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Abstract

We say that a function from X = CL[a, b] is k-convex (for k ≤ L)
if the kth derivative of the function is nonnegative. Let P denote a
projection from X onto V = Πn ⊂ X, where Πn denotes the space of
algebraic polynomials of degree less than equal to n. If we want P to
leave invariant the cone of k-convex functions (k ≤ n), we find that
such a demand is impossible to fulfill for nearly every k. Indeed only
for k = n−1 and k = n does such a projection exist. So let us consider
instead a more general ’shape’ to preserve. Let σ = (σ0, σ1, . . . , σn)
be an (n + 1)-tuple with σi ∈ {0, 1}; we say f ∈ X is multi-convex if
f (i) ≥ 0 for i such that σi = 1. In this paper we characterize those σ
for which there exists a projection onto V preserving the multi-convex
shape. For those shapes able to be preserved via a projection, we
construct (in all but one case) a minimal norm multi-convex preserving
projection. Out of necessity, we include some results concerning the
geometrical structure of CL[a, b]
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1 Introduction

When X is a Banach space and V ⊂ X a subspace, we denote by P(X, V ) the
set of all projections from X onto V ; in the cases where there no ambiguity,
we will simply write P . We say that a projection P0 is a minimal projection
if ‖P0‖ ≤ ‖P‖ for all P ∈ P(X, V ).

It is worth noting that there exists a large number of papers concern-
ing minimal projections. Mainly the problems concern existence ([15], [18]),
uniqueness ([14], [16], [27], [39], [40]), characterization of one-complemented
subspaces ([1], [2], [29], [36], [37], citemu) concrete formulas for minimal pro-
jections ([3], [4], [5], [6], [7], [13], [15], [23], [24], [26], [35], [41]), estimates
of the relative projection constants ([5], [17], [21], [25], [33], [38], [42]), con-
struction of spaces with large relative projection constants ([4], [5], [20] [22]).
For basic information concerning this topic the reader is referred to [32]

While a minimal projection will, in general, provide good approxima-
tions, it may fail to preserve particular properties of elements, as illustrated
below. As such, we are motivated to look for projections which leave invari-
ant (or preserve) a particular functional characteristic (or ’shape’). These
characteristics are often described using cones.

More precisely, a cone in X is convex set closed under nonnegative scalar
multiplication. Assuming P 6= ∅, we may fix cone S ⊂ X and ask if any
element from P leaves S invariant; i.e, let

PS = PS(X, V ) = {P ∈ P | PS ⊂ S}

and determine if PS 6= ∅. When P ∈ PS we say P is shape-preserving (in
the sense of S). Some basic results on the existence of shape-preserving
projections can be found in [10], [31], [12] and [34]. Not surprisingly, for
given X, V and S, the problem of determining if PS 6= ∅ is nontrivial in
general.

In this paper we first characterize, for a large collection of X, V and
S, when PS 6= ∅; then, for each setting in which PS 6= ∅, we calculate
infP∈PS

‖P‖. Moreover we construct a minimal shape-preserving projection.
Specifically, for positive integer L let X denote the L-th continuously

differentiable functions on [a, b], CL[a, b], normed by

‖f‖L = max
i=0..L

{‖f (i)‖∞}.

In this case we simply write X = (CL[a, b], ‖ · ‖L). We denote by X∗ the
dual space of X. In this setting, note that δk

t , k-th derivative evaluation at
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t, belongs to sphere of X∗ for k = 0 . . . L and t ∈ [a, b]. For fixed k, consider
the cone S ⊂ X of all f ∈ X with nonnegative k-th derivative on [a, b]. We
refer to this set as the cone of k-convex functions. With V = Πn, the n-th
degree algebraic polynomials, it was shown in [11] that

PS 6= ∅ ⇐⇒ k ≥ n− 1. (1)

For example, with X = (C1[0, 1], ‖ · ‖1) and k = 1 we see that there is
no monotonicity-preserving (1-convex preserving) projection from X onto
V = Π3. There is however a projection preserving convexity (or 2-convexity)
onto V . Moreover, Theorem 4.2 in [11] constructs a minimal norm element of
PS for k = n− 1 (with norm 3/2 for every n) using techniques from minimal
projection theory found in [7].

As we will see in the Section 3, the existence of a projection preserving
k-convexity onto Πn can be determined via a geometric consideration; in the
case k = n or k = n − 1, this geometric approach reduces (respectively) to
a 1-dimensional or 2-dimensional problem and, as such, is relatively easy to
solve. That is, the geometric approach quickly reveals the result in (1).

We now look to generalize k-convexity. Using notation similar to that of
[30], for fixed positive integer n let σ = (σ0, σ1, . . . , σn) be an (n + 1)-tuple
with σi ∈ {0, 1}; let M = maxσi=1 i. With X = CL[a, b], (L ≥ M) define

Sσ := {f ∈ X | σif
(i) ≥ 0, i = 0, . . . , n}.

We say f ∈ X is multi-convex if f belongs to the cone Sσ. In this paper we
fix V = Πn and consider projections from X onto V leaving invariant a cone
of multi-convex functions - so-called multi-convex projections. We denote
this set of projections by PSσ and look to construct minimal norm elements
from this set.

This paper is organized into five sections. Following these introductory
remarks, the main content of this paper is described in Section 2. Here we
characterize those σ for which PSσ 6= ∅, where PSσ ⊂ X = (CL[a, b], ‖ · ‖L).
Furthermore, we develop an iterative, norm-preserving construction of multi-
convex projections from X onto (n + 1)-dimensional subspaces V , where the
iteration is with respect to n. This construction yields minimal norm multi-
convex projections in the case V = Πn. Sections 3 and 5 provide proofs of
the results of Section 2. The proofs in Section 5 require basic, non-trivial
facts about the unit ball of X = (CL[a, b], ‖ · ‖L). For sake of completeness,
we prove the needed results in Section 4 (indeed we found no single source
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which described the geometry of this ball and thus hope that Section 4 may
be of independent utility to others).

As a summary of notation used in following, the dual space of Banach
space X is denoted by X∗; we denote by B(X) and S(X), respectively, the
unit ball of X and the unit sphere of X. For convex set K ⊂ X, we denote
the set of extreme points of K by ext (K). The convex hul of subset A ⊂ X is
denoted by co A while the conex cone generated by A is denoted and defined
as cone (A) = {ρa | ρ ∈ [0,∞) and a ∈ A}.

2 Main Results

Let L and n denote positive integers such that L ≥ n− 1 (the reason for this
inequality will be made clear). Let σ = (σ0, σ1, . . . , σn) with σi ∈ {0, 1}; let
M = maxσi=1 i and m = minσi=1 i. We say that σ is 1-connected if whenever
σi = σj = 1 for i < j, we have σk = 1 for all k = i, i + 1, . . . , j.

THEOREM 2.1 Let X = (CL[0, 1], ‖ · ‖L). PSσ (X, Πn) 6= ∅ iff M ≥ n− 1
and σ is 1-connected.

The next theorems describe minimal norm multi-convex projections. But
first a few comments are in order. By defintion we always have m ≤ M .
Whenever M = n, we automatically assume L ≥ n. Theorem 2.1 indicates
that there two possible situations (of interest to us) in which m = M : they
are m = M = n − 1 and m = M = n. These cases are actually ’k-convex’
shapes (regarded as specific multi-convex shapes); moreover these situations
constitute somewhat extreme cases in the multi-convex realm. The case
m = M = n− 1 has been handled in [11]. For sake of completeness, we give
the result on minimality for this cases in Theorem 2.2.

