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Abstract

Let K be an algebraically closed �eld of characteristic 0. In this
paper we consider the following cancellation problem. Let X be an
a�ne variety and E an algebraic line bundle on X. Suppose that a
variety Y and an isomorphism Y ×Km ∼= E×Km are given. Is it
true that Y ∼= E? We give an a�rmative solution if X is either non-
K-uniruled or it is unirational and has a non-uniruled component at
in�nity.

1 Introduction

We shall work in the category of algebraic varieties over an algebraically
closed �eld K of characteristic 0. By a variety we will usually mean an
irreducible algebraic variety.

A variety X has the cancellation property if it satis�es the condition: if
Y is a variety such that for some m ≥ 0 there is an isomorphism X ×Km ∼=
Y ×Km then X ∼= Y . Furthermore, we say that a variety X has the strong
cancellation property if every isomorphism f : X ×Km→Y ×Km satis�es
the condition: for each x ∈ X there exists y ∈ Y such that f({x}×Km) =
{y}×Km (clearly, then f induces the isomorphism between X and Y ).
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It is well-known that a�ne curves have the cancellation property (a more
general result was proved by Abhyankar, Eakin and Heinzer in [1]), but
surfaces may not have this property (see Danielewski [3]).

Zariski's Cancellation Problem asks if Kn has the cancellation property.
The a�rmative answer for n = 2 is due to Fujita [6] and Miyanishi-Sugie
[15]. For n > 2 this problem remains open.

A variety of non-negative logarithmic Kodaira dimension has the strong
cancellation property, which was proved by Iitaka and Fujita in [8]. This
property has also an a�ne variety which is either non-K-uniruled or it is
unirational of dimension greater than 1 and has a non-uniruled component
at in�nity (see [4]).

In this paper we extend the last result, namely, we will prove the following

Theorem 1. Suppose that an a�ne variety X is either non-K-uniruled or it
is unirational of dimension greater than 1 and has a non-uniruled component
at in�nity. Then
(i) X has the strong cancellation property.
(ii) any algebraic line bundle on X has the cancellation property.

We use the following terminology.
A variety X of positive dimension n is said to be uniruled (K-uniruled)

if there exists a variety W of dimension n − 1 and a dominant rational
map W ×P1(K) 99K X (a dominant morphism W ×K→X). A reducible
variety is said to be uniruled (K-uniruled) if all its irreducible components
are uniruled (K-uniruled).

A variety X of dimension n is said to be unirational if there exists a
dominant rational map Pn 99K X.

A projective variety which contains a variety X as an open subset is called
a compacti�cation of X.

An a�ne variety X has a non-uniruled component at in�nity if there
exists a compacti�cation X of X such that some component of the set X \X
is non-uniruled (it is well-known that for any compacti�cation X of X the
set X \X is of pure dimension dim X − 1).

In the sequel πX denotes the projection X ×Km 3 (x, t) 7→ x ∈ X.

2 Proof of Theorem 1.

Lemma 1. Let X be an a�ne variety. Suppose that there exists a variety
Y and a dominant morphism f : Y ×Km→X such that f({b}×Km) has
positive dimension for some b ∈ Y . Then X is K-uniruled. Furthermore, if
Y is unirational then X has only uniruled components at in�nity.
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Proof. It su�ces to give the proof for m = 1 (to see this observe that
there is a line L in Km such that f({b}×L) has positive dimension, so
changing coordinates we may assume that there exists a dominant morphism
(Y ×Km−1)×K→X not contracting of {b′}×K for some b′ ∈ Y ×Km−1).

The proof is by induction on r := dim Y . Let n := dim X. If r = n − 1
then X is K-uniruled by de�nition. Furthermore, if Y is unirational with
a dominant rational map g : Pr 99K Y then we have a dominat morphism
res g× idK : U ×K→Y ×K, where U is the domain of g. Consequently we
have a dominant morphism U ×K→X. Since Pr ×P1 is a smooth compact-
i�cation of U ×K and (Pr ×P1) \ (U ×K) is uniruled, for every compacti�-
cation X of X the set X \X is uniruled by [11, th.4].

