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Abstract

Let K be an algebraically closed field of characteristic 0. In this
paper we consider the following cancellation problem. Let X be an
affine variety and F an algebraic line bundle on X. Suppose that a
variety Y and an isomorphism Y x K™ = E x K™ are given. Is it
true that Y =2 E?7 We give an affirmative solution if X is either non-
K-uniruled or it is unirational and has a non-uniruled component at
infinity.

1 Introduction

We shall work in the category of algebraic varieties over an algebraically
closed field K of characteristic 0. By a variety we will usually mean an
irreducible algebraic variety.

A variety X has the cancellation property if it satisfies the condition: if
Y is a variety such that for some m > 0 there is an isomorphism X x K™ =
Y x K™ then X 2 Y. Furthermore, we say that a variety X has the strong
cancellation property if every isomorphism f : X x K™ —Y x K™ satisfies
the condition: for each x € X there exists y € Y such that f({z} xK™) =
{y} x K™ (clearly, then f induces the isomorphism between X and Y).



It is well-known that affine curves have the cancellation property (a more
general result was proved by Abhyankar, Eakin and Heinzer in [1]), but
surfaces may not have this property (see Danielewski [3]).

Zariski’s Cancellation Problem asks if K" has the cancellation property.
The affirmative answer for n = 2 is due to Fujita [6] and Miyanishi-Sugie
[15]. For n > 2 this problem remains open.

A variety of non-negative logarithmic Kodaira dimension has the strong
cancellation property, which was proved by Iitaka and Fujita in [8]. This
property has also an affine variety which is either non-K-uniruled or it is
unirational of dimension greater than 1 and has a non-uniruled component
at infinity (see [4]).

In this paper we extend the last result, namely, we will prove the following

Theorem 1. Suppose that an affine variety X is either non-K-uniruled or it
s unirational of dimension greater than 1 and has a non-uniruled component
at infinity. Then

(1) X has the strong cancellation property.

(i1) any algebraic line bundle on X has the cancellation property.

We use the following terminology.

A variety X of positive dimension n is said to be uniruled (K-uniruled)
if there exists a variety W of dimension n — 1 and a dominant rational
map W x P/(K) --» X (a dominant morphism W x K— X). A reducible
variety is said to be uniruled (K-uniruled) if all its irreducible components
are uniruled (K-uniruled).

A variety X of dimension n is said to be unirational if there exists a
dominant rational map P" --» X.

A projective variety which contains a variety X as an open subset is called
a compactification of X.

An affine variety X has a non-uniruled component at infinity if there
exists a compactification X of X such that some component of the set X \ X
is non-uniruled (it is well-known that for any compactification X of X the
set X \ X is of pure dimension dim X — 1).

In the sequel mx denotes the projection X x K™ 3 (z,t) — z € X.

2  Proof of Theorem 1.

Lemma 1. Let X be an affine variety. Suppose that there exists a variety
Y and a dominant morphism f : Y x K™ — X such that f({b} x K™) has
positive dimension for some b € Y. Then X is K-uniruled. Furthermore, if
Y is unirational then X has only uniruled components at infinity.



Proof. Tt suffices to give the proof for m = 1 (to see this observe that
there is a line L in K™ such that f({b} x L) has positive dimension, so
changing coordinates we may assume that there exists a dominant morphism
(Y x K™ ') x K— X not contracting of {b'} x K for some b’ € Y x K™ 1),

The proof is by induction on r := dimY. Let n :=dim X. If r =n —1
then X is K-uniruled by definition. Furthermore, if Y is unirational with
a dominant rational map ¢g : P” --» Y then we have a dominat morphism
resg X idg : U Xx K—Y XK, where U is the domain of g. Consequently we
have a dominant morphism U x K — X. Since P" x P! is a smooth compact-
ification of U x K and (P" x P!) \ (U x K) is uniruled, for every compactifi-
cation X of X the set X \ X is uniruled by [11, th.4].

Suppose r > n. Let Z = {y € Y : dim f({y} xK) = 0}. This is a
closed subset of Y, because if X is contained in K™ and f = (fi, ..., fy) then
non—empfy bpen subset in Y then we may always assume that b € V. Let X
be an open subset of X such that dim f~!(z) = r+1—mn for each x € X,. We
may assume that f({b} x K) meets Xy. Choose a € f({b} x K) N X, and a
hyperplane section H of X passing through a and not containing f({b} x K).
Clearly, f~'(H) is of pure dimension r. Let S be a component of f~'(H)
such that SN f~ (a)N({b} xK) # 0. Put f =res f : S — H and @ = resmy :
S —Y. These morphisms are dominant, since dim f~'(a) = r +1 —n and
dim771(b) = 0.