In the case m = M = n, the minimal shape-preserving projection problem
is completely unsolved for n≥ 2 (the projection given in [8] partially solves the
problem in the n = 2 case). Indeed, it is conjectured in [11] that a minimal
norm projection from X = CL[a, b] onto V = Πn preserves n-convexity
for every L = 0, 1, . . . . That is, in the case of n-convexity, the minimal
shape-preserving projection problem is perhaps equivalent to the minimal
projection problem. As such, this paper does not address this case.

There is one other exceptional case: m = n− 1 and M = n. It turns out
that the results concerning minimal shape-preserving projections in this case
are similar to those in the case where m = M = n−1 but the method of proof

4



differs substantially from the approach in [11] as well as here. Consequently,
the m = n− 1, M = n case is handled in [28]. Howerver, Theorem 2.2 below
states the result for this case.

Through the remainder of this paper we will assume n ≥ 2. In the n = 1
case, there is a projection of norm one in PSσ (X, Π1).

THEOREM 2.2 (see [11] and [28]) Let X = (CL[a, b], ‖ · ‖L). For fixed
n let m = n − 1 ≤ M . Then there exists Pm ∈ PSσ (X, Πn) such that
‖Pm‖ = 3/2 and ‖Pm‖ ≤ ‖P‖ for every P ∈ PSσ (X, Πn).

THEOREM 2.3 Let X = (CL[a, b], ‖ · ‖L). For fixed n, assume M ≥ n− 1
and σ is 1-connected. Suppose m = 0 and define P0,n =

∑n
i=0 ui ⊗ vi where

ui = δi
0 for i 6= n,

un = δn−1
1 ,

vi =
xi

i!
for i 6= n− 1

and

vn−1 =
xn−1

(n− 1)!
− xn

n!
;

i.e.,

P0,n = δ0 ⊗ 1 + δ1
0 ⊗

x

1!
+ · · ·+ δn−1

0 ⊗
(

xn−1

(n− 1)!
− xn

n!

)
+ δn−1

1 ⊗ xn

n!
. (2)

Then P0,n has minimal norm in PSσ (X, Πn) and

‖P0,n‖ =
n−1∑
k=0

1

k!
. (3)

Moreover, in the case that M = n− 1, we have {P0,n} = PSσ (X, Πn).

THEOREM 2.4 Let X = (CL[a, b], ‖ · ‖L) and Let X1 = (CL+1[a, b], ‖ ·
‖L+1). For fixed integer n, assume 0 < m < n − 1 ≤ M and σ is 1-
connected. Let Y ⊂ X denote an (n + 1)-dimensional subspace, spanned by
{w0, w1, . . . , wn}; i.e., Y = [w0, . . . , wn]. Let Pm,n =

∑n
i=0 qi ⊗ wi denote a

projection from X onto Y such that Pm,n preserves Sσ; i.e.,

Pm,n ∈ PSσ (X, Y ).

5



Define the operator Pm+1,n+1 on X1 by

(Pm+1,n+1f)(x) =
f(0) + f(1)

2
+

∫ x

0

(Pm,nf
′)(t) dt

− 1

2

∫ 1

0

(Pm,nf
′)(t) dt

(4)

where f ′ denotes the derivative of f . Then

Pm+1,n+1 ∈ PS
σ̂

(X1, [1, W0, W1, . . . ,Wn])

where

Wi(t) =

∫ t

0

wi(s) ds

and σ̂ is the 1-connected (n + 2)-tuple such that maxσi=1 i = M + 1 and
minσi=1 i = m + 1. Moreover, if ‖Pm,n‖ ≥ 2 then

‖Pm+1,n+1‖ = ‖Pm,n‖ (5)

THEOREM 2.5 Let k be a nonnegative integer. Let X = (CL+k[a, b], ‖ · ‖)
where ‖ · ‖ is any norm such that

‖ · ‖2,L+k ≤ ‖ · ‖ ≤ ‖ · ‖L+k

where

‖f‖2,L+k = max

{
max

j=0,...,L+k−1
{|f (j)(0)|, |f (j)(1)|}, ‖fL+k‖∞

}
and

‖f‖L+k = max
i=0..L+k

{‖f (i)‖∞}.

Let Pk,n+k denote the specific operator obtained by k applications of (4) be-
ginning with P0,n given in Theorem 2.3. Then Pk,n+k is a minimal norm
element of PSσ (X, Πn+k) where σ is the 1-connected (n + k + 1)-tuple such
that maxσi=1 i ≥ n + k − 1 and minσi=1 i = k.

In general, given two norms that are equivalent (but not proportional), we
should not expect a projection that has minimal operator norm with respect
to first norm to be minimal in the operator norm determined by the second.
From this viewpoint, we note that Theorem 2.5 is quite surprising.
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The proofs of Theorems 2.1, 2.3 and 2.4 and Theorem 2.5 are contained
in the sections that follow. We first verify existence in Section 3. Then,
in Section 4, we show how to calculuate the norms of functionals from a
particular family. This calculation will play a crucial role in Section 5, where
we verify shape-preserving properties and norm minimality of constructed
projections.

3 Proof of Existence

We employ results from [31] to establish existence. The relevant material
from this paper is included below.

A cone K in a Banach space is defined to be a convex set which is closed
under nonnegative scalar multiplication. K is said to be pointed if K contains
no lines through 0.

For φ ∈ K, let [φ]+ := {αφ | α ≥ 0}. We say [φ]+ is an extreme ray of
K if φ = φ1 + φ2 implies φ1, φ2 ∈ [φ]+ whenever φ1, φ2 ∈ K. We let E(K)
denote the union of all extreme rays of K. When K is a closed, pointed cone
of finite dimension we always have K = co(E(K)).

We say a finite (possibly) signed measure µ with support E ⊂ X∗ is a
generalized representing measure for φ ∈ X∗ if 〈x, φ〉 =

∫
E
〈s, x〉 du(s) for

all x ∈ X. A nonnegative measure µ satisfying this equality is simply a
representing measure.

DEFINITION 3.1 Let X be a Hausdorff topological vector space over R
and let X∗ be the topological dual of X. We say that a pointed closed
cone K ⊂ X∗ is simplicial if K can be recovered from its extreme rays,
(i.e., K = co(E(K))) and the set of extreme rays of K form an independent
set (independent in the sense that any generalized representing measure for
x ∈ K supported on E(K) must be a representing measure. )

PROPOSITION 3.1 A pointed closed cone K ⊂ X∗ of finite dimension d
is simplicial iff K has exactly d extreme rays.

For given Sσ, we define its dual cone as

S∗ = {u ∈ X∗ | u(f) ≥ 0 ∀f ∈ Sσ}.

Note that for each Sσ, the cone dual S∗ is simplicial with [φ]+ ∈ E(S∗) iff
φ = ρδk

t where ρ > 0, t ∈ [0, 1] and integer k ∈ [0, 1, . . . , L]. The result we
will need is the following.
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THEOREM 3.1 Let X = (CL[0, 1], ‖ · ‖L). PSσ (X, Πn) 6= ∅ if and only if
the cone S∗

|V is simplicial.

(Proof of Theorem 2.1) Throughout this proof we denote the dual cone of
Sσ by S∗.
(⇐) We verify that S∗

|V is simplicial. Note that for each t ∈ [0, 1] and each

integer j ∈ [m, M ] the functional δj
t belongs to an extreme ray of S∗. As

such, we need only demostrate that a simplicial sub-cone of S∗
|V captures all

restrictions (δj
t )|V ; this will then imply that S∗

|V is itself simplicial. To this

end, we fix for V the basis {vi}n
i=0 where vi = xi/i! and embed S∗

|V into (the

positive orthant of) Rn+1 via the identification

φ|V ≡ 〈v, φ〉 =


〈v0, φ〉
〈v1, φ〉

...
〈vn, φ〉

 ;

with this understanding we will regard S∗
|V ⊂ Rn+1. Let us now consider the

case M = n−1 (we will see that the M = n case follows in an identical way).
Notice that, for integer j ∈ [m.n− 1] and t ∈ [0, 1], we have

(δj
t )|V =



01
...

