure of a ∗-algebra. In Section 4 we introduce the center-valued
trace on Aff(A) and prove all items of Theorem 1.1, except for (tr6), which is
shown in Section 5, where we also establish other order properties of Aff(A).
Finally, Section 6 contains a proof of Proposition 1.2.

Notation and terminology. In this paper A is used to denote an arbitrary
von Neumann algebra acting on a (complex) Hilbert spaceH. All operators are
linear, closed and densely defined in a Hilbert space, projections are orthogonal
while non-negative operators are, by definition, self-adjoint. The algebra of all
bounded operators on H is denoted by B(H). An operator T in H is affiliated
with A if UTU−1 = T for any unitary operator U belonging to the commutant
A′ of A. Aff(A) stands for the set of all operators affiliated with A. If A is
finite, Aff(A) may be naturally equipped with the structure of a ∗-algebra (see
e.g. [11]). In that case we denote binary algebraic operations in Aff(A) by ‘+++’
(for addition), ‘−−−’ (for subtraction) and ‘···’ (for multiplication). For any ring
R, Z(R) stands for the center of R (that is, Z(R) consists of all elements of R
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which commute with any element of R). This mainly applies to R = A, and
R = Aff(A), provided A is finite. For any operator S, we use D(S), N (S) and
R(S) to denote the domain, kernel and range of S, respectively. By |S| we

denote the operator (S∗S)
1
2 . For any collection {Ts}s∈S of operators,

⊕
s∈S Ts

is understood as an operator with a maximal domain defined naturally; that
is, ⊕s∈Sxs belongs to the domain of

⊕
s∈S Ts if xs ∈ D(Ts) for each s ∈ S, and∑

s∈S ‖Tsxs‖2 < ∞ (and, of course, (
⊕

s∈S Ts)(⊕s∈Sxs) = ⊕s∈S(Tsxs)). The
center-valued trace in a finite von Neumann algebra W is denoted by trW. The
center-valued trace on the algebra of operators affiliated with a finite type I
von Neumann algebra will be denoted by trAff. All vector spaces are assumed
to be over the field C of complex numbers. For two C∗-algebras C1 and C2,
we write C1

∼= C2 when C1 and C2 are ∗-isomorphic. The direct product of
a collection {Cs}s∈S of C∗-algebras is denoted by

∏
s∈S Cs and it consists of

all systems (as)s∈S with as ∈ Cs and sups∈S ‖as‖ < ∞ (cf. Definition II.8.1.2
in [2]). By I we denote the identity operator on H.

2. Key result. As we will see in the sequel, all our main results depend
on the following theorem, whose proof is the purpose of this section.

Theorem 2.1. Assume A is finite and type I. Then for any T ∈ A the
following conditions are equivalent:

(a) ‖Tξ‖ < ‖ξ‖ for each non-zero vector ξ ∈ H;
(b) there is a sequence Z1, Z2, . . . ∈ Z(A) of mutually orthogonal projections

such that
∑∞

n=1 Zn = I and ‖TZn‖ < 1 for any n > 1.

We will derive the above theorem as a combination of a classical result on
classification of type I von Neumann algebras and a measure-theoretic result
due to Maharam [10].

For any positive integer n, let Mn be the C∗-algebra of all n× n complex
matrices. Whenever (X,M, µ) is a finite measure space, we use L∞(X,µ,Mn)
to denote the C∗-algebra of allMn-valued essentially bounded measurable func-
tions on X (a function f = [fjk] : X →Mn is measurable if each of the functions
fjk : X → C is measurable; in other words, L∞(X,µ,Mn) ∼= L∞(X,µ)⊗̄Mn).
The following result is well known and may easily be derived from Theo-
rems 1.22.13 and 2.3.3 in [16] (cf. also Theorem 6.6.5 in [7]).

Theorem 2.2. For every finite type I von Neumann algebra A there are a
collection {(Xj ,Mj , µj)}j∈J of probabilistic measure spaces and a correspond-
ing collection {νj}j∈J of positive integers such that

(2-1) A ∼=
∏
j∈J

L∞(Xj , µj ,Mνj ).



43

We need a slight modification of (2-1) (see Theorem 2.4 below). To this
end, let us introduce certain classical measure spaces, which we call canonical.
Let α be an infinite cardinal and Sα be a fixed set of cardinality α. We consider
the set Dα = {0, 1}Sα (of all functions from Sα to {0, 1}) equipped with the
product σ-algebra Mα and the product probabilistic measure mα; that is, Mα

coincides with the σ-algebra on Dα generated by all sets of the form

(2-2) Cyl(G)
def
= {u ∈ Dα : u

∣∣
F
∈ G}

where F is a finite subset of Sα and G is any subset of {0, 1}F , while mα is the

unique probabilistic measure on Mα such that mα(Cyl(G)) = card(G)/2card(F )

for any such sets G and F . It is worth noting that when α is uncountable and
Dα is considered with the product topology, not every open set inDα belongs to
Mα. Additionally, we denote by (D0,M0,m0) the unique probabilistic measure
space with D0 = {0}. For simplicity, let Card∞ stand for the class of all
infinite cardinal numbers. We call the measure spaces (Dα,Mα,mα) with α ∈
Card∞ ∪{0} canonical. In the sequel we will apply the following consequence
of a deep result due to Maharam [10]:

Theorem 2.3. For any probabilistic measure space (X,M, µ) there is a
sequence (finite or not) α1, α2, . . . ∈ Card∞ ∪{0} such that the C∗-algebras
L∞(X,µ) and

∏
n>1 L

∞(Dαn ,mαn) are ∗-isomorphic.

