SEQUENCES OF FIXED POINT INDICES OF ITERATIONS IN DIMENSION 2

BY GRZEGORZ GRAFF* AND PIOTR NOWAK-PRZYGODZKI

Abstract. Let $\text{ind}(f, 0)$ be the local fixed point index at 0. We show that every sequence of integers which satisfies Dold relations can be realized as $\{\text{ind}(f^n, 0)\}_{n=1}^\infty$, where f is a continuous self-map of a 2-dimensional disk D^2.

1. Introduction. Let f be a continuous self-map of a compact ANR X. There are some restrictions on a sequence of fixed point indices $\{\text{ind}(f^n, X)\}_{n=1}^\infty$: it must satisfy congruences established by A. Dold (cf. [6]), called Dold relations. Additional assumptions on f or X may give stronger bounds on the shape of $\{\text{ind}(f^n, X)\}_{n=1}^\infty$. For example, if $f : \mathbb{R}^k \to \mathbb{R}^k$ is a C^1-map and x_0 is a fixed point of f, then the sequence $\{\text{ind}(f^n, x_0)\}_{n=1}^\infty$ is periodic (cf. [8], [5]). Babenko and Bogatyi proved that every sequence of integers that satisfies Dold relations can be obtained as $\{\text{ind}(f^n, 0)\}_{n=1}^\infty$, where $f : D^3 \to D^3$ is a homeomorphism and D^3 is a unit disk in \mathbb{R}^3 (cf. [1]). The realization by a homeomorphism is impossible if we replace D^3 by a 2-dimensional unit disk D^2, which is a consequence of the fact that in this case $\{\text{ind}(f^n, 0)\}_{n=1}^\infty$ takes no more than three values (cf. [2], [7], [3]). The question whether the realization is possible for a continuous self-map of D^2 was asked by Babenko and Bogatyi in [1]. This note gives the positive answer to that problem by extending the construction from [1], which was performed for some particular classes of sequences.

2. Dold relations and Dold coefficients. Let $f : U \to \mathbb{R}^2$, where U is an open subset of \mathbb{R}^2, be a continuous map such that for each integer $n > 0$,
the center 0 is an isolated fixed point for f^n. In this case the fixed point index
$\text{ind}(f^n, 0)$ is well defined for f^n restricted to a small neighborhood of 0.

Let us recall the definition of the M"obius function:

Definition 2.1. The M"obius function $\mu : \mathbb{N} \to \mathbb{Z}$ is defined by these three
properties:

\[\mu(1) = 1, \]
\[\mu(k) = (-1)^r \text{ if } k \text{ is a product of } r \text{ different primes}, \]
\[\mu(k) = 0 \text{ otherwise}. \]

Definition 2.2. For each natural n we define an integer $i_n(f, 0)$ by the
equality:

\[i_n(f, 0) = \sum_{k|n} \mu(n/k) \text{ind}(f^k, 0). \]

The following congruences were found by A. Dold (cf. [6]):

Theorem 2.3 (Dold relations). For every $n \in \mathbb{N}$, there is:

\[i_n(f) \equiv 0 \pmod{n}. \]

We will call the numbers $A_n(f, 0) = \frac{1}{n} i_n(f, 0)$ Dold coefficients. By the
M"obius inversion formula (cf. [4]) we obtain:

\[\text{ind}(f^n, 0) = \sum_{k|n} k A_k(f, 0). \]

Let us notice that another way of expressing Dold relations is to say that
each $A_n(f, 0)$ is an integer. As we have a one-to-one correspondence between
elements of $\{\text{ind}(f^n, 0)\}_{n=1}^\infty$ and $\{A_n(f, 0)\}_{n=1}^\infty$ we may reformulate the basic
question of realization in the terms of Dold coefficients.

Instead of asking whether for a given sequence of integers $\{c_n\}_{n=1}^\infty$, with
$n | \sum_{k|n} \mu(n/k) c_k$ (Dold relation must be satisfied) there exists a map f such
that $c_n = \text{ind}(f^n, 0)$ for each n, we may ask whether for a given arbitrary
sequence of integers $\{b_n\}_{n=1}^\infty$ there is a map f such that $b_n = A_n(f, 0)$ for
each n.

Lemma 2.4. (cf. [1]) Let $f : X \to X$, $g : Y \to Y$ be continuous maps
of absolute neighbourhood retracts X, Y with isolated fixed points p and q,
respectively. Then for the fixed point (p, q) of the map: $f \vee g : X \vee Y \to X \vee Y$,
where $X \vee Y$ is a fan (bouquet) of spaces X and Y, there is:

\[\text{ind}(f \vee g, (p, q)) = \text{ind}(f, p) + \text{ind}(g, q) - 1, \]

\[A_1(f \vee g, (p, q)) = A_1(f, p) + A_1(g, q) - 1, \]

\[A_n(f \vee g, (p, q)) = A_n(f, p) + A_n(g, q), \]

for $n > 1$.