0j

1
t
1!
...

tk−j

(k−j)!
...

tn−j

(n−j)!


. (6)

Denote by ei the vector (01, . . . , 0i−1, 1, 0i+1, . . . , 0n+1)
T ∈ Rn+1; from (6) it is

clear that, for every integer j ∈ [m,n−1], ej+1 ∈ S∗
|V (given by (δj

0)|V ) as well

as en + en+1 ∈ S∗
|V (given by (δn−1

1 )|V ). Moreover, for integer j ∈ [m, n − 1]
we have

(δj
t )|V =

n−2∑
k=j

tk−j

(k − j)!
ek+1+

tn−j−1

(n− j − 1)!

(
1− t

n− j

)
en+

tn−j

(n− j)!
(en + en+1) .
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Since the coefficient functions of en + en+1 and each ek, k = j, . . . , n are
nonnegative, we have that S∗

|V is simplicial. In the case that M = n, we

again note from (6) that ej ∈ S∗
|V for every integer j = m + 1, . . . , n + 1 and

thus S∗
|V is simplicial.

(⇒) Assume PSσ 6= ∅. By Theorem 3.1, we know S∗
|V is simplicial. Let

E = {[x1]
+, . . . , [xd]+} be the set of extreme rays of S∗

|V . We first show that
M must be at least n − 1. Suppose, to contrary, that M ≤ n − 2. For
convenience, fix for V the basis {vi}n

i=0 where

vi =

{
xi

i!
i < M

(i−M)!
i!

xi i ≥ M
. (7)

For t ∈ [0, 1], let ∆t := (δM
t )|V and, via the embedding into Rn+1 described

above, notice that ∆t = (01, . . . , 0M , 1, t, t2, . . . , tn−M). Consider the subcone
K of S∗

|V ⊂ Rn+1 generated by rays [∆t]
+; i.e., let

K = co ({[∆t]
+ | t ∈ [0, 1]}). (8)

K has infinitely many extreme rays since each ∆t is an extreme point of
C = co ({∆t | t ∈ [0, 1]}) (C is a translate of the convex hull of the moment
curve (t, t2, . . . , tn−M)). If m = M then we have an immediate contraction;
assume then that 0 ≤ m < M . Consequently, E cannot belong entirely to K;
without loss assume {[x1]

+, . . . , [xk]+} = E− (E∩K). Since each such ray is
extreme, we must have for each i = 1, ..., k, [xi]

+ = [(δj
t )|V ]+ for some t ∈ [0, 1]

and some integer j ∈ [m,M − 1]. But because j < M , we see that every
(non-zero) element (a1, a2, . . . , an+1)

T from co ({[x1]
+, . . . , [xk]+}) contains at

least one non-zero entry in the first M coordinates; i.e., there exists integer
s ∈ [0, M ] such that as 6= 0. This implies co ({[x1]

+, . . . , [xk]+}) ∩ K = ∅.
Thus K ⊂ S∗

|V cannot be captured in a simplicial subcone of S∗
|V , and this

contradicts the fact that S∗
|V simplicial. Therefore M ≥ n− 1. We now show

σ is 1-connected. Suppose it is not; let Z := max{i | σi+1 = 0 and i <
M} (Z marks the location of the last 1 in σ before the last break of the
sequence of 1’s). For convenience fix for V the basis in (7) using Z rather
than M . Similar to the above, define ∆t := (δZ

t )|V and K as in (8). K
has infinitely many extreme rays and thus, as before, the set of extreme
rays of S∗

|V , E = {[x1]
+, . . . , [xd]+}, cannot belong entirely to K. Every

xi must be of the form (δj
t )|V for some t ∈ [0, 1] and some integer j as

prescribed by σ. The convex hull of the set {[xi]
+ | xi = (δj

t )|V for j ≥ Z + 2}
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misses every (non-zero) element of K since every element (a1, . . . an+1) of
this convex hull is such that aZ+1 = 0. Similarly, the convex hull of the set
{[xi]

+ | xi = (δj
t )|V for j ≤ Z− 1} misses every (non-zero) element of K since

every element (a1, . . . an+1) of this convex hull is such that as 6= 0 for some
integer s ∈ [m,Z − 1]. If σ is not 1-connected then we have exhausted all
possible choices for xi (in particular, there is not xi of the form (δZ+1

t )|V )
and we find that S∗

|V cannot be simplicial. This contradiction forces us to
conclude that σ is 1-connected.

4 Results on the Geometry of B(CL[a, b], ‖ ·‖L)

We start with two well-known lemmas, which straightforward proofs will be
omitted.

LEMMA 4.1 Let (X, ‖ · ‖) be a normed space. Suppose that (‖ · ‖k) is a
sequence of equivalent norms on X such that

‖x‖k(1− ak) ≤ ‖x‖ ≤ (1 + ak)‖x‖k (9)

for any x ∈ X. Assume ak → 0. Let Lk(X) denote the space of linear,
continuous with respect to ‖ ·‖ operators defined on X with the norm induced
by ‖ · ‖k. Then for any T ∈ L(X),

‖T‖k → ‖T‖,

where ‖T‖ denotes the operator norm of T induced by ‖ · ‖.

LEMMA 4.2 Let (X, ‖ · ‖) be a normed space and let ‖ · ‖k be a sequence of
norms on X satisfying (9) such that ak → 0. Let X∗

k denote the dual space
X∗ equipped with the norm induced by ‖ · ‖k. Then for any f ∈ X∗,

‖f‖k → ‖f‖,

where ‖f‖ denotes the norm of f in X∗.

DEFINITION 4.1 Let {ti} be a countable, dense subset of [0, 1] such that
t0 = 0 and t1 = 1. Let us define for k ∈ N a norm ‖ · ‖k,L on CL[0, 1] by:

‖f‖k,L = maxi=0,...,LAik(f),
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where for i = 0, ..., L− 1

Aik = maxj=1,...,k|f (i)(tj)|

and
AL,k = ‖f (L)‖∞.

LEMMA 4.3 Let ‖ · ‖k,L be as in Definition 4.1. Then for any ε > 0 there
exists ko ∈ N such that for any f ∈ CL[0, 1] and k ≥ ko

‖f‖k,L ≤ ‖f‖L ≤ (1 + ε)‖f‖k,L, (10)

where
‖f‖L = max

i=0..L
{‖f (i)‖∞}.

Proof. Fix k ∈ N, k ≥ 3. Without loss of generality, we can assume that

1 = to < t2 < ... < tk < t1 = 1.

Set
∆k = max{t2 − to, t1 − tk, tj − tj−1, j = 3, ..., k}.

By the density of {tj}, ∆k → 0. Fix ko ∈ N such that

(1 + ∆k)L+1 < 1 + ε

for k ≥ ko. Take any k ≥ ko. Fix f ∈ X. First we show that

‖f (L−1)‖∞ ≤ (1 + ∆k)‖f‖k,L. (11)

Let t ∈ [0, 1] be so chosen that ‖f (L−1)‖∞ = |f (L−1)(t)|. Then t ∈ [to, t2] or
t ∈ [tk, t1] or t ∈ [ti, ti+1] for some i = 2, ..., k. Hence by the definition of ∆k

and the mean value theorem, for a properly chosen ti i=0,...,k,

|f (L−1)(t)− f (L−1)(ti)| ≤ ‖f (L)‖∞|t− ti|.