The above result is not explicitly stated in [10], but may simply be deduced
from Theorems 1 and 2 included there.

As a consequence of Theorems 2.2 and 2.3 (and the fact that L∞(X,µ,Mn)∼=
L∞(X,µ)⊗̄Mn), we obtain

Theorem 2.4. For every finite type I von Neumann algebra A there are
collections {αj}j∈J ⊂ Card∞ ∪{0} and {νj}j∈J ⊂ {1, 2, . . .} such that

A ∼=
∏
j∈J

L∞(Dαj ,mαj ,Mνj ).

The following simple lemma will also prove useful for us.

Lemma 2.5. If T is an arbitrary member of A, then N (T ) = {0} iff the
mapping

(2-3) A 3 X 7→ TX ∈ A

is one-to-one.

Proof. If N (T ) = {0} and TX = 0, then R(X) ⊂ N (T ) = {0} and hence
X = 0. For the converse, let E : B(R)→ B(H) be the spectral measure of |T |,
defined on the σ-algebra B(R) of all Borel subsets of R. Then E(σ) ∈ A for
any Borel set σ ⊂ R. Since TE({0}) = 0, we conclude from the injectivity of
(2-3) that E({0}) = 0 and thus N (T ) = N (|T |) = {0}.
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Proposition 2.6. Let A be a finite type I von Neumann algebra. Let
{αj}j∈J and {νj}j∈J be two collections as in the assertion of Theorem 2.4.
Further, let Φ: A →

∏
j∈J L

∞(Dαj ,mαj ,Mνj ) be any ∗-isomorphism. For an

arbitrary operator T in A and (fj)j∈J
def
= Φ(T ), the following conditions are

equivalent:

(a) ‖Tξ‖ < ‖ξ‖ for each non-zero vector ξ ∈ H;
(b) for each j ∈ J , the set {x ∈ Dαj : ‖fj(x)‖ < 1} is of full measure mαj .

Proof. Assume first that (b) holds. Observe that then ‖T‖ = ‖Φ(T )‖ 6 1
and Φ((I − T ∗T )S) = (1 − Φ(T )∗Φ(T ))Φ(S) 6= 0 for any non-zero operator
S ∈ A. So, Lemma 2.5 ensures that I − T ∗T is one-to-one. Consequently, (a)
is fulfilled.

Now assume that (a) is satisfied, or, equivalently, that I − T ∗T > 0 and
the mapping A 3 X 7→ (I − T ∗T )X ∈ A is one-to-one. This means that

(2-4) 1− Φ(T )∗Φ(T ) > 0

and (1−Φ(T )∗Φ(T ))g 6= 0 for each non-zero g ∈ L
def
=
∏
j∈J L

∞(Dαj ,mαj ,Mνj ).
Suppose, on the contrary, that

(2-5) mαk({x ∈ Dαk : ‖fk(x)‖ < 1}) < 1

for some k ∈ J . To get a contradiction, it is enough to find a bounded measur-
able function u:Dαk→Mνk such that u is a non-zero vector in L∞(Dαk,mαk,Mνk)
and (1 − f∗kfk)u = 0 (because then it suffices to put gk = u and gj = 0

for j 6= k in order to obtain a non-zero vector g
def
= (gj)j∈J ∈ L for which

(1 − Φ(T )∗Φ(T ))g = 0). It is now that we will make use of the form of the
measurable space (Dαk ,Mαk). If αk = 0, the existence of u is trivial. We

therefore assume that αk is infinite. Since fk : {0, 1}Sαk → Mνk is measurable
and Mαk is the product σ-algebra, we conclude that there exist a countable
infinite set F ⊂ Sαk and a measurable function f : {0, 1}F →Mνk such that

(2-6) fk(η) = f(η
∣∣
F

)

for any η ∈ {0, 1}Sαk . For simplicity, we put Ω = {0, 1}F , M = {G ⊂
Ω: Cyl(G) ∈ Mαk} (cf. (2-2)) and define a measure λ : M → [0, 1] by
λ(G) = mαk(Cyl(G)) for any G ∈ M. Note that the probabilistic measure
space (Ω,M, λ) is naturally isomorphic to (Dℵ0 ,Mℵ0 ,mℵ0) and hence it is a
standard measure space (which is relevant for us). It suffices to find a mea-
surable bounded function v : Ω → Mn such that v is a non-zero vector in
L∞(Ω, λ,Mn) and

(2-7) (1− f∗f)v ≡ 0
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(because then u may be defined by u(η)
def
= v(η

∣∣
F

)). Let G
def
= {ω ∈ Ω: ‖f(ω)‖=

1}(∈M). It follows from (2-4), (2-5) and (2-6) that

(2-8) λ(G) > 0.

