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Abstract. In this paper the Author shows that if one defines the triods in a suit-

able way, then it it possible to prove the theorem of Moore in the infinite dimensional

case.

1. Introduction.

The classical theorem of Moore is a certain refinement of the Suslin property
of separable spaces (each family of pairwise disjoint open sets is countable). In
(4) Moore has formulated the following property:

each family of triods in R2 is countable.

A triode is a set homeomorphic with (−1, 1)×{0}∪{0}× [0, 1) . The generaliza-
tion of this theorem for n was proved by Young in (5). By a ”triode” in Rn one
means a set which is homeomorphic to ”an umbrella” (by an n - dimensional

umbrella we understand the union of an n - ball Q and of a simple arc L such
that the set Q ∪ L consists of only one point a lying in the set Q \ intQ and
being an end point of L). Another version of such properties was proved by
Bing and Borsuk in (1).

A direct generalization to the case of infinite dimensional Banach spaces is
not true. Indeed, let us consider the space l2. Let

B = {x ∈ l2 : x1 = 0 ∧ ‖x‖ ≤ 1} ∪ {x ∈ l2 : x1 ∈ [0, 1] ∧ ∀k ≥ 2 xk = 0}.
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If one understand a triode as a set, which is homeomorphic (or even isometric)
to B, then the property from the theorem of Moore does not hold. Indeed let us
consider the hyperplanes Hc = {x ∈ l2 : x1 = c} and c ∈ R. It follows from the
Riesz theorem, that H0 is isometric to l2. Let v = (c, 0, ...), then Hc = H0 + v
and thus Tv(H0) = Hc where Tv : l2 → l2 and Tv(x) = x + v. Hence we have
a triode in each hyperplane Hc. But these hyperplanes form an uncountable
family of pairwise sets.

However it is possible to prove a kind of the theorem of Moore in infinite
dimensional case if one consider more ”rigid” notion of the triode.

2. The main theorem.

Let (E, ||.||) a Banach space, let E∗ be the conjugate of E and let x, z ∈
E, r > 0, f ∈ E∗ such that f(x) 6= f(z) and ‖x− z‖ = r.

Definition 2.1 The hyperplane defined by a functional f and a constant c
is the set {y ∈ E : f(y) = c}. We will denote it by Hf,c (clearly Hf,0 = ker f).

Definition 2.2 A triode given by the parameters x, r, f and z is a set

(
B(x, r) ∩Hf,f(x)

)
∪ {αx+ (1 − α)z : α ∈ [0, 1]} .

It will be denoted by T (x, r, f, z). The point x will be said the emanation point,
the number r will be said the radius of the triode and the segment joining the
points x and z will be called a handle.

Clearly if λ 6= 0, then Hf,f(x) = Hλf,λf(x), i.e. without loss of generality we
may assume that the norm of f equals 1.

We will use below the following simple lemma:

Lemma 2.3 If A is an uncountable set and h : A → (0,+∞), then there
exists a real positive number d such that, card{a ∈ A : h(a) ≥ d} > ℵ0.

Proof. Since A =
⋃
An where

An = {a ∈ A : h(a) ≥
1

n
}

then one of An must be uncountable.

We will also use the following theorem: (its proof is to be found in (2))

Theorem 2.4 If X is a topological space satisfying the second countabil-
ity axiom then for each set A ⊂ X the set of points in A, which are not its
condensation points is countable.

Theorem 2.5 If E is a separable Banach space, then each family of pairwise
disjoint triods in E is countable.

Proof. Let us suppose that E is a separable Banach space and let ℑ be an
uncountable family of pairwise disjoint triods.
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It follows from the lemma 2.3 that there exists d > 0 and an uncountable
subset ℑ1 of ℑ such that all triods in ℑ1 have the radius at d.

Without loss of generality we may assume that all triods in ℑ1 have the
radius equal d, (the family of ”smaller” triods are still pairwise disjoint.)