Hence
‖f (L−1)‖∞ = |f (L−1)(t)| ≤ |f (L−1)(ti)|+ ‖f (L)‖∞∆k

≤ ‖f‖k,L(1 + ∆k),
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which proves (11). Analogously, by the mean value theorem,

‖f (L−j)‖∞ ≤ (1 + ∆k)j‖f‖k,L

for j = 0, ..., L. Hence

maxi=0,...,L{‖f (i)‖∞} ≤ (1 + ∆k)L+1‖f‖k,L

which gives
‖f‖ ≤ (1 + ε)‖f‖k,L

for k ≥ ko, as required.

THEOREM 4.1 Let X = (CL[0, 1], ‖ · ‖L) and Xk = (CL[0, 1], ‖ · ‖k,L).
Then

ext (B(X∗)) ⊂ {±δi
t | i = 0, .., L, t ∈ [0, 1]}

and

ext (B(X∗
k)) ⊂ {±δi

tj
| i = 0, .., L− 1, j = 0, ..., k} ∪ {δL

t | t ∈ [0, 1]}.

Proof. Note that X can be isometrically embeded in Z = (C[0, 1])L+1 with
a norm

‖(f1, ..., fL+1)‖ = maxi=1,...,L+1‖fi‖∞.

The embedding is given by a formula

T (f) = (f, f (1), ..., f (L)).

Note that
ext (B(Z∗)) = {(0, ...,±δt, 0, ..., 0) : t ∈ [0, 1]}.

To show our claim we prove that X is a weakly separating subspace of Z.
Recall that a linear subspace V of a Banach space W is called weakly sepa-
rating if any point from ext (B(V ∗)) has only one Hahn-Banach extension in
B(W ∗).
So assume x∗ ∈ ext B(X∗). Set

K = {f ∈ B(Z∗) : f |X = x∗}.

We show that K consists of exaclty one element from ext (B(Z∗)). It is easy to
see that K is a convex, weak* closed subset of B(Z∗). By the Banach-Alaoglu

12



theorem K is weakly∗ compact. By the Krein-Milman theorem ext (K) 6= ∅.
First we show that ext (K) ⊂ ext (B(Z∗)). Take any g ∈ ext (K) and assume
g = (g1 + g2)/2, where g1, g2 ∈ B(Z∗). Then

f = gX =
(g1)|X + (g2)|X)

2
.

Since f ∈ ext (B(X∗)), ((g1)|X = f and (g2)|X = f. Hence g1, g2 ∈ K. Since
g ∈ ext (K), g1 = g2, as required.
Now assume on the contrary that K consinsts of more than one element.
Then we can find at least two different points from ext(B(Z∗))

z1 = ±(0, , , .(δs)i, 0, ...0)

z2 = ±(0, , , .(δt)j, 0, ...0)

belonging to ext (K). Hence (z1)|X = (z2)X . But if i < j taking fi(t) = ti we
get (via the isometric embedding) z1(fi) = 1 and z2(fi) = 0. Hence i = j. If
s 6= t taking fi(t) = ti+1, we also get z1(fi) 6= z2(fi). Finally if

z1 = (0, , , .(δt)i, 0, ...0)

z2 = −(0, , , .(δt)i, 0, ...0)

then also z1(fi) 6= z2(fi), where fi(t) = ti. Consequently, z1 = z2; a contradic-
tion. Hence K consists of exactly one element z. By the previous reasoning
z ∈ ext(B(Z∗). Consequently, (via isometric embedding) x∗ = ±δi

t, for some
t ∈ [0, 1] and i = 0, ..., L, as required.

Now we consider the case of Xk. Note that Xk can be isometrically em-
beded into

C = R(k+1)L × C[0, 1]

equipped with a norm

‖(r1, ..., r(k+1)L, f)‖ = max{|ri|, i = 1, ..., (k + 1)L, ‖f‖∞}.

The embedding is given by

T (f) = (f(tj)
(i), i = 0, ..., L− 1, j = 0, ..., k, f (L)).

Reasoning in the same way as in the case of X we get our result.
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THEOREM 4.2 Let Xk = (CL[0, 1], ‖ · ‖k,L), L ≥ 2. Set

g =

∑L−1
i=0 δi

0

L
∈ (Xk)∗

Then ‖g‖ = 1.

Proof. Without loss of generality, we can assume that

0 = to < t1 < ... < tk = 1.

It is clear that ‖g‖ ≤ 1. Assume that ‖g‖ < 1. Then ‖bg‖ = 1 for some b > 1,
since g 6= 0. By Theorem 4.1 and the Krein -Milman Theorem

bg =
L−1∑
i=0

k∑
j=0

aijδ
i
tj

+ u. (12)

Here u is a Radon measure on [0,1] acting as a functional on Xk as

û(f) =

∫
[0,1]

f (L)(t)du(t)

and
L−1∑
i=0

k∑
j=0

|aij|+ ‖u‖ = 1, (13)

where ‖u‖ denotes the total variation of u. First we show that u = 0. Assume
on the contrary that u 6= 0. Then

u = bg −
L−1∑
i=0

k∑
j=0

aijδ
i
tj
.

Note that u =
∑k−1

l=0 ul, where ul is a Radon measure defined by ul(A) =
u(A∩(El = [tl, tl+1)) for l = 0, ..., k−2 and uk−1(A) = u(A∩(Ek−1 = [tk−1, 1]).
Let us first assume that for every l = 0, ..., k − 1 ul = clml, where ml is the
Lebesgue measure on El and cl ∈ R. By the Fundamental Theorem of
Calculus

ml(f) = cl

∫
El

f (L)(s)ds = cl

(
f (L−1)(tl+1)− f (L−1)(tl)

)
14



for l = 0, ..., k − 1. By the Hermite interpolation theorem there exists a
polynomial p such that

p(i)(0) = 0 for i = 0, ..., L− 1,

p(i)(tj) = sgn(aij) for i = 0, ..., L− 2, j = 1, ..., k,

and
p(L−1)(tj) = sgn(aL−1,j − cj−1 + cj)

for j = 1, ..., k. Observe that

0 = (bg)(p) =
L−2∑
i=0

k∑
j=1

|aij|+
k∑

j=1

|aL−1,j + cj−1 − cj|.

Hence all coefficients in the above sum are equal to 0. But this implies that

bg =
L−2∑
i=0

ai,0δ
i
0 + (aL−1,0 − c0)δ

(L−1)
0 .