Since we deal with (finite-dimensional) matrices, we see that

(2-9) ∀ω ∈ G : N (I − f(ω)∗f(ω)) 6= {0}.
Now we consider a multifunction Ψ on Ω which to each ω ∈ Ω assigns the
kernel of I − f(ω)∗f(ω). Equipping the set of all linear subspaces of Cn with
the Effros-Borel structure (see [3,4] or §6 in Chapter V in [20] and Appendix
there), we conclude that Ψ is measurable (this is a kind of folklore; it may
also be simply deduced from, e.g., a combination of Proposition 2.4 in [5] and
Corollary A.18 in [20]). So, from Effros’ theory it follows that there exist
measurable functions h1, h2, . . . : Ω→ Cn such that the set {hk(ω) : k > 1} is
a dense subset of Ψ(ω) for each ω ∈ Ω (to convince oneself of that, consult e.g.
subsection A.16 of Appendix in [21]). We infer from (2-8) that there is k > 1

such that the set D
def
= {ω ∈ G : hk(ω) 6= 0} has positive measure λ. Finally,

we define v : Ω → Mn as follows: for ω ∈ D, v(ω) is the matrix which (in the
canonical basis of Cn) corresponds to a linear operator

Cn 3 ξ 7→ 〈ξ, hk(ω)〉
〈hk(ω), hk(ω)〉

hk(ω) ∈ Cn

(where 〈·,−〉 denotes the standard inner product in Cn), and v(ω) = 0 oth-
erwise. It is readily seen that v is measurable and bounded. Moreover, since
λ(D) > 0, we see that v is a non-zero element of L∞(Ω, λ,Mn). Finally, (2-7)
holds, because hk(ω) ∈ Ψ(ω) = N (I − f∗(ω)f(ω)) for each ω. This completes
the proof.

Now we are ready to give

Proof of Theorem 2.1. It is clear that (b) is followed by (a). Now
assume (a) holds. Let collections {αj}j∈J and {νj}j∈J and a ∗-isomorphism

Φ: A→
∏
j∈J

L∞(Dαj ,mαj ,Mνj )

be as in Proposition 2.6. Define (fj)j∈J ∈ L
def
=
∏
j∈J L

∞(Dαj ,mαj ,Mνj ) as

Φ(T ). We infer from Proposition 2.6 that for any j ∈ J ,

(2-10) mαj ({x ∈ Dαj : ‖fj(x)‖ < 1}) = 1.

We put Wj,n = {x ∈ Dαj : 1 − 21−n 6 ‖fj(x)‖ < 1 − 2−n} and let wj,n ∈
L∞(Dαj ,mαj ,Mνj ) be (constantly) equal to the unit νj × νj matrix on Wj,n

and 0 off Wj,n. Observe that wn
def
= (wj,n)j∈J is a central projection in L and
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∑∞
n=1wn = 1 (thanks to (2-10)). Further, it follows from the definition of the

sets Wj,n that ‖Φ(T )wn‖ 6 1− 2−n for any n > 1. Thus, it remains to define
Zn as Φ−1(wn) to finish the proof.

For simplicity, let us introduce

Definition 2.7. A partition (in A) is an arbitrary collection {Zs}s∈S of
mutually orthogonal projections such that

∑
s∈S Zs = I and Zs ∈ Z(A) for any

s ∈ S.

We will need the following corollary, which is a strengthening of Theo-
rem 2.1. Since its proof is a slight modification of the argument used in the
proof of Theorem 2.1, we skip it and leave it to the reader.

Corollary 2.8. Let Λ be a countable infinite set of indices and {aλ : λ ∈
Λ} be a set of positive real numbers such that

(2-11) sup{aλ : λ ∈ Λ} = 1.

For T ∈ A, the following conditions are equivalent:

(a) ‖Tξ‖ < ‖ξ‖ for every non-zero vector ξ ∈ H;
(b) there exists a partition {Zλ}λ∈Λ such that ‖TZλ‖ 6 aλ for every λ ∈ Λ.

3. Algebra of affiliated operators. The aim of this part is to show the
following result.

Theorem 3.1. Let A be finite and type I, and {cλ}λ∈Λ be a countable and
unbounded set of positive real numbers. For any operator T in H the following
conditions are equivalent:

(a) T ∈ Aff(A);
(b) there are S ∈ A and a partition {Zλ}λ∈Λ for which T =

∑
λ∈Λ cλSZλ.

The above result can be deduced from Saitô’s [15]. Here we present an
alternative proof.

To make the above result more precise (and understandable), let us intro-
duce the following

Definition 3.2. Let {Zλ}λ∈Λ be a partition and {Sλ}λ∈Λ be any collection
of operators in A. An operator

∑
λ∈Λ SλZλ is defined as follows:

D
(∑
λ∈Λ

SλZλ

)
def
=
{
ξ ∈ H :

∑
λ∈Λ

‖SλZλξ‖2 <∞
}

and (
∑

λ∈Λ SλZλ)ξ =
∑

λ∈Λ(SλZλξ) (notice that SλZλξ = ZλSλξ and thus the
vectors SλZλξ, λ ∈ Λ, are mutually orthogonal).

The following simple result will find many applications in the sequel.
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Lemma 3.3. Let (Zλ)λ∈Λ be a partition. Denote the range of Zλ by Hλ.
Then there exists a unitary operator U : H →

⊕
λ∈ΛHλ such that for any

collection {Sλ}λ∈Λ ⊂ A,

U
(∑
λ∈Λ

SλZλ

)
U−1 =

⊕
λ∈Λ

Sλ
∣∣
Hλ
.

Proof. For each ξ ∈ H, it is enough to define Uξ as ⊕λ∈ΛZλξ.

Now we list only most basic consequences of Lemma 3.3. Below {Zλ}λ∈Λ

is a partition in A, {Sλ}λ∈Λ is an arbitrary collection of operators in A and E
stands for the linear span of

⋃
λ∈ΛR(Zλ). Notice that E is dense in H.