First we show that X is K-uniruled. Choose ¢ € SN f~1(a) N ({b} x K)
and a hypersurface H' contained in S such that ¢ € H' and dim(H' N
f~Ya)) < dim f~*(a). Then resf : H — H is dominant. Consequently
res f : T(H') x K— X is dominant, since H U f({y} x K) is contained in the
closure of f(7(H') x K). This proves that X is K-uniruled.

Suppose now that Y is unirational. Let Y be a non-singular open subset
of Y such that dim7~'(y) = 0 and {y} x K is not contained in f~'(H)
for each y € Y;. We may assume that there is an open subset U in P"
and a finite morphism U — Y{, and that b € Y. Let us choose an unirational
hypersurface H” contained in Yj such that b € H” and dim(H"N#x(f~(a))) <
dim f~'(a). Since H” is locally principal in Y; (we have assumed that Y is
smooth), 77 1(H") is of pure dimension r — 1 and dim(7~'(H") N f~(a)) <
dim f~'(a). Hence res f : #~'(H") — H is dominant. So similarly as above,
res f : H” x K— X is dominant. This concludes the proof. ]

Now we come to the following

Problem 1. Let R be a ring (commutative with identity). Suppose that A is
an R-algebra and there is an R-isomorphism of polynomial rings R[Ty, ... Ty11]
= ATy, .. T,). Is it true that A is R-isomorphic to R[T1]?
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This problem was considered in [1], [2], [9] and [13]. Generally the answer
is negative. Asanuma gave a counterexample in [2]| if char R > 0 (see also
section 4). In the next section we prove that if R is a coordinate ring of
a smooth affine variety then the answer is affirmative. Although this is a
consequence of more general results from papers mentioned above, we will
give a short geometric proof.

In the proof of Theorem 1 we shall use the following

Theorem 2. (Hamann, [9].) If R is a Q-algebra then Problem 1 has an
affirmative solution.

We will need also an elementary

Lemma 2. Let X be a variety and p; : E; — X be an algebraic line bundle on
X fori=1,2. Then E1 = F5 as line bundles on X provided that there exists
m > 0 and an isomorphism f : Ey x K™ — Ey x K™ such that the following
diagram is commutative

E1 x K™ E2 x K™
o e
Ey Ey

Proof. Suppose that E; is given by an open cover {U,} of X and by transition
functions ggﬂ : Uy, NUz— K" for i = 1,2. Clearly, we can identify E; x K™
with the direct sum of E; and the trivial bundle X x K™. Hence

i gé,ﬂ 0
. 0 I,

are transition functions for E; x K™ on U, N U, where I, is the identity
in GL(K™). Obviously, f induces the family of polynomial isomorphisms of
trivial bundles f, : U, x K™™' — U, x K™ such that for each u € U, N Us,

faluy )G(lxﬂ(u) = Gi,ﬁ(“)fﬁ(uv' )-

Denote by Jf,(u) the Jacobi matrix of f,(u, ) for u € U,, and by h, the
Jacobian of f,, i.e., hy : Uy 3 u— det Jfo(u, ) € K*. Then for u € U, NUp,

ha (1) ga,5(1t) = ga 5 (u)hs(u).

Thus the family {h,} determines the isomorphism between E; and Es. This
concludes the proof. O



Proof of theorem 1. The following easy observation will be needed: if V;
and V5 are affine varieties and V; x K™ =2V, x K™ then V; dominates V5 and
conversely. In particular, if V; is unirational then so is V5.

(i) Let f: Y xK™— X x K™ be an isomorphism. Applying Lemma 1
to mx o f, we find a morphism ¢ : Y — X such that 7x o f = g o my. This
implies that X has the strong cancellation property.

(ii) Let p : E— X be an algebraic line bundle on X and f: YV x K" —
E x K™ an isomorphism. Again, by Lemma 1 there exists a morphism
q : Y — X such that the following diagram is commutative

Y x K™ Ex K™
iﬂ'X
Ty E
ip
Y . X

Therefore if E is trivial on an affine open subset U of X then resq :
q Y(U) — U is a trivial bundle by the geometric version of Theorem 2. Thus
q:Y — X is a line bundle and Lemma 2 concludes the proof. O]

Remark 1. Theorem 1 remains true if we assume that X \ Sing X is either
non-K-uniruled or it is unirational of dimension greater than 1 and has a
non-uniruled hypersurface at infinity.

For any variety X we denote, here and in the sequel, the singular locus
by Sing X and the set of non-singular points by Reg X = X \ Sing X.

A variety X of dimension n has a non-uniruled hypersurface at infinity
if there exists a compactification X of X such that the set X \ X has a
non-uniruled component of dimension n — 1.