Let us observe that the set ℑ1 can be written as the union of two sets
{T (x, d, f, z) ∈ ℑ1 : f(x) < f(z)} and {T (x, d, f, z) ∈ ℑ1 : f(x) > f(z)}. Hence
at least one of them (without loss of generality we assume that the first) is
uncountable. It follows from the lemma 2.3 that there exists δ > 0 such that
the set ℑ2 = {T (x, d, f, z) ∈ ℑ1 : f(z − x) ≥ δ} is uncountable. Since the
triods are pairwise disjoint then the set of their emanation points G = {x ∈
E : T (x, d, f, z) ∈ ℑ2} is uncountable. By the theorem 2.4 there exists in G an
emanation point, which is its condensation point. Without loss of generality we
may assume that it is the origin θ. The triod corresponding to the origin will
be denoted by T (θ, d, g, w). Hence g(w) ≥ δ.

Let us consider the ball with the center at the origin and the radius δ
4 . Let

the triode T (x, d, f, z) be from ℑ2 and let 0 < ‖x‖ ≤ δ
4 .

Since ‖g‖ = 1, g(w) ≥ δ and from the definition of the radius it follows that

δ ≤ g(w) ≤ ‖w‖ = d (1)

g(x) ≤ ‖x‖ ≤
δ

4
(2)

g(x)

g(w)
≤

1

4
(3)

Let us consider the following cases:

1. g(x) > 0.

Let us observe, that x /∈ Rw.

(a) Rw and Hf,f(x) have exactly one common point.

We denote this point by w. Then there exists λ ∈ R such that

w = λw (4)

Hence w ∈ Hf,f(x) and

‖w‖ = |λ| d (5)

g(w) = λg(w) (6)

i. 0 < λ < 1
2 .

In consequence, using (2), (5) and (1) we obtain

‖x− w‖ ≤ ‖x‖ + ‖w‖ ≤
δ

4
+
d

2
≤ d

But w ∈ Hf,f(x) hence w ∈ T (x, d, f, z). This is impossible since
the triods are pairwise disjoint (clearly w ∈ T (θ, d, g, w)).
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ii. 1
2 ≤ |λ|.
Since g(w) 6= g(x) hence R(w − x) and ker g have exactly one
common point, and let denote it by a. Let s ∈ R such that
w = a+s(x−a). Hence ‖w − a‖ = |s| ‖x− a‖ and g(w) = sg(x).
In consequence

|g(w)| =
‖w − a‖

‖x− a‖
g(x)

In consequence, using (4), (6) and (3) we obtain

‖x− a‖ =
g(x) ‖w − a‖

|g(w)|
=
g(x) ‖λw − a‖

|λ| g(w)
≤

‖λw − a‖

4 |λ|
≤

‖w‖

4
+

‖a‖

4 |λ|
≤
d

4
+
‖a‖

2

In consequence, using (2) and (1) we obtain

‖a‖ ≤ ‖x‖ + ‖x− a‖ ≤
δ

4
+
d

4
+

‖a‖

2
≤
d

2
+

‖a‖

2
‖a‖ ≤ d

In consequence, using a ∈ ker g we obtain a ∈ T (θ, d, g, w).
Moreover

‖x− a‖ ≤
d

4
+

‖a‖

2
≤ d

Then, since a ∈ Hf,f(x) we obtain a ∈ T (x, d, f, z). This is
impossible since the triods are pairwise disjoint.

iii. − 1
2 < λ < 0.

Hence ‖w‖ ≤ d
2 and g(w) < 0. Since x,w ∈ B(θ, d

2 ) then the
segment joining these points is still in the ball. In consequence
this segment intersects ker g - and this intersection point is a
common point of the triods T (x, d, f, z) and T (θ, d, g, w).
(λ = 0 will be considered in c))

(b) Rw and Hf,f(x) are disjoint.