(Σ1)
∑

λ∈Λ SλZλ is closed;
(Σ2) E ⊂ D(

∑
λ∈Λ SλZλ) and E is a core of

∑
λ∈Λ SλZλ;

(Σ3) (
∑

λ∈Λ SλZλ)∗ =
∑

λ∈Λ S
∗
λZλ;

(Σ4)
∑

λ∈Λ SλZλ ∈ Aff(A);
(Σ5) if Sλ = cλS with cλ > 0 for each λ ∈ Λ, then

∑
λ∈Λ SλZλ is self-adjoint

(resp. non-negative; normal) iff S is so.

In the proof of Theorem 3.1 we will make use of a certain transformation
which to any closed densely defined operator assigns a contraction. In the
existing literature there are at least two such transformations. The first was
studied e.g. by Kaufman [8] and with every closed densely defined operator T it

associates the operator T (I+T ∗T )−
1
2 . The second, quite similar to the first, is

the so-called b-transform introduced in [13] and given by b(T ) = T (I+ |T |)−1.
We will use the following properties of the latter transform.

Lemma 3.4. Let T and Ts, s ∈ S, be closed densely defined operators in H
and Hs, respectively. Then:

(b1) the b-transform establishes a one-to-one correspondence between the set
of all closed densely defined operators in H and the set of all bounded
operators S on H such that ‖Sξ‖ < ‖ξ‖ for each non-zero vector ξ ∈ H;

the inverse transform is given by S 7→ ub(S)
def
= S(I − |S|)−1;

(b2) T is bounded iff ‖b(T )‖ < 1; conversely, if S ∈ B(H) and ‖S‖ < 1, then
ub(S) ∈ B(H);

(b3) T ∈ Aff(A) ⇐⇒ b(T ) ∈ A;
(b4) b(UTU−1) = Ub(T )U−1 for any unitary operator U : H → K;
(b5) b(

⊕
s∈S Ts) =

⊕
s∈S b(Ts).

Below we use the b- and ub-transforms also as complex-valued functions
defined on C, given by appropriate analogous formulas.

Proof of Theorem 3.1. Property (Σ4) shows that (a) is implied by (b).
Now assume that T ∈ Aff(A). Then b(T ) ∈ A and ‖b(T )ξ‖ < ‖ξ‖ for each
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ξ 6= 0 (see (b1) and (b3)). Using Corollary 2.8 with aλ
def
= b(cλ) = cλ

1+cλ
, we

obtain a partition {Zλ}λ∈Λ such that ‖b(T )Zλ‖ 6 aλ < 1. We now infer from
(b2) that there exist operators Sλ ∈ B(H), λ ∈ Λ, such that

(3-1) b(Sλ) = b(T )Zλ.

We can express Sλ directly as Sλ = b(T )Zλ(I − |b(T )Zλ|
)−1

and this formula
clearly implies that Sλ ∈ A. It is a well-known property of the functional

calculus for self-adjoint (bounded) operators that ‖ub(A)‖ = ub(‖A‖) = ‖A‖
1−‖A‖

for any non-negative operator A of norm less than 1. We will apply this
property to A = |b(T )Sλ|. We have:

(3-2) SλZλ = b(T )Z2
λ(I − |b(T )Zλ|)−1 = b(T )Zλ(I − |b(T )Zλ|)−1 = Sλ

and

‖Sλ‖ = ‖b(T )Zλ(I − |b(T )Zλ|)−1‖(3-3)

=
∥∥∥|b(T )Zλ|(I − |b(T )Zλ|)−1

∥∥∥
= ‖ub(|b(T )Zλ|)‖ = ub

(∥∥|b(T )Zλ|
∥∥) 6 ub(aλ) = cλ.

Define S
def
=
∑

λ∈Λ
1
cλ
Sλ. From (3-2) and (3-3) we infer that the series con-

verges in the strong operator topology. Consequently, S ∈ A. Moreover,
cλSZλ = SλZλ. In order to prove that T =

∑
λ∈Λ cλSZλ, it is enough to show

that b(T ) = b(
∑

λ∈Λ cλSZλ). Using Lemma 3.3, a unitary operator U and sub-
spaces Hλ appearing there, properties (b4) and (b5) formulated in Lemma 3.4,
and (3-1), we get

b
(∑
λ∈Λ

cλSZλ

)
= U−1

(⊕
λ∈Λ

b
(
cλS

∣∣
Hλ

))
U = U−1

(⊕
λ∈Λ

b
(
Sλ
∣∣
Hλ

))
U

= U−1
(⊕
λ∈Λ

b(Sλ)
∣∣
Hλ

)
U =

⊕
λ∈Λ

b(T )
∣∣
Hλ

= b(T )

and we are done.

As the first application of Theorem 3.1 we obtain

Corollary 3.5. Let A be finite and type I, and Λ
def
= {ν = (ν1, . . . , νk) :

ν1, . . . , νk > 1}. For any collection T1, . . . , Tk ∈ Aff(A) there exist a partition
{Zν}ν∈Λ in A and operators S1, . . . , Sk ∈ A such that for each j ∈ {1, . . . , k},

(3-4) Tj =
∑
ν∈Λ

νjSjZν .