Proof. The above proof works also in this situation, we only need to modify
Lemma 1 slightly. Furthermore, the following observation will be needed:
if f @ YXxK"-SXxK" (f : Y XK"—ExK™, where p : F— X is
a line bundle on X) is an isomorphism then it induces the isomorphism
res f : RegY X K™ — Reg X X K™ (res f : RegY x K™ — Reg E x K™).

The details are left to the reader. O

3 More about Problem 1

We give now a solution of Problem 1 when R is the coordinate ring of a
smooth affine variety over an algebraically closed field K of arbitrary char-
acteristic.



Proposition 1. Let X be an affine smooth variety. Let Y be a variety with
a morphism q : Y — X and let f: X x K™™' =Y x K™ be an isomorphism
such that mx = qomy o f. Then there exists an isomorphism g : X xK—Y
such that qo g = mx.

XXKerl ; Y x K™
-

Proof. First observe that all fibers of ¢ are isomorphic to K. Indeed, f takes
T (2) 2 K™ onto ¢ (x) x K™, so ¢~!(z) = K, because affine curves have
the cancellation property. Take now the zero section so : X 3 z — (z,0) €
X xK™1' Then s : X > 2 — 7my(f(so(x))) € Y is a section of ¢, i.e.,
qos = idx. In particular, s is a closed immersion and I' := s(X) meets
transversally all fibers of g. We shall show that ¢ : Y — X is a line bundle.
Since X and Y are smooth, we have isomorphisms 7% : Pic(X)—
Pic(X x K™ and 7% : Pic(Y) — Pic(Y x K™) (see [10, p.134,141]). Hence
q* : Pic(X) — Pic(Y) is an isomorphism too. For a prime divisor I' on Y there
exists a divisor D on X such that I" and ¢*(D) are linearly equivalent. Let
{U;} be an open affine cover of X such that DNU; is principal in U;. Clearly,
¢*(D)Ng ' (U;) is principal in ¢~ *(U;), and so is T'Ng~(U;). This implies that
the ideal of T'Ng~*(U;) is generated in the coordinate ring K[g~*(U;)] by some
function F; € K[g~'(U;)]. Now F; restricts to a coordinate function on 7! (x)
for each x € U;, because ¢ '(z) =2 K and ' meets ¢~ '(z) at only one point
transversally. Therefore the morphism ¢~ 1(U;) 2 y — (q(y), Fi(y)) € U; x K
is bijective, so it is an isomorphism by Zariski’s Main Theorem. Thus we
have showed that ¢ : Y — X is a line bundle. Now Lemma 2 concludes the
proof. O

4 Final remarks

We shall begin with
Question 1. Is it true that an affine variety with a non-uniruled compo-
nent at infinity has the cancellation property?



By Theorem 1 the answer is affirmative if we add the unirationality as-
sumption, as well as for any line bundle on a non-uniruled variety.

It is a good place to mention our result from [5] which is connected with
the stable equivalence problem (see also [12])

Let X be a smooth affine variety and let H be a non-uniruled hypersur-
face in X. Suppose that f: X x K™ =Y x K™ is an isomorphism such that
f(HxK™) = H x K™, where H' is a hypersurface in a variety Y. Then for
each v € X there exists y € Y such that f({z} x K™) = {y} x K™.

Question 2. Suppose that an affine variety X has the strong cancellation
property. Does it follow that X x K has the cancellation property?

Again, Theorem 1 gives the affirmative answer for some varieties. This
question was already considered by Asanuma in [2|, where he showed that if
char K > 0 then the answer is no. His example was a rational curve with the
coordinate ring K[T™, T"*!], where n > 1 (this is also a counterexample to
Problem 1).

On the other hand if char K = 0 we have the following

Corollary 1. If X and Y are affine curves then the surface X XY has the
cancellation property.

Proof. The hardest case, when X =Y = K follows from |6] and [15].

If X is non-isomorphic to K then X \ Sing X is non-K-uniruled. (This
is a consequence of the following arguments: (1) every smooth affine and
K-uniruled curve is isomorphic to K; (2) if C' is an affine curve then every
non-constant morphism K— C' is finite and hence surjective.) Thus, by
Remark 1, X x K has the cancellation property.

The case when neither X = K nor Y = K again follows from Remark 1,
since the set X x Y \ Sing(X xY) = [(Reg X) x Y] N [X x RegY)] is non-
K-uniruled. This concludes the proof. O

We give one more result a proof of which is left as an exercise.

Proposition 2. Theorem 1 remains true for any affine variety X such that
every dominant morphism X — X is birational (for ezample, X satisfies this
condition if it is of hyperbolic type, i.e., R(X) = dim X; see |7, p. 335]). O
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