Suppose r ≥ n. Let Z = {y ∈ Y : dim f({y}×K) = 0}. This is a
closed subset of Y , because if X is contained in KN and f = (f1, ..., fN) then
Z =

⋂
i=1,...,N

⋂
s,t∈K{y ∈ Y : fi(y, s)−fi(y, t) = 0}. In particular, if V is any

non-empty open subset in Y then we may always assume that b ∈ V . Let X0

be an open subset of X such that dim f−1(x) = r+1−n for each x ∈ X0. We
may assume that f({b}×K) meets X0. Choose a ∈ f({b}×K) ∩X0 and a
hyperplane section H of X passing through a and not containing f({b}×K).
Clearly, f−1(H) is of pure dimension r. Let S be a component of f−1(H)
such that S∩f−1(a)∩({b}×K) 6= ∅. Put f̃ = res f : S→H and π̃ = res πY :
S→Y . These morphisms are dominant, since dim f̃−1(a) = r + 1 − n and
dim π̃−1(b) = 0.

First we show that X is K-uniruled. Choose c ∈ S ∩ f−1(a) ∩ ({b}×K)
and a hypersurface H ′ contained in S such that c ∈ H ′ and dim(H ′ ∩
f̃−1(a)) < dim f̃−1(a). Then res f : H ′→H is dominant. Consequently
res f : π̃(H ′)×K→X is dominant, since H ∪ f({y}×K) is contained in the
closure of f(π̃(H ′)×K). This proves that X is K-uniruled.

Suppose now that Y is unirational. Let Y0 be a non-singular open subset
of Y such that dim π̃−1(y) = 0 and {y}×K is not contained in f−1(H)
for each y ∈ Y0. We may assume that there is an open subset U in Pr

and a �nite morphism U →Y0, and that b ∈ Y0. Let us choose an unirational
hypersurface H ′′ contained in Y0 such that b ∈ H ′′ and dim(H ′′∩π̃(f̃−1(a))) <
dim f̃−1(a). Since H ′′ is locally principal in Y0 (we have assumed that Y0 is
smooth), π̃−1(H ′′) is of pure dimension r − 1 and dim(π̃−1(H ′′) ∩ f̃−1(a)) <
dim f̃−1(a). Hence res f : π̃−1(H ′′)→H is dominant. So similarly as above,
res f : H ′′×K→X is dominant. This concludes the proof.

Now we come to the following

Problem 1. Let R be a ring (commutative with identity). Suppose that A is
an R-algebra and there is an R-isomorphism of polynomial rings R[T1, ....Tn+1]
∼= A[T1, ..Tn]. Is it true that A is R-isomorphic to R[T1]?
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This problem was considered in [1], [2], [9] and [13]. Generally the answer
is negative. Asanuma gave a counterexample in [2] if char R > 0 (see also
section 4). In the next section we prove that if R is a coordinate ring of
a smooth a�ne variety then the answer is a�rmative. Although this is a
consequence of more general results from papers mentioned above, we will
give a short geometric proof.

In the proof of Theorem 1 we shall use the following

Theorem 2. (Hamann, [9].) If R is a Q-algebra then Problem 1 has an
a�rmative solution.