Proof. Using Theorem 3.1, write each Tj as
∑∞

n=1 nSjZ
(j)
n and put Zν =

Z
(1)
ν1 · . . . · Z

(k)
νk .
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Remark 3.6. Corollary 3.5 gives an alternative proof of the Murray–von
Neumann theorem [11] that Aff(A) can be naturally equipped with the struc-
ture of a ∗-algebra provided A is finite and type I (the assumption that A is
type I is superfluous; however, our proof works only in that case). Indeed, if
T1, . . . , Tk are arbitrary members of Aff(A), and {Zν}ν∈Λ and S1, . . . , Sk ∈ A
are as in (3-4), then for any polynomial p(x1, . . . , xn) in n non-commuting vari-
ables we may define p(T1, . . . , Tn) as

∑
ν∈Λ p(ν1S1, . . . , νkSk)Zν . With such a

definition, the linear span of
⋃
ν∈ΛR(Zν) is a core for each operator of the

form p(T1, . . . , Tk). Furthermore, the representation (3-4) enables us to prove
briefly that T1 = T2, provided T1 ⊂ T2. It is now easy to conclude from all
these observations that Aff(A) admits the structure of a ∗-algebra (in partic-
ular, all algebraic laws for an algebra, such as associativity, are satisfied). We
leave the details to interested readers.

4. Trace. We now turn to the concept of a center-valued trace on Aff(A).
In this section A is assumed to be finite and type I. We recall that ‘+++’,
‘−−−’ and ‘···’ denote the binary operations in Aff(A). Our main goal is to prove
all items of Theorem 1.1, except for (tr6), which will be shown in the next
section.

We begin with the following result, which is well known for arbitrary finite
von Neumann algebras.

Proposition 4.1. Aff(Z(A)) = Z(Aff(A)).

Proof. Take T ∈ Aff(Z(A)) ⊂ Aff(A). Since Z(A) is also finite and
type I, it follows from Theorem 3.1 that T has the form T =

∑∞
n=1 nSZn with

S,Zn ∈ Z(A). Similarly, any X ∈ Aff(A) has the form X =
∑∞

n=1 nYWn with
Y ∈ A and Wn ∈ Z(A). Then SY = Y S and it follows from Remark 3.6 that for
Λ = {ν = (ν1, ν2) : ν1, ν2 > 1} and Zν = Zν1Wν2 , T ···X =

∑
ν∈Λ ν1ν2SY Zν =∑

ν∈Λ ν2ν1Y SZν = X ··· T , which shows that T ∈ Z(Aff(A)). In particular,
Z(A) ⊂ Z(Aff(A)).

Conversely, take T ∈ Z(Aff(A)) of the form T =
∑∞

n=1 nSZn (with S ∈ A

and Zn ∈ Z(A)). Then SZn = 1
nT ··· Zn belongs to Z(Aff(A)) ∩ A ⊂ Z(A) and

thus S =
∑∞

n=1 SZn ∈ Z(A). Applying Theorem 3.1 again (this time to the
von Neumann algebra Z(A)) we obtain T ∈ Aff(Z(A)).

Lemma 4.2. Let {Zλ}λ∈Λ and {Wγ}γ∈Γ be two partitions in A and let
{Tλ}λ∈Λ and {Sγ}γ∈Γ be two collections of operators in A such that

(4-1)
∑
λ∈Λ

TλZλ =
∑
γ∈Γ

SγWγ .

Then ∑
λ∈Λ

trA(Tλ)Zλ =
∑
γ∈Γ

trA(Sγ)Wγ .
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Proof. For Pλ,γ
def
= ZλWγ , by (4-1), we have, TλPλ,γ = SγPλ,γ for any

λ ∈ Λ and γ ∈ Γ. Consequently, trA(Tλ)Pλ,γ = trA(TλPλ,γ) = trA(SγPλ,γ) =
trA(Sγ)Pλ,γ . So,∑
λ∈Λ

trA(Tλ)Zλ =
∑
λ∈Λ

∑
γ∈Γ

trA(Tλ)Pλ,γ =
∑
γ∈Γ

∑
λ∈Λ

trA(Sγ)Pλ,γ =
∑
γ∈Γ

trA(Sγ)Wγ

and we are done.

Now we are ready to introduce

Definition 4.3. The center-valued trace in Aff(A) is a mapping

trAff : Aff(A)→ Z(Aff(A))

defined as follows. For any partition {Zλ}λ∈Λ in A and a collection {Sλ}λ∈Λ⊂ A,

trAff

(∑
λ∈Λ

SλZλ

)
=
∑
λ∈Λ

trA(Sλ)Zλ.

Theorem 3.1 and Lemma 4.2 ensure that the definition is full and correct, while
Proposition 4.1 (and its proof) shows that indeed trAff(T ) belongs to Z(Aff(A))
for any T ∈ Aff(A).

For transparency, let us isolate the uniqueness part of Theorem 1.1 in the
following

Lemma 4.4. If tr′ : Aff(A)→ Z(Aff(A)) is a linear mapping which satisfies
axioms (tr1)–(tr3) (with trAff replaced by tr′), then tr′ = trAff.

Proof. Fix a partition {Zn}∞n=1 in A and consider the map

f : A 3 S 7→ tr′
( ∞∑
n=1

nSZn

)
···
( ∞∑
n=1

1

n
Zn

)
∈ Z(Aff(A)).

It is clear that f is linear. Moreover, for any S1, S2 ∈ A, using (tr2), we get

f(S1S2) = tr′
( ∞∑
n=1

nS1S2Zn

)
···
( ∞∑
n=1

1

n
Zn

)
= tr′

( ∞∑
n=1

√
nS1Zn ···

∞∑
n=1

√
nS2Zn

)
···
( ∞∑
n=1

1

n
Zn

)
= tr′

( ∞∑
n=1

√
nS2Zn ···

∞∑
n=1

√
nS1Zn

)
···
( ∞∑
n=1

1

n
Zn

)
= tr′

( ∞∑
n=1

nS2S1Zn

)
···
( ∞∑
n=1

1

n
Zn

)
= f(S2S1).
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Further, if S ∈ A in non-negative, then T
def
=
∑∞

n=1 nSZn is non-negative as
well (by (Σ5)). Consequently, tr′(T ) is non-negative and, therefore, so is f(S).
Also for C ∈ Z(A) we have

∑∞
n=1 nCZn ∈ Aff(Z(A)) = Z(Aff(A)) (cf. the proof

of Proposition 4.1), thus, thanks to (tr3),

f(C) =
∞∑
n=1

nCZn ···
∞∑
n=1

1

n
Zn =

∞∑
n=1

CZn = C.