3. The realization of an arbitrary sequence of integers. Let A_d be an arbitrary integer, $d > 1$. Consider two cases: (1) $A_d > 0$. Let T_d be a fan (see an example of T_3 in Picture 1) composed of d isometric isosceles triangles with one common vertex at 0. Define a map $f_d : T_d \to T_d$ as the composition $f_d = g_d \theta_d$, where θ_d is a preserving orientation isometry which maps each triangle in counter-clockwise order on the nearest one ($\theta_0^d = \text{id}$), g_d is equal to g on each triangle of the fan, where g is time-one map of the flow given in Picture 3a ($\text{ind}(g, 0) = 2$).

By Lemma 2.4 and the definition of fixed point index, we obtain:

$$\text{ind}(f^n_d, 0) = \begin{cases} 1 & \text{if } d \nmid n, \\ 1 + d & \text{if } d \mid n. \end{cases}$$

It easy to check, using Definition 2.2 that in terms of Dold coefficients this is equivalent to:

$$A_n(f_d, 0) = \begin{cases} 1 & \text{if } n = 1 \text{ or } n = d, \\ 0 & \text{otherwise}. \end{cases}$$

Remark 3.1. We may look at the above construction as at a kind of inductive procedure. We have 0, the fixed point itself; it has index equal to 1. Then, every time we add a single triangle from the family T_d with $\text{ind}(g, 0) = 2$, we must, by Lemma 2.4, add the number (2-1) to index of f^n_d, where $d \mid n$.

Now we take a fan $T_{d,A_d} = \bigvee_{d=1}^{A_d} T_d$ which consists of A_d copies of T_d, with $f_{d,A_d} = \bigvee_{d=1}^{A_d} f_d : T_{d,A_d} \to T_{d,A_d}$. Then, again by Lemma 2.4, there is:

$$A_n(f_{d,A_d}, 0) = \begin{cases} 1 & \text{if } n = 1, \\ A_d & \text{if } n = d, \\ 0 & \text{otherwise}. \end{cases}$$

(2) $A_d \leq 0$. We repeat the construction from [1], in which segments are used instead of triangles. Let I_d be a fan composed of d segments of the same length with 0 as their only common point (see an example of I_3 in Picture 2). Define $f_d : I_d \to I_d$ as the composition $f_d = h_d \theta_d$, where θ_d isometrically maps each segment on the nearest one in the counter-clockwise order, h_d is equal to h on each segment, where h is time-one map of the flow given in Picture 4a ($\text{ind}(h, 0) = 0$). Then, by Lemma 2.4

$$\text{ind}(f^n_d, 0) = \begin{cases} 1 & \text{if } d \nmid n, \\ 1 - d & \text{if } d \mid n. \end{cases}$$
Now we take a fan $I_{d,A_d} = \bigvee_{d=1}^{|A_d|} I_d$ which consists of $|A_d|$ copies of I_d ($I_{d,0} = \{0\}$), with $f_{d,A_d} = \bigvee_{d=1}^{|A_d|} f_d : I_{d,A_d} \to I_{d,A_d}$. Then, again by Lemma 2.4 there is:

$$A_n(f_{d,A_d}, 0) = \begin{cases} 1 & \text{if } n = 1, \\ -1 & \text{if } n = d, \\ 0 & \text{otherwise.} \end{cases}$$

For $d = 1$, we introduce a slight change: if $A_1 > 0$, then we define T_{1,A_1} as a fan composed of $A_1 - 1$ triangles, if $A_1 \leq 0$, then we define I_{1,A_1} as composed of $|A_1| + 1$ segments, in both cases taking f_{1,A_d} in the same way as for $d \neq 1$.

Remark 3.2. Notice that if we replace the map g and h by the time-one map of the flow in Pictures 3b and 4b, respectively, then all Dold coefficients...
for \(n > 1 \) will equal zero, \(A_d(f_d, 0) = 0 \). It is a consequence of the fact that an addition of another triangle or segment with \(\text{ind}(g, 0) = 1 \) or \(\text{ind}(h, 0) = 1 \) does not change the index of \(f_d^n \). By Lemma 2.4, it will be constant and equal to 1, so the inductive procedure of enlarging the index, described in Remark 3.1, does not work.

Now assume that an arbitrary sequence of integers \(\{A_d\}_{d=1}^\infty \) is given. For each \(A_d \) we choose an appropriate \(X_{d, A_d} \), where \(X_{d, A_d} \in \{T_{d, A_d}, I_{d, A_d}\} \) in such a way that it is placed in the planar sector defined in polar coordinates \(A \).

We have:

By: |

Finally we define \(f : D^2 \to D^2 \) by \(f = f_\infty r \), where \(r : D^2 \to K_\infty \) is retraction and get that \(A_k(f, 0) = A_k \), for \(k = 1, 2, 3, \ldots \). This completes the construction.

Acknowledgements. The first author thanks The Foundation for Polish Science for support and Institute of Mathematics of Jagiellonian University for hospitality during the preparation of this paper.

References

Received December 10, 2002

Grzegorz Graff:
Gdańsk University of Technology
Faculty of Applied Physics and Mathematics
Department of Algebra
Narutowicza 11/12
80-952 Gdańsk, Poland
e-mail: graff@mifgate.pg.gda.pl