We will need also an elementary

Lemma 2. Let X be a variety and pi : Ei→X be an algebraic line bundle on
X for i = 1, 2. Then E1

∼= E2 as line bundles on X provided that there exists
m ≥ 0 and an isomorphism f : E1×Km→E2×Km such that the following
diagram is commutative

E1×Km

πE1

��

f // E2×Km

πE2

��
E1

p1
$$IIIIIIIIII E2

p2
zzuuuuuuuuuu

X

Proof. Suppose that Ei is given by an open cover {Uα} of X and by transition
functions gi

α,β : Uα ∩ Uβ →K∗ for i = 1, 2. Clearly, we can identify Ei×Km

with the direct sum of Ei and the trivial bundle X ×Km. Hence

Gi
α,β =

(
gi

α,β 0
0 Im

)
are transition functions for Ei×Km on Uα ∩ Uβ, where Im is the identity
in GL(Km). Obviously, f induces the family of polynomial isomorphisms of
trivial bundles fα : Uα×Km+1→Uα×Km+1 such that for each u ∈ Uα ∩Uβ,

fα(u,. )G1
α,β(u) = G2

α,β(u)fβ(u,. ).

Denote by Jfα(u) the Jacobi matrix of fα(u,. ) for u ∈ Uα, and by hα the
Jacobian of fα, i.e., hα : Uα 3 u 7→ det Jfα(u,. ) ∈ K∗. Then for u ∈ Uα ∩Uβ,

hα(u)g1
α,β(u) = g2

α,β(u)hβ(u).

Thus the family {hα} determines the isomorphism between E1 and E2. This
concludes the proof.
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Proof of theorem 1. The following easy observation will be needed: if V1

and V2 are a�ne varieties and V1×Km ∼= V2×Km then V1 dominates V2 and
conversely. In particular, if V1 is unirational then so is V2.

(i) Let f : Y ×Km→X ×Km be an isomorphism. Applying Lemma 1
to πX ◦ f , we �nd a morphism g : Y →X such that πX ◦ f = g ◦ πY . This
implies that X has the strong cancellation property.

(ii) Let p : E→X be an algebraic line bundle on X and f : Y ×Km→
E×Km an isomorphism. Again, by Lemma 1 there exists a morphism
q : Y →X such that the following diagram is commutative

Y ×Km

πY

��

f // E×Km

πX

��
E

p

��
Y

q // X

Therefore if E is trivial on an a�ne open subset U of X then res q :
q−1(U)→U is a trivial bundle by the geometric version of Theorem 2. Thus
q : Y →X is a line bundle and Lemma 2 concludes the proof.

Remark 1. Theorem 1 remains true if we assume that X \ Sing X is either
non-K-uniruled or it is unirational of dimension greater than 1 and has a
non-uniruled hypersurface at in�nity.

For any variety X we denote, here and in the sequel, the singular locus
by Sing X and the set of non-singular points by Reg X = X \ Sing X.

A variety X of dimension n has a non-uniruled hypersurface at in�nity
if there exists a compacti�cation X of X such that the set X \ X has a
non-uniruled component of dimension n− 1.

Proof. The above proof works also in this situation, we only need to modify
Lemma 1 slightly. Furthermore, the following observation will be needed:
if f : Y ×Km→X ×Km (f : Y ×Km→E×Km, where p : E→X is
a line bundle on X) is an isomorphism then it induces the isomorphism
res f : Reg Y ×Km→Reg X ×Km (res f : Reg Y ×Km→Reg E×Km).

The details are left to the reader.

3 More about Problem 1

We give now a solution of Problem 1 when R is the coordinate ring of a
smooth a�ne variety over an algebraically closed �eld K of arbitrary char-
acteristic.
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Proposition 1. Let X be an a�ne smooth variety. Let Y be a variety with
a morphism q : Y →X and let f : X ×Km+1→Y ×Km be an isomorphism
such that πX = q ◦ πY ◦ f . Then there exists an isomorphism g : X ×K→Y
such that q ◦ g = πX .