Finally, we claim that f(S) is bounded for any S ∈ A. (This will imply that
f(A) ⊂ Z(Aff(A))∩A = Z(A).) To see this, it is enough to assume that S ∈ A
is non-negative. Then the operator ‖S‖I−S is non-negative as well and hence
both f(S) and f(‖S‖I − S) are non-negative. But f(S) +++ f(‖S‖I − S) =
f(‖S‖I) = ‖S‖I. Consequenty, f(S) is bounded, as we claimed.

As f : A→ Z(A) satisfies all axioms of the center-valued trace in A (cf. e.g.
Theorem 8.2.8 in [7]), we have f = trA and consequently for each S ∈ A:

tr′
( ∞∑
n=1

nSZn

)
= f(S) ···

∞∑
n=1

nZn = trA(S) ···
∞∑
n=1

nZn

=
∞∑
n=1

n trA(S)Zn = trAff

( ∞∑
n=1

nSZn

)
.

Since the partition was arbitrary, an application of Theorem 3.1 completes the
proof.

Proof of Theorem 1.1. As we announced, property (tr6) will be estab-
lished in the next section. The linearity of trAff follows from Corollary 3.5
and the very definition of trAff (see also Remark 3.6 and Lemma 4.2). Con-
ditions (tr1) and (tr4) are immediate consequences of (Σ5). Property (tr3)
follows from the fact that each C ∈ Z(Aff(A)) may be written in the form
C =

∑∞
n=1 nWZn where W ∈ Z(A) and {Zn}∞n=1 is a partition (see the proof

of Proposition 4.1). Further, (tr2) and (tr5) are implied by suitable proper-
ties of trA and the way the multiplication in Aff(A) is defined (below we use
Corollary 3.5 with Λ = {ν = (ν1, ν2) : ν1, ν2 > 1}): if T =

∑
ν∈Λ ν1SZν

and X =
∑

ν∈Λ ν2Y Zν (with Y ∈ Z(A), provided X ∈ Z(Aff(A))), then
T ···X =

∑
ν∈Λ ν1ν2SY Zν and hence

trAff(T ···X) =
∑
ν∈Λ

ν1ν2 trA(SY )Zν =
∑
ν∈Λ

ν1ν2 trA(Y S)Zν = trAff(X ··· T );

and if X ∈ Z(Aff(A)), we get

trAff(T ···X) =
∑
ν∈Λ

ν1ν2 trA(S)Y Zν =
∑
ν∈Λ

ν1 trA(S)Zν ···
∑
ν∈Λ

ν2Y Zν = trAff(T )···X.
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Finally, uniqueness of trAff has already been established in Lemma 4.4 and
(1-1) is just the assertion of Proposition 4.1.

It is worth noting that trAff(S) = trA(S) for each S ∈ A, the proof of which
is left as a simple exercise.

As an immediate consequence of Theorem 1.1, we get the following

Corollary 4.5. Suppose that A is finite and type I. There are no X,Y ∈
Aff(A) such that X ··· Y −−− Y ···X = I.

Proof. Apply the trace to both sides.

The above result for arbitrary finite von Neumann algebras was proved
in [9].

5. Ordering. Throughout this section, A continues to be finite and type I;
and 〈·,−〉 stands for the inner product of H. Similarly as in C∗-algebras, we
may distinguish real part of Aff(A) and introduce a natural ordering in it. To
this end, we introduce

Definition 5.1. The real part Affs(A) of Aff(A) is the set of all self-adjoint
operators in Aff(A). Additionally, we put As = A ∩Affs(A). For A ∈ Affs(A)
we write A > 0 if A is non-negative (that is, if 〈Aξ, ξ〉 > 0 for each ξ ∈ D(A);
or, equivalently, if the spectrum of A is contained in [0,∞)). For two operators
A1, A2 ∈ Affs(A) we write A1 6 A2 or A2 > A1 if A2−−−A1 > 0.

The least upper bound (in Affs(A)) of a collection {Bs}s∈S ⊂ Affs(A) is
denoted by sups∈S Bs, provided it exists.

The following simple result gives another description of the ordering defined
above.

Lemma 5.2. Let A and B be arbitrary members of Affs(A).

(a) If both A and B are non-negative, so is A+++B.
(b) The following conditions are equivalent:

(i) A 6 B;
(ii) 〈Aξ, ξ〉 6 〈Bξ, ξ〉 for any ξ ∈ D(A) ∩ D(B).

Proof. All properties follow from the fact that D(A) ∩ D(B) is a core of
the self-adjoint operators B−−−A and A+++B.

It is now readily seen that the ordering ‘6’ in Affs(A) is reflexive, transitive
and antisymmetric (which means that A = B, provided A 6 B and B 6
A), and that it is compatible with the linear structure of Affs(A). Another
property, well known for arbitrary von Neumann algebras, is for finite type I
algebras established below.
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Proposition 5.3. If A,B ∈ Affs(A) are non-negative and A ··· B = B ··· A,
then A ···B is non-negative as well.