Since b > 1 and the set {δi
0 : i = 0, ..., L−1} is linearly independent this leads

to a contradiction with (13). So assume that there exists l ∈ {0, ..., k − 1}
such that ul 6= 0 and ul is not a constant multiple of ml. By (12)

u(f) =

∫
[0,1]

f (L)(t)du(t) = 0 (14)

for any f ∈ Xk satisfying

(f)(i)(tj) = 0 for i = 0, ..., L− 1, j = 0, ..., k. (15)

Fix any f ∈ Xk satisfying (14). Suppose there exists D1 ⊂ El and
D2 ⊂ El such that

u(D1) · u(D2) < 0. (16)

Assume u(D1) > 0. Modifying D1 and D2, if necessary, we can assume that
D1 ∩D2 = ∅. By the properties of Radon measures there exists two disjoint
subintervals (let us also denote them by D1, D2) of El of the same lengths
c > 0 satisfying (16). Set

hL(t) = χD1 − χD2 . (17)

15



We now modify hL to a continuous function hl
L on [0,1] with support con-

taining in D1∪D2. To do this fix l ∈ N such that c− 2/l > 0. S Assume that
D1 = (s1, s2), D2 = (w1, w2) and s2 < w1. Set hl

L(t) = hL(t) if t /∈ D1 ∪D2,
hl

L(t) = 1 if t ∈ (s1 + 1/l, s2− 1/l), hl
L(t) = −1 if t ∈ (w1 + 1/l, w2− 1/l) and

define it in the linear way for other t. Note that, for Lebesgue measure m,∫
[0,1]

hl
L(t)dm(t) = 0, (18)

and l can be increased so large that∫
[0,1]

hl
L(t)du(t) > 0. (19)

Set HL(t) = hl
L(t), where l is so chosen that (16) and (19) are satisfied. Set

HL−1(t) =

∫
[0,t]

HL(s)dm(s)

and

Hj−1(t) =

∫
[0,t]

Hj(s)dm(s)

for j = L− 1, ..., 1. Define
G = f + H0.

By the construction of HL ∫
El

Hj(s)dm(s) = 0,

for j = 1, ..., L. Consequently,

(G)(i)(tj) = 0 for i = 0, ..., L− 1, j = 0, ..., k

and thus G satisfies (15). As such G should satisfy (14) - but this is in
contradiction with (19). To end the proof that u = 0, assume that ul does
not satisfy (16). Hence ul or −ul is a nonzero measure on El which is not a
constant multiple of the Lebesgue measure of El. Without loss of generality
we can assume that ul is a measure. By the above conditon ul is not a Haar
measure of El. Hence exists an open interval D1 ⊂ El and t > 0 such that

ul(D1) 6= ul(D1 + t).
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Hence there exists two open disjoint intervals D1, D2 ⊂ El of the same lengths
c > 0 satisfying

ul(D1) 6= ul(D2). (20)

Since obviously m(D1) = m(D2) = c, reasoning as above and replacing (16)
by (20) we get a contradiction with (19). This finally shows that u = 0.
Hence (12) reduces to

bg =
L−1∑
i=0

k∑
j=0

aijδ
i
tj
. (21)

By the Hermite interpolation theorem there exists a polynomial p such that

p(i)(0) = 0 for i = 0, ..., L− 1,

p(i)(tj) = sgn(aij) for i = 0, ..., L− 1, j = 1, ..., k.

Observe that

0 = (bg)(p) =
L−1∑
i=0

k∑
j=1

|aij|.

Hence
aij = 0

for j = 1, ..., k and i = 0, ..., L− 1. By (21),

L−1∑
i=0

(b/n− ai,0)δ
i
0 = 0.

By the linear independence of functionals δi
0, i = 0, ..., L−1, we get ai,0 = b/n

for i = 0, .., L− 1. Hence
L−1∑
i=0

ai,0 = b > 1;

a contradiction with (13). The proof is complete.

COROLLARY 4.1 Let X = (CL[0, 1], ‖ · ‖L). Set

g =

∑L
i=0 δi

0

(L + 1)
∈ X∗.

Then ‖g‖ = 1.
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Proof. Applying Theorem 4.2 to Yk = (CL+1[0, 1], ‖ · ‖k,L+1) and g we get
‖g‖Y ∗

k
= 1, where ‖ · ‖Y ∗

k
denotes the norm on (Yk)∗. By Lemma 4.2, Lemma

4.3 and Theorem 4.2,
‖g‖Y ∗ = 1,

where ‖·‖Y ∗ denotes the norm on Y ∗ where Y = (CL+1[0, 1], ‖·‖L+1). Hence,
using the weak* density of Y in Y ∗∗, there exists a sequence {fk} ⊂ Y with

‖fk‖L+1 = max
i=0,...,L+1

‖f (i)
k ‖∞ = 1,

such that g(fk) → 1. Note that fk ∈ X and

‖fk‖L = max
i=0,...,L

‖f (i)‖∞ ≤ ‖fk‖L+1 = 1.

Hence ‖g‖ = 1, as required.

LEMMA 4.4 Let X = (CL[0, 1], ‖ · ‖L). Fix integer k ∈ [0, L] and set

g =
k∑

i=0

δ
(i)
0 + δ

(k)
1 ∈ X∗.

Set
W = {F ∈ X∗∗ | F (g) = k + 2 and ‖F‖ = 1}.

Then W 6= ∅.

Proof. By Corollary 4.1, there exists F ∈ (XL)∗∗, ‖F‖ = 1 such that

F (δ
(i)
0 ) = 1 for i = 0, ..., k. By the weak* density of X in X∗∗, there ex-

ists a sequence {fj} ⊂ X, ‖fj‖L ≤ 1 such that f
(i)
j (0) → 1 for i = 0, ..., k.

Let us define a sequence of continuous functions {g(k)
j } by g

(k)
j (t) = f

(k)
j (t) if

t ∈ [0, 1− 1/j] g
(k)
j (1) = 1, and in the linear way on the interval [1− 1/j, 1].

Note that for any j ∈ N,
g

(k)
j = f

(k)
j + h

(k)
j

where h
(k)
j (t) = 0 for t ∈ [0, 1− 1/j] and ‖h(k)

j ‖∞ ≤ 2. Let

h
(k−1)
j (t) =

∫ t

0

h
(k)
j (s)ds

18



and

h
(i−1)
j (t) =

∫ t

0

h
(i)
j (s)ds

for i = k − 2, ..., 1. Set
gj = fj + h

(0)
j .

By the Mean Value Theorem

‖g(i)
j ‖∞ ≤ 1 + 2/j

for i = 0, ..., k − 1 and
‖g(k)

j ‖∞ ≤ 1

by definition. Hence ‖gj‖ ≤ 1 + 2/j for j ∈ N. By the Banach Alaoglu
Theorem {gj} has a cluster point F1 ∈ X∗∗, ‖F1‖ = 1. It is clear by definition
of gj that F1 ∈ W.

THEOREM 4.3 Let X = CL[0, 1], ‖ · ‖L) and fix integer k ∈ [0, L− 1]. Set

W = {F ∈ X∗∗ : F (δ
(k)
0 ) = 1, ‖F‖ = 1}.

Assume u is a Borel measure on [0,1]. Define uk ∈ X∗ by

uk(f) =

∫
[0,1]

f (k)(t)du(t). (22)

Then for any F ∈ W and for any Borel measure u on [0,1],

F (uk) ≥ 0.

Proof. Fix F ∈ W and a Borel measure u. By the Goldstine Theorem there
exists a sequence {fl} ⊂ X, ‖fl‖L ≤ 1, such that

fl(δ
(k)
o ) = f

(k)
l (0) → F (δ(k)

o ) = 1 (23)

and

fl(u
(k)) =

∫
[0,1]

f
(k)
l (t)du(t) → F (u(k)). (24)

In particular, ‖f (k+1)
l ‖∞ ≤ 1. Hence by the Mean Value Theorem for any

s, t ∈ [0, 1] l ∈ N,

|f (k)
l (s)− f

(k)
l (t)| ≤ |t− s|.
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Also ‖f (k)
j ‖∞ ≤ 1. By the Ascoli-Arzela Theorem, passing to a subsequence,

if necessary, we can assume that there exists f ∈ C[0, 1] such that

‖f (k)
l − f‖∞ → 0. (25)

Now we show that f(t) ≥ 0 for any t ∈ [0, 1]. By (23), f(0) = 1. Assume on
the contrary, that there exists t0 ∈ (0, 1] such that f(to) < 0. By (23) there
exists δ > 0 such that

|f (k)
l (0)− f

(k)
l (t0)| > 1 + δ.

for l ≥ lo. By The Mean Value Theorem,

1 + δ < |f (k)
l (0)− f

(k)
l (to)| ≤ ‖f (k+1)

l ‖∞t0 ≤ 1;

a contradiction. Hence f(t) ≥ 0 for any t ≥ 0. By (25)

fl(u
(k)) =

∫
[0,1]

f
(k)
l (t)du(t) →

∫
[0,1]

f(t)du(t) ≥ 0,

since f is nonegative and u is a measure. By (24),

F (u(k)) =

∫
[0,1]

f(t)du(t) ≥ 0,

which completes the proof.