Let us denote ŵ = g(x)
g(w)w, then g(ŵ) = g(x). Let us observe, that

x− ŵ ∈ (Rw + x) ∩ ker g ∧Rw + x ⊂ Hf,f(x) (7)

Moreover

‖ŵ‖ =
g(x)

g(w)
d ≤

d

4
(8)

‖x− ŵ‖ ≤
δ

4
+
d

4
≤
d

2
(9)

It follows from (7) and (8) that x− ŵ ∈ T (x, d, f, z) but from (7) and
(9) we have x− ŵ ∈ T (θ, d, g, w). This is impossible since the triods
are pairwise disjoint.
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(c) Rw is contained in Hf,f(x) or λ = 0.

In this situation θ ∈ Hf,f(x). Because dist(x, θ) ≤ δ
4 ≤ d

4 then
θ ∈ T (x, d, f, z). This is impossible since the triods are pairwise
disjoint.

2. g(x) < 0.

We use the translation given by −x and we proceed in 1. (we change
the roles of triods and thanks to the choice of δ the same argument is
possible.)

3. g(x) = 0.

This is impossible since x ∈ ker g and ‖x‖ ≤ d
4 .

Remark. In the proof of the first case ”the handle” is necessary only in the
situation when Rw and Hf,f(x) have exactly one point and this point is of the

form λw for λ ∈ (0, 1
2 ).

We can generalize a little the definition of the triode.

Let (E, ||.||) a Banach space, let E∗ be the conjugate of E and let x, z ∈
E, r > 0, f ∈ E∗, ϕ ∈ E[a,b] such that f(x) 6= f(z), ‖x− z‖ = r, ϕ - continuous
and ϕ(a) = x, ϕ(b) = z, f(ϕ(t)) 6= f(x) (ϕ(t) /∈ Hf,f(x)) for t ∈ (a, b].

Definition 2.8 A generalized triode given by the parameters x, r, f, z and
ϕ is a set (

B(x, r) ∩Hf,f(x)

)
∪ {ϕ(t) : t ∈ [a, b]} .

It will be denoted by T (x, r, f, z, ϕ).

The main theorem in this paper is:

Theorem 2.9 If E is a separable Banach space, then each family of pairwise
disjoint generalized triods in E is countable.

Proof. Let us suppose that E is a separable Banach space and let ℑ be an
uncountable family of pairwise disjoint generalized triods.

Without loss of generality we may assume that all generalized triods in ℑ
have the radius at d > 0. Let us fix an arbitrary triode T (x, r, f, z, ϕ), and let
us consider the sphere S(x, d

2 ). Then

∃c ∈ (a, b)

{
‖x− ϕ(c)‖ =

d

2
∧ ∀t ∈ (a, c) ‖x− ϕ(t)‖ <

d

2

}

(ϕ(c) - the first common point of the curve and the sphere).
Let us consider

ℑ′ = {T (x, r′, f, z′, ϕ) : T (x, r, f, z, ϕ) ∈ ℑ ∧ r′ = d
2 ∧ z′ = ϕ(c)}.
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This is a family of pairwise disjoint generalized triods.
Without loss of generality we may assume that for all generalized triods in

ℑ′ the following inequality holds f(z′ − x) ≥ δ > 0 and that the origin is a
condensation point of the emanation points of the generalized triods from ℑ′

and the corresponding generalized triod is T (θ, d
2 , g, w

′, ψ).

Let us consider the ball with the center at the origin and the radius δ
4 . Let

the triode T (x, d
2 , f, z

′, ϕ) be from ℑ′ and let 0 < ‖x‖ ≤ δ
4 .

Similarly as in the proof of the the theorem 2.5 it is sufficient to consider
the case when g(x) > 0 and Rw ∩Hf,f(x) = {λw′} for λ ∈ (0, 1

2 ). Since θ and
w′ lie on opposite sides of the hyperplane Hf,f(x) hence the curve joining θ and
w′ has the common point - say b - with this hyperplane. Since all the curve is
contained in the ball S(θ, d

2 ) hence

‖x− b‖ ≤
δ

4
+
d

2
≤ d

which is impossible since the generalized triods are pairwise disjoint.
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