Proof. By Corollary 3.5 and (Σ5), we may express A and B in the forms
A =

∑
ν∈Λ ν1SZν and B =

∑
ν∈Λ ν2TZν where S, T ∈ A are non-negative.

Moreover, we know that then

(5-1) A ···B =
∑
ν∈Λ

ν1ν2STZν

and B ··· A =
∑

ν∈Λ ν2ν1TSZν . From these connections and the assumption
we now deduce that ST = TS and, consequently, ST > 0. Now the assertion
follows from (5-1) and (Σ5).

For transparency, we isolate a part of (tr6) (in Theorem 1.1) below. It was
proved in a more general setting by Yeadon [22].

Lemma 5.4. Let A = {Aσ}σ∈Σ ∈ Affs(A) be an increasing net (indexed by
a directed set Σ), bounded above by A ∈ Affs(A). Then A has a least upper
bound in Affs(A).

Proof. First of all, we may and do assume that Aσ > 0 for any σ ∈
Σ. (Indeed, fixing σ0 ∈ Σ and putting Σ′

def
= {σ ∈ Σ: σ > σ0}, A′

def
=

{A′σ′}σ′∈Σ′ with A′σ′
def
= Aσ −−− Aσ0 and A′

def
= A−−− Aσ0 , it is easy to verify that

A′ is an increasing net of non-negative operators upper bounded by A′, and
supσ∈ΣAσ = Aσ0+++supσ′∈Σ′ A

′
σ′ .) Using Theorem 3.1 and (Σ5), we may express

A in the form A =
∑∞

n=1 nBZn where B ∈ A is non-negative and {Zn}∞n=1 is
a partition in A. Fix k > 1. It follows from Proposition 5.3 that the operators
(A−−−Aσ)···Zk and Aσ···Zk are non-negative for any σ ∈ Σ. So, 0 6 Aσ···Zk 6 A···Zk.
Since A ···Zk = kBZk is bounded, we now conclude (e.g. from Lemma 5.2) that
Aσ ··· Zk is bounded as well. Moreover, the same argument shows that the net
{Aσ ··· Zk}σ∈Σ ⊂ As is increasing and upper bounded by A ··· Zk ∈ As. From a
classical property of von Neumann algebras we infer that this last net has a

least upper bound in As, say Gk. We now put G
def
=
∑∞

k=1GkZk. Note that
G ∈ Affs(A) (see (Σ4) and (Σ5)). Since 0 6 Aσ ···Zk 6 Gk 6 A···Zk = (A···Zk)Zk,
we have Gk = GkZk(= G ··· Zk) and Aσ ··· Zk = (Aσ ··· Zk)Zk, and thus Aσ ··· Zk 6
G ··· Zk 6 A ··· Zk for any σ ∈ Σ and k > 1. These inequalities imply that

(5-2) Aσ 6 G 6 A (σ ∈ Σ)

(because for X ∈ {Aσ, G,A}, X =
∑∞

k=1(X ··· Zk)Zk in the sense of Defini-
tion 3.2; then apply Lemma 5.2). We will check that G = supσ∈ΣAσ. To
this end, take an arbitrary upper bound A′ =

∑∞
n=1 nB

′Z ′n (where B′ ∈ A
is self-adjoint) of A. It remains to check that G 6 A′. In what follows, to
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avoid misunderstandings, ‘supA’ will stand for the least upper bound in As of
suitable families of bounded operators.

For an arbitrary positive n and m we have 0 6 Aσ ···(ZnZ ′m) 6 A′···(ZnZ ′m) =
mB′ZnZ

′
m ∈ As, which yields

G ··· (ZnZ ′m) = GnZ
′
m = [sup

σ∈Σ

A(Aσ ··· Zn)]Z ′m = sup
σ∈Σ

A[(Aσ ··· Zn)Z ′m]

= sup
σ∈Σ

A[Aσ ··· (ZnZ ′m)] 6 A′ ··· (ZnZ ′m).

Now, as before, it suffices to note that X =
∑∞

n=1

∑∞
m=1(X ··· (ZnZ ′m))ZnZ

′
m

for X ∈ {G,A′} and then apply Lemma 5.2.

The argument presented above contains a proof of the following convenient
property.

Corollary 5.5. If T is an increasing net in As which is upper bounded
in As, then its least upper bounds in As and Affs(A) coincide.

We need one more simple lemma.

Lemma 5.6. Let T be any member of Aff(A) and {Zλ}λ∈Λ be a partition

in A. If Tλ
def
= T ···Zλ is a bounded operator for any λ ∈ Λ, then TλZλ = Tλ for

all λ ∈ Λ and T =
∑

λ∈Λ TλZλ.

Proof. Since Tλ is bounded, we get TλZλ = Tλ ··· Zλ = T ··· Zλ = Tλ.
Express T in the form T =

∑∞
n=1 nSWn with S ∈ A and Wn ∈ Z(A). Then

Tλ =
∑∞

n=1 TλWn =
∑∞

n=1(T ···Zλ)···Wn =
∑∞

n=1(T ···Wn)···Zλ =
∑∞

n=1 nB(WnZλ)
and hence∑

λ∈Λ

TλZλ =
∑
λ∈Λ

∞∑
n=1

nB(WnZλ) =

∞∑
n=1

∑
λ∈Λ

nB(WnZλ) =

∞∑
n=1

nBWn = T

and we are done.