THEOREM 4.4 Let X = (CL[0, 1], ‖ · ‖L) and fix integer k ∈ [0, L]. Let
g =

∑k
i=0 δi

o and

W1 = {F ∈ X∗∗ : F (g) = k + 1, ‖F‖ = 1}.

Assume u is a Borel measure on [0,1]. Define uk ∈ X∗ by

uk(f) =

∫
[0,1]

f (k)(t)du(t).

Then there exists F ∈ W1 such that

F (uk) ≥ 0

for any Borel measure u on [0,1]. Moreover F (mk
t ) = 0, for any t ∈ [0, 1],

where

mk
t (f) =

∫
[0,t]

f (k)(t)dm(t)

and m is the Lebesgue measure on [0, 1].
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Proof. Let Z = (CL+1[0, 1], ‖ · ‖). Set g =
∑k+1

i=0 δi
0 and

W2 = {F ∈ Z∗∗ : F (g) = k + 2, ‖F‖ = 1}.

By Corollary 4.1, W2 6= ∅. Take any G ∈ W2. Since W2 ⊂ W, by Theorem
4.7, for any Borel measure u, G(uk) ≥ 0, where uk is a functional defined on
Z by (22). By the Goldstine Theorem applied to B(Z∗∗), there exists a net
{fβ} ⊂ Z, ‖fβ‖ ≤ 1 for any β such that fβ → G weak-∗ in Z∗∗. Since Z ⊂ X
(as sets) {fβ} ⊂ X. Moreover, each fβ has norm one in X, since its norm in
Z is at most one. By the Banach-Alaoglu Theorem applied to B(X∗∗) the
set {fβ} has an accumulation point F ∈ B(X∗∗). Since G ∈ W2,

1 = G(δi
0) = lim

β
f

(i)
β

for i = 0, ..., k + 1. Hence obviously F (δ
(i)
o ) = 1, for i = 0, ..., k. Since

‖F‖ ≥ 1, F ∈ W1. Moreover by Theorem 4.7, for any Borel measure u on
[0, 1]

F (uk) = lim
β

(

∫
[0,1]

f
(k)
β (t)du(t)) = G(uk) ≥ 0,

which proves our claim. In particular, for any t ∈ [0, 1] F (mk
t ) ≥ 0. By the

Fundamental Theorem of Calculus, for any f ∈ X,

mk
t (f) =

∫
[0,t]

f (k)(t)dm(t) = f (k−1)(t)− f (k−1)(0).

Since F ∈ W1,

0 ≤ F (mk
t ) = F (δ

(k−1)
t − δ

(k−1)
0 ) = F (δ

(k−1)
t )− 1.

Hence F (δ
(k−1)
t ) ≥ 1. Since ‖F‖ = 1,

F (δ
(k−1)
t ) = 1.

Consequently, F (mk
t ) = 0, which completes the proof.
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5 Proofs of Minimality

Proof of Theorem 2.3
The fact that P0,n =

∑n
i=0 ui⊗vi is a projection follows from the definition

of each ui and vi; it is easy to check that 〈vi, uj〉 = 0 unless i = j, in which
case the result is 1.

The verification that P0,n preserves the multi-convex shape described by
σ (i.e., P0,nSσ ⊂ Sσ) consists of a direct calculation; let f ∈ Sσ, t ∈ [0, 1],
integer j ≤ M and consider

〈P0,nf, δj
t 〉 =

〈
n−1∑
k=0

f (k)(0)vk + f (L−1)(1)vn, δ
j
t

〉

=
n−1∑
k=j

f (k)(0)v
(j)
k (t) + f (L−1)(1)v(j)

n (t)

≥ 0

since every term in the sum is nonnegtive. Thus P0,n ∈ PSσ (X, Πn)
To verify (3) of Theorem 2.3, note that, from the form of P0,n in (2), we

have ‖P0,n‖ ≤
∑n−1

k=0
1
k!

. If L = n − 1 then by Lemma 4.4 then ‖P0,n‖ =∑n−1
k=0

1
k!

. If L ≥ n Theorem 4.4 guarantees the existence of F ∈ B(X∗∗)
such that F (δi

0) = 1 for i = 0, . . . , n − 1 and F (m) = 0, where m denotes
the Lebesgue measure. But we see from the proof of Theorem 4.4 that F
vanishing on m implies F (δn−1

1 ) = 1, which implies ‖P0,n‖ ≥
∑n−1

k=0
1
k!

and
thus (3) follows.

To show P0,n has minimal norm in PSσ (X, Πn), we consider two cases:
M = n − 1 and M = n. We handle the M = n − 1 case first, using the
following uniqueness argument.

We begin with a corollary given in [9]; it describes how the functionals
that define a projection must be chosen in order for the projection to preserve
shape.

COROLLARY 5.1 (see [9]) Suppose P ∈ PS. If S∗
|V is k-dimensional

then there exists a basis v = (v1, . . . , vn)T for V such that whenever P =
u⊗v ∈ PS, where u = (u1, . . . , un) ∈ (X∗)n, we have, for i = n−k+1, . . . , n,
ui ∈ S∗. Moreover, each such ui restricts to a distinct extreme ray of S∗

|V .

To utilize this result, we note that the proof of Theorem 2.1 demonstrates
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that the simplicial cone S∗
|V has easily-described extreme rays; they are gen-

erated (via nonnegative scalar multiplication) by

{(δ0)|V , (δ1
0)|V , . . . , (δn−1

0 )|V , (δn−1
1 )|V }. (26)

Thus, by Corollary 5.1, every projection P =
∑n

i=0 ui ⊗ v̂i ∈ PSσ (X, Πn)

must be such that ui ∈ S∗ and (ui)|V = (δj
0)|V for some j or (ui)|V = (δn−1

1 )|V .
However, it is easy to check that for every j there exists a unique element of
S∗ whose restriction to V is (δj

0)|V - namely δj
0. Similarly, δ

(n−1)
1 is the unique

element of S∗ with restriction to V given by (δn−1
1 )|V . Consequently, the form

of P0,n given in (2) implies that P0,n is the unique element of PSσ (X, Πn)
and therefore of minimal norm.

We consider now the case M = n. Unlike the previous case, the projection
P0,n is not unique in PSσ (X, Πn); indeed consider P0,n written in the following
way:

P0,n = δ0 ⊗ 1 + δ1
0 ⊗

x

1!
+ · · ·+ δn−1

0 ⊗ xn−1

(n− 1)!
+ (δn−1

1 − δn−1
0 )⊗ xn

n!
.