X ×Km+1

πX

##GGGGGGGGGGGGGGGGGGGGGG

f

∼=
// Y ×Km

πY

��
Y

q

��

X ×K
g

∼=
oo

πX
xxrrrrrrrrrrr

X

Proof. First observe that all �bers of q are isomorphic to K. Indeed, f takes
π−1

X (x) ∼= Km+1 onto q−1(x)×Km, so q−1(x) ∼= K, because a�ne curves have
the cancellation property. Take now the zero section s0 : X 3 x 7→ (x, 0) ∈
X ×Km+1. Then s : X 3 x 7→ πY (f(s0(x))) ∈ Y is a section of q, i.e.,
q ◦ s = idX . In particular, s is a closed immersion and Γ := s(X) meets
transversally all �bers of q. We shall show that q : Y →X is a line bundle.

Since X and Y are smooth, we have isomorphisms π∗X : Pic(X)→
Pic(X ×Km+1) and π∗Y : Pic(Y )→Pic(Y ×Km) (see [10, p.134,141]). Hence
q∗ : Pic(X)→Pic(Y ) is an isomorphism too. For a prime divisor Γ on Y there
exists a divisor D on X such that Γ and q∗(D) are linearly equivalent. Let
{Ui} be an open a�ne cover of X such that D∩Ui is principal in Ui. Clearly,
q∗(D)∩q−1(Ui) is principal in q−1(Ui), and so is Γ∩q−1(Ui). This implies that
the ideal of Γ∩q−1(Ui) is generated in the coordinate ring K[q−1(Ui)] by some
function Fi ∈ K[q−1(Ui)]. Now Fi restricts to a coordinate function on π−1(x)
for each x ∈ Ui, because q−1(x) ∼= K and Γ meets q−1(x) at only one point
transversally. Therefore the morphism q−1(Ui) 3 y 7→ (q(y), Fi(y)) ∈ Ui×K
is bijective, so it is an isomorphism by Zariski's Main Theorem. Thus we
have showed that q : Y →X is a line bundle. Now Lemma 2 concludes the
proof.

4 Final remarks

We shall begin with
Question 1. Is it true that an a�ne variety with a non-uniruled compo-

nent at in�nity has the cancellation property?
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By Theorem 1 the answer is a�rmative if we add the unirationality as-
sumption, as well as for any line bundle on a non-uniruled variety.

It is a good place to mention our result from [5] which is connected with
the stable equivalence problem (see also [12])

Let X be a smooth a�ne variety and let H be a non-uniruled hypersur-
face in X. Suppose that f : X ×Km→Y ×Km is an isomorphism such that
f(H ×Km) = H ′×Km, where H ′ is a hypersurface in a variety Y . Then for
each x ∈ X there exists y ∈ Y such that f({x}×Km) = {y}×Km.

Question 2. Suppose that an a�ne variety X has the strong cancellation
property. Does it follow that X ×K has the cancellation property?

Again, Theorem 1 gives the a�rmative answer for some varieties. This
question was already considered by Asanuma in [2], where he showed that if
char K > 0 then the answer is no. His example was a rational curve with the
coordinate ring K[T n, T n+1], where n > 1 (this is also a counterexample to
Problem 1).

On the other hand if char K = 0 we have the following

Corollary 1. If X and Y are a�ne curves then the surface X ×Y has the
cancellation property.

Proof. The hardest case, when X ∼= Y ∼= K follows from [6] and [15].
If X is non-isomorphic to K then X \ Sing X is non-K-uniruled. (This

is a consequence of the following arguments: (1) every smooth a�ne and
K-uniruled curve is isomorphic to K; (2) if C is an a�ne curve then every
non-constant morphism K→C is �nite and hence surjective.) Thus, by
Remark 1, X ×K has the cancellation property.

The case when neither X ∼= K nor Y ∼= K again follows from Remark 1,
since the set X ×Y \ Sing(X ×Y ) = [(Reg X)×Y ] ∩ [X ×Reg Y )] is non-
K-uniruled. This concludes the proof.

We give one more result a proof of which is left as an exercise.

Proposition 2. Theorem 1 remains true for any a�ne variety X such that
every dominant morphism X→X is birational (for example, X satis�es this
condition if it is of hyperbolic type, i.e., κ(X) = dim X; see [7, p. 335]).
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