Now we are ready to give

Proof of item (tr6) in Theorem 1.1. We already know from Lemma

5.4 and (tr1) that both A
def
= supσ∈ΣAσ and A′

def
= supσ∈Σ trAff(Aσ) are well

defined. As in the proof of Lemma 5.4, we may and do assume that each oper-
ator Aσ is non-negative. As usual, we express A in the form A =

∑∞
n=1 nBZn

where B ∈ A. Then, from the very definition of trAff we deduce that trAff(A) =∑∞
n=1 n trA(B)Zn. Further, the proof of Lemma 5.4, combined with Corol-

lary 5.5, yields

A =
∞∑
n=1

[sup
σ∈Σ

(Aσ ··· Zn)]Zn.
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Consequently, nBZn = A ··· Zn = supσ∈Σ(Aσ ··· Zn). Now the normality of trA
implies that n trA(B)Zn = supσ∈Σ trA(Aσ···Zn). But trA(Aσ···Zn) = trAff(Aσ)···Zn
(see (tr5)). We claim that supσ∈Σ(trAff(Aσ)···Zn) = A′···Zn. (To convince oneself
of that, first note that inequality ‘6’ is immediate. To see the reverse inequality,
denote by A′1 and A′2, respectively, supσ∈Σ(Aσ ···Zn) and supσ∈Σ(Aσ ··· (I−Zn)),
and observe that Aσ 6 A′1 +++ A′2 and consequently A′ 6 A′1 +++ A′2, from which
one infers that A′ ··· Zn 6 A′1 ··· Zn +++ A′2 ··· Zn, but A′2 6 A′ ··· (I − Zn) and thus
A′2 ··· Zn = 0.) These observations lead us to A′ ··· Zn = n trA(B)Zn ∈ A. So,
Lemma 5.6 yields A′ =

∑∞
n=1 n trA(B)Zn = trAff(A).

As we have noted in the introductory part, condition (tr6) is a counterpart
of normality (in the terminology of Takesaki; see Definition 2.1 in Chapter V
of [20]) of center-valued traces in finite von Neumann algebras. Thus, the
question of whether it is possible to equip Aff(A) with a (naturally defined)
topology with respect to which the center-valued trace trAff is continuous nat-
urally arises. This will be a subject of further investigations.

6. Trace-like mappings in Aff(A) and the type of A. As Propo-
sition 1.2 shows, finite type I von Neumann algebras may be characterised
(among all von Neumann algebras) as those whose (full) sets of affiliated op-
erators admit mappings which resemble center-valued traces. The aim of the
section is to prove Proposition 1.2, which we now turn to.

Proof of Proposition 1.2. First observe that if A ∈ A, then ϕ(A) is
bounded and consequently ϕ(A) ∈ A. Indeed, it is enough to show this for
non-negative A ∈ A. Such A satisfies ‖A‖I − A > 0; therefore, ϕ(‖A‖I − A)
and ϕ(A) are non-negative (by (b)). But it follows from (e) and (a) that

ϕ(‖A‖I −A) = ϕ(‖A‖I)− ϕ(A) = ‖A‖I − ϕ(A),

which means that 0 6 ϕ(A) 6 ‖A‖I and hence ϕ(A) is bounded. As ϕ(A)
commutes with each unitary operator in A (by (f)), we conclude that ϕ(A) ∈
Z(A) for each A ∈ A. So, ψ = ϕ

∣∣
A

: A → Z(A) is linear (thanks to (a)) and
satisfies all axioms of a center-valued trace (see (b), (d) and (e)), hence A is
finite. Note also that ϕ(X) = trA(X) for each X ∈ A.

Suppose that A is not type I. Then one can find a non-zero projection

Z ∈ Z(A) such that A0
def
= AZ is type II1. Recall that trA

∣∣
A0

coincides with

the center-valued trace trA0 of A0.
Every type II1 von Neumann algebra W has the following property: for

each projection P ∈W and an operator C ∈ Z(W) such that 0 6 C 6 trW(P )
there exists a projection Q ∈ W for which Q 6 P and trW(Q) = C (to
convince oneself of that, see Theorem 8.4.4 and item (vii) of Theorem 8.4.3,
both in [7]). Involving this property, we by induction define a sequence (Pn)∞n=1
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of projections in A0 as follows: P1 ∈ A0 is arbitrary such that trA0(P1) = 1
2Z;

and for n > 1, Pn ∈ A0 is such that Pn 6 Z −
∑n−1

k=1 Pk and trA0(Pn) = 1
2nZ.

Observe that the projections Pn, n > 1, are mutually orthogonal and for any
N > 1,

trA

( N∑
k=1

2kPk

)
=

N∑
k=1

2k trA0(Pk) = NZ.

Now for N > 0, put TN
def
=
∑∞

k=N+1 2kPk (the series understood pointwise,
similarly as in Definition 3.2). As each Pk belongs to A0, we see that TN ∈
Aff(A0). Moreover, TN is non-negative and we infer from axiom (c) that

ϕ(T0) = ϕ
( N∑
k=1

2kPk

)
+ ϕ(TN ) = trA

( N∑
k=1

2kPk

)
+ ϕ(TN ) = NZ + ϕ(TN ).

Therefore, for ξ ∈ D(ϕ(T0)) = D(ϕ(TN )), we get:

〈ϕ(T0)ξ, ξ〉 = N‖Zξ‖2 + 〈ϕ(TN )ξ, ξ〉 > N‖Zξ‖2

(here 〈·,−〉 denotes the inner product in H). Since N can be arbitrarily large,
the above implies that Zξ = 0 for every ξ ∈ D(ϕ(T0)). But this is impossible,
because Z 6= 0 and D(ϕ(T0)) is dense in H. The proof is complete.
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