Replacing the functional (δn−1
1 − δn−1

0 ) with (a positive scalar multiple of)
any nonzero element from the weak* closure of cone{δn

t }t∈[0,1] will result
in a element of PSσ (X, Πn). In fact, by Corollary 5.1 every element of
PSσ (X, Πn) can be constructed in this way. And it is because of this that
we are unable to appeal to standard theory of minimal projections, (described
for example in [9]) which relies on best approximations from a linear space
(and not from a cone). Thus we proceed in the following way: we show that
replacing (δn−1

1 − δn−1
0 ) in P0,n with any other allowable functional from S∗

results in an element of PSσ (X, Πn) with norm at least as large as ‖P0,n‖.
The following summarizes the form of an element from PSσ (X, Πn) in the
M = n case.

LEMMA 5.1 Let Q ∈ PSσ (X, Πn). Then there exists u ∈ X∗ such that

Q = δ0 ⊗ 1 + δ1
0 ⊗

x

1!
+ · · ·+ δn−1

0 ⊗ xn−1

(n− 1)!
+ u⊗ xn

n!
.

Moreover, there exists a probabilistic Borel measure µ such that for every
f ∈ X we have

u(f) =

∫ 1

0

f (n)(t) dµ(t) (27)
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Proof. Fix the basis {1, x, x/2!, . . . , xn/n!}; then Corollary 5.1 guarantees
this representation of Q and implies that u ∈ S∗ ⊂ X∗. Furthermore E(S∗),
the set of extreme rays of S∗, is (strictly) contained in the set of rays

{[δj
t ]+ | t ∈ [0, 1], j = 0, . . . , n}.

Let
C = co (E(S∗) ∩ S(X∗))

where the closure is taken with respect to the weak* topology. Note that
ext(C) ⊂ {δj

t | t ∈ [0, 1], j = 0, . . . , n}. Then by Proposition 2 from [31], for
every non-zero φ ∈ S∗, there exists a positive scalar c ∈ R and a probabilistic
Borel measure µ supported on ext(C) such that µ represents cφ (in the sense
of Choquet); i.e.,

φ(f) =

∫
ext(C)

f(δ) dµ(δ)

for every f ∈ X. Consider now our u above; the fact that 〈xi, u〉 = 0 for
every i = 0, . . . , n − 1 implies that a representing measure µ for u cannot
have any positive support on the set of extreme points of C of the form
{δj

t | t ∈ [0, 1], j = 0, . . . , n− 1}. And thus the representation in (27) is the
only choice.

Now from Theorem 4.4, we have the existence of an F ∈ B(X∗∗) such that
F (δi

0) = 1 for i = 0, . . . , n − 1 and F (u) ≥ 0. Therefore ‖Q‖ ≥
∑n−1

k=0
1
k!

which implies P0,n is of minimal norm in the M = n case. This completes
the proof of Theorem 2.3.

REMARK 5.1 Let X = (CL[0, 1], ‖ · ‖2,L), where

‖f‖2,L = max

{
max

j=0,...,L−1
{|f (j)(0)|, |f (j)(1)|}, ‖f (L)‖∞

}
.

Note that ‖ · ‖L and ‖ · ‖2,L are equivalent since(
2

3

)L

‖ · ‖L ≤ ‖ · ‖2,L ≤ ‖ · ‖L.

And so P0,n ∈ PSσ (X, Πn). Moreover, an arguement identical to the above
shows P0,n is minimal in PSσ (X, Πn) (for either M = n− 1 or M = n) and

and (by Lemma 4.4 and Theorem 4.4) ‖P0,n‖ =
∑n−1

k=0
1
k!

.
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Proof of Theorem 2.4
To simplify notation, let P denote the operator Pm+1,n+1 defined in (4).

Also, for positive integer k, we will denote the Banach space Ck[0, 1] as simply
Ck.

We begin by verifying that P is a projection onto [1, W0, W1, . . . ,Wn].
Let k(x) denote a (non-zero) constant function and note that

(Pk)(x) = (k(0) + k(1))/2 = k(x)

since k′ ≡ 0; thus (P1)(x) = 1. Moreover, using the fact that Pm,n is a
projection onto Y , we have for each integer j ∈ [0, n]

(PWj)(x) = (Wj(0) + Wj(1))/2 +

∫ x

0

wj(t) dt−Wj(1)/2

= Wj(x)

since Wj(0) = 0. Thus P is a projection onto [1, W0, W1, . . . ,Wn]. Note the
following (derivative) relationships between projections P and Pm,n: for any
f ∈ CL+1, integer j ∈ [1, L + 1] and x ∈ [0, 1] we have

(Pf)j(x) = (Pm,nf
′)(j−1)(x). (28)

To see that P preserves shape, let f ∈ Sσ̂ ⊂ CL+1 and fix integer j ∈
[m + 1, M + 1]. Then (28) implies (Pf)j(x) ≥ 0 since f ′ ∈ Sσ ⊂ CL and
Pm,n ∈ PSσ (CL, W ). Hence

P ∈ PS
σ̂

(CL+1, [1, W0, W1, . . . ,Wn].

We now verify (5). Let A = {f ′ | f ∈ B(CL+1)}. We claim

A = B(CL); (29)

clearly A ⊂ B(CL). Let g ∈ B(CL) and define f(x) =
∫ x

0
g(t) dt. Note that

f ∈ CL+1, since for each integer j ∈ [1, L + 1] we have

f (j)(x) = g(j−1)(x). (30)

Furthermore, from (30) if follows that ‖f (j)‖∞ ≤ 1 for each integer j ∈
[1, L + 1]. And finally using the definition of f we have ‖f‖∞ ≤ ‖g‖∞ ≤ 1
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and thus f ∈ B(CL+1). This establishes our claim in (29) since g = f ′. We
are now ready to compare ‖P‖ and ‖Pm,n‖. Recall that

‖P‖ = sup
f∈B(CL+1)

‖Pf‖ = sup
f∈B(CL+1)

max
j=0,...,L+1

‖(Pf)(j)‖∞

= max
j=0,...,L+1

sup
f∈B(CL+1)

‖(Pf)(j)‖∞.

Consider first the case in which j ≥ 1; for each such j we have

sup
f∈B(CL+1)

‖(Pf)(j)‖∞ = sup
f∈B(CL+1)

sup
x∈[0,1]

|(Pf)(j)(x)|

= sup
f∈B(CL+1)

sup
x∈[0,1]

|(Pm,nf
′)(j−1)(x)| by (30)

= sup
f∈B(CL+1)

‖(Pm,nf
′)(j−1)‖∞

= sup
f∈A

‖(Pm,nf)(j−1)‖∞

= sup
f∈B(CL)

‖(Pm,nf)(j−1)‖∞ by (29).

Consequently we have

max
j=1,...,M+1

sup
f∈B(CL+1)

‖(Pf)(j)‖∞ = max
k=0,...,M

sup
f∈B(CL)

‖(Pm,nf)(k)‖∞

= ‖Pm,n‖.
(31)

To finish the comparison, we must check the j = 0 case. Recalling the form
of P (or equivalenly Pm+1,n+1) given in (4), we find

sup
f∈B(CL+1)

‖(Pf)‖∞ ≤ 1+ sup
f∈B(CL+1)

∥∥∥∥∫ x

0

(Pm,nf
′)(t) dt− 1

2

∫ 1

0

(Pm,nf
′)(t) dt

∥∥∥∥ .

(32)
However, the right-hand side of (32) becomes

1+ sup
f∈B(CL+1)

∥∥∥∥1

2

∫ x

0

(Pm,nf
′)(t) dt− 1

2

(∫ 1

0

(Pm,nf
′)(t) dt−

∫ x

0

(Pm,nf
′)(t) dt

)∥∥∥∥
∞

26



= 1 +
1

2
sup

f∈B(CL+1)

∥∥∥∥∫ x

0

(Pm,nf
′)(t) dt−

∫ 1

x

(Pm,nf
′)(t) dt

∥∥∥∥
∞

= 1 +
1

2
sup

f∈B(CL+1)

sup
x∈[0,1]

∣∣∣∣∫ x

0

(Pm,nf
′)(t) dt−

∫ 1

x

(Pm,nf
′)(t) dt

∣∣∣∣
≤ 1 +

1

2
sup

f∈B(CL+1)

∫ 1

0

|Pm,nf
′)(t)| dt

= 1 +
1

2
sup

f∈B(CL)

∫ 1

0

|Pm,nf)(t)| dt by (29)

≤ 1 +
1

2
‖Pm,n‖.

Thus

sup
f∈B(CL+1)

‖(Pf)‖∞ ≤ 1 +
1

2
‖Pm,n‖ ≤ ‖Pm,n‖

since, by assumption, ‖Pm,n‖ ≥ 2. This result, in combination with (31),
establishes (5) and completes the proof of Theorem 2.4.

REMARK 5.2 This proof demonstrates that when CL[0, 1] is normed by
‖ · ‖L, the construction given in (4) is (operator) norm-preserving. It is a
staightforward verification that this proof can be repeated when ‖ · ‖L is
replaced by ‖ · ‖2,L and thus we have norm preservation in this case as well.

Proof of Theorem 2.5
We begin by verifying this theorem in the (L + k)-norm case. For notation
sake, let XL+k = (CL+k[0, 1], ‖·‖L+k). From our assumption on the construc-
tion of Pk,n+k and Theorem 2.4 we have that Pk,n+k ∈ PSσ (XL+k, Πn+k) and

‖Pk,n+k‖ = ‖P0,n‖. (33)

In fact, we can say more; a straightforward generalization of (29) gives{
f (k) | f ∈ B(XL+k)

}
= B(XL)

and so

‖P0,n‖ = sup
f∈B(XL)

‖P0,nf‖∞

= sup
f∈B(XL+k)

‖P0,n(f (k))‖∞

= sup
f∈B(XL+k)

‖(Pk,n+kf)(k))‖∞.
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This result, together with (33), yields

‖Pk,n+k‖ = sup
f∈B(XL+k)

‖(Pk,n+kf)(k))‖∞. (34)

Let Q ∈ PSσ (XL+k, Πn+k). Recall M = maxσi=1 i. Then by Corollary 5.1
there exists {v̂0, v̂1, . . . , v̂n+k} for Πn+k such that Q may be represented as

Q =
k−1∑
i=0

φi ⊗ v̂i +
n+k−1∑

i=k

δi
0 ⊗ v̂i + ∆⊗ v̂n+k (35)

where, in the case M = n + k − 1, ∆ = δn+k−1
1 and otherwise (M = n + k)

∆ is any non-zero element of the weak* closure of the cone generated by the
set {δn+k

t }t∈[0,1]. We claim that for i = 0, . . . , k−1, the degree of v̂i is strictly
less than k. To the contrary, suppose for some i we have k ≤ deg(v̂i) ≤ n+k.

If deg(v̂i) < n + k then 〈v̂i, δ
deg(v̂i)
0 〉 6= 0 which is a contradiction; a similar

conclusion is obtained if deg(v̂i) = n + k since 〈v̂i, ∆〉 6= 0. Thus deg(v̂i) < k
for i = 0, . . . , k − 1. For i = k, . . . , n + k, write v̂i = aivi + pi where ai ∈ R,
vi is as in Theorem 2.3, and pi ∈ Πn+k. Using an orthogonality argument
identical to that above (e.g., 〈v̂i, δ

j
0〉 = 0 whenever i 6= j), we conclude that

ai = 1 and deg(pi) < k. Thus

(Qf)(k) = (Pk,n+kf)(k) (36)

and so by (34) we find

‖Q‖ ≥ sup
f∈B(XL+k)

‖(Qf)(k)‖∞ = sup
f∈B(XL+k)

‖(Pk,n+kf)(k)‖∞ = ‖Pk,n+k‖.

Therefore Pk,n+k has minimal norm in PSσ (XL+k, Πn+k).
Consider now the case X2,L+k = (CL+k[0, 1], ‖ · ‖2,L+k). From our as-

sumption on the construction of Pk,n+k and Remarks 5.1 and 5.2 we have
that Pk,n+k ∈ PSσ (X2,L+k, Πn+k) and

‖Pk,n+k‖2,L+k = ‖P0,n‖2,L, (37)

where ‖Q‖2,L+k denotes the operator norm of Q defined on X2,L+k. From
Remark 5.1 we have that ‖P0,n‖2,L has minimal norm (in the context of
Theorem 2.3 and Remark 5.1) and therefore, from an arguement identical
to that above in the L-norm case, we can conclude that Pk,n+k is a minimal
norm element from PSσ (X2,L+k, Πn+k).
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We now make the following observation; note that

Pk,n+k : XL+k = (CL+k[0, 1], ‖ · ‖L+k) → Y = (Πn+k, ‖ · ‖2,L+k)

is an operator which preserves the multi-convex shape Sσ. From the form
of Pk,n+k, it follows that the operator norm of Pk,n+k : XL+k → Y is equal to
the operator norm of Pk,n+k ∈ PSσ (X2,L+k, Πn+k). Let ‖Pk,n+k‖ denote this
common value. Again using the form of Pk,n+k we find

‖Pk,n+k‖ = sup
f∈B(X2,L+k)

sup
t∈{0,1}

|(Pk,n+kf)(k)(t)|.

We claim that Pk,n+k has minimal (operator) norm among all operators be-
tween spaces XL+k and Y preserving Sσ. Indeed, let Q be any such operator.
From Remark 5.1 we recall that norms ‖ · ‖L+k and ‖ · ‖2,L+k are equivalent
and therefore we may consider Q as an element of PSσ (XL+k, Πn+k) - i.e.,
a projection from XL+k onto subspace Πn+k such that QSσ ⊂ Sσ. This
implies that Q : XL+k → Y has the form described in (35) and therefore we
have the relation in (36). The minimal of Pk,n+k : XL+k → Y follows since

‖Q‖ = sup
f∈B(XL+k)

‖Qf‖2,L+k

≥ sup
f∈B(XL+k)

sup
t∈{0,1}

|(Qf)(k)(t)|

= sup
f∈B(XL+k)

sup
t∈{0,1}

|(Pk,n+kf)(k)(t)|

= sup
f∈B(X2,L+k)

sup
t∈{0,1}

|(Pk,n+kf)(k)(t)|

= ‖Pk,n+k‖.

Finally, let X = (CL+k[0, 1], ‖ · ‖) such that

‖ · ‖2,L+k ≤ ‖ · ‖ ≤ ‖ · ‖L+k.

From the definitions of the L- and (2, L)-norms, we have

‖Pk,n+k‖2,L+k ≤ ‖Pk,n+k‖X ≤ ‖Pk,n+k‖L+k

where ‖Pk,n+k‖X is the operator norm of Pk,n+k defined on X. But from (33),
(37) and Remark 5.1 we find

‖Pk,n+k‖X = ‖Pk,n+k‖2,L+k = ‖Pk,n+k‖L+k.
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As done above, let ‖Pk,n+k‖ denote this common value. To show Pk,n+k has
minimal norm in PSσ (X, Πn+k) let Q ∈ PSσ (X, Πn+k). Note that we have
Q : XL+k → Y such that QSσ ⊂ Sσ and so

‖Q‖X = sup
f∈B(X)

‖Qf‖ ≥ sup
f∈B(XL+k)

‖Qf‖2,L+k ≥ ‖Pk,n+k‖
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