
ON THE STABLE EQUIVALENCE PROBLEM

Robert Dryªo

PREPRINT IMUJ 2005/14

Abstract
In this paper we deal with the stable equivalence problem in a

"strong version" over an algebraically closed �eld K of characteristic
0. For this purpose we introduce a notion of stabilizing hypersurfaces,
i.e., a hypersurface H in an a�ne variety X is called stabilizing if every
isomorphism f : X ×Km→Y ×Km such that f(H ×Km) = H ′×Km,
where H ′ is a hypersurface in a variety Y , satis�es the condition: for
each x ∈ X there exists y ∈ Y such that f({x}×Km) = {y}×Km

(obviously, then f induces the isomorphism f̃ : X→Y such that
f̃(H) = H ′). We prove that a non-uniruled hypersurface in a smooth
a�ne variety and a non-C-uniruled hypersurface in a smooth a�ne and
dominated by Cn variety are examples of stabilizing hypersurfaces. In
particular, the stable equivalence problem has an a�rmative solution
for any non-C-uniruled hypersurface in Cn.
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1 Introduction

Throughout this paper K denotes an algebraically closed �eld of character-
istic 0. Let X and Y be algebraic sets in Kn. Following [17], we say that
X and Y are equivalent if there exists an automorphism of Kn that takes X
onto Y . Furthermore, we say that X and Y are stably equivalent if for some
m ≥ 0 the cylinders X ×Km and Y ×Km are equivalent in Kn+m.

STABLE EQUIVALENCE PROBLEM. Are any two stably equivalent
hypersurfaces in Kn equivalent?

This problem for curves in K2 was solved a�rmatively by Makar-Limanov,
van Rossum, Shpilrain and Yu in [17]. Furthermore, it was proved by Sh-
pilrain and Yu in [18] that two stably equivalent hypersurfaces in Cn are
equivalent if one of them is the set of zeros of a so-called test polynomial in
the class of monomorphisms. The same was proved in [3] provided that one
hypersurface is non-uniruled.

In this paper we will generalize the last result. We will consider the stable
equivalence problem in a stronger version. For this purpose we introduce a
notion of stabilizing hypersurfaces. (Let us note that we will mean by a
variety an irreducible algebraic variety, and by a hypersurface in a variety a
closed subset of pure codimension one.)

A hypersurface H in an a�ne variety X is called stabilizing if it satis-
�es the condition: if f : X ×Km→Y ×Km is an isomorphism such that
f(H ×Km) = H ′×Km, where H ′ is a hypersurface in a variety Y , then
for each x ∈ X there exists y ∈ Y such that f({x}×Km) = {y}×Km

(obviously, then f induces the isomorphism between X and Y that takes
H onto H ′).

We will give some su�cient geometric condition for a hypesurface to be
stabilizing, namely, a non-uniruled hypersurface in a smooth a�ne variety
and a non-C-uniruled hypersurface in a smooth a�ne and dominated by Cn

variety are stabilizing. In particular, the stable equivalence problem has an
a�rmative solution for non-C-uniruled hypersurfaces in Cn.

This article is divided into �ve section. In section 2 we give some examples
of uniruled varieties. Section 3 contains a brief summary of properties of the
Jelonek set. In sections 4 and 5 are stated and proved our main results
mentioned above. Furthermore, we prove there that the set of zeros of a test
polynomial in the class of monomorphisms is a stabilizing hypersurface in Cn

(this is a sharpened version of the result from [18]).

2



2 Uniruledness

A variety X of dimension n > 0 is said to be uniruled (K-uniruled) if
there exists a variety W of dimension n − 1 and a dominant rational map
W ×P1(K) 99K X (a dominant morphism W ×K→X). A reducible vari-
ety is said to be uniruled (K-uniruled) if all its irreducible components are
uniruled (K-uniruled).

Example 2.1. (i) Let X be an a�ne variety of dimension n. Suppose that
F1, . . . , Fn are algebraically independent regular functions on X. Then the
variety V = X \ {x ∈ X : F1(x) . . . Fn(x) = 0} is non-K-uniruled.
(ii) A smooth hypersurface in Pn of degree greater than n is non-uniruled.

Proof. (i) Since we have a dominant morphism (F1, . . . , Fn) : V →(K∗)n, it
su�ces to show that (K∗)n is non-K-uniruled. Let g : W ×K→(K∗)n be a
morphism, where W is a�ne of dimension n−1. If g = (G1, . . . , Gn) then all
function Gi are invertible in the coordinate ring K[W ×K], and hence they
are in K[W ]. Thus g is not dominant.
(ii) see [12].

We say that a variety X has the strong cancellation property if every
isomorphism f : X ×Km→Y ×Km satis�es the condition: for each x ∈ Y
there exists y ∈ X such that f({x}×Km) = {y}×Km (clearly, f induces
the isomorphism between X and Y ). For example, a variety of non-negative
logarithmic Kodaira dimension has this property, which was proved by Iitaka
and Fujita in [10]. Other examples are given by

Proposition 2.2. ([4]) A non-K-uniruled a�ne variety has the strong can-
cellation property.

3 The Jelonek set

Let f : X→Y be a morphism between varieties. We say that f is proper at
y ∈ Y if there exists a neighborhood U of y such that res f : f−1(U)→U is a
proper morphism. It is well-known that over C a morphism f is proper at y
if and only if f is proper at y in the C-topology, i.e., there exists an open (in
the C-topology) neighborhood U of y such that for each compact set T ⊂U
the inverse image f−1(T ) is compact.

A very important role in our consideration will play the Jelonek set

Sf := {y ∈ Y : f is not proper at y}.
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Theorem 3.1. (Jelonek, [13].) Let f : X→Y be a dominant morphism
between complex a�ne varieties of equal dimension. Suppose that X is dom-
inated by Cn. Then the set Sf is either empty or it is a C-uniruled hypersur-
face.

The �rst version of this theorem was stated in [11], where the author
proved that for a dominant morphism f : Cn→Cn the set Sf is either empty
or it is a uniruled hypersurface. We will use the same idea to establish a little
more general result below, which will be needed in the proof of Theorem 4.3.
Note, that Theorem 3.1 was partially carried over an arbitrary algebraically
closed �eld by Stasica [19]. Other generalization was given by Jelonek and
Kara± in [15].

Now we give two well-known facts.
(1) By theorem of Hironaka [8] for a smooth a�ne variety there exists a

smooth compacti�cation (we mean by a compacti�cation of a variety X any
projective variety which contains X as an open subset).

(2) If X is an a�ne variety and a variety X ′ contains X as an open subset
then the set X ′ \X is either empty or it is of pure dimension dim X − 1.
Theorem 3.2. Let f : X→Y be a dominant morphism between a�ne va-
rieties of dimension n. Suppose that X is smooth. Let X be a smooth com-
pacti�cation of X and Y a compacti�cation of Y . Let

r := number of non-uniruled irreducible components of the set X \X,
s := number of non-uniruled irreducible components of the set Y \ Y .

Then
(i) r ≥ s;
(ii) if r = s then every (n− 1)-dimensional irreducible component of the set
Sf is uniruled.

In particular, if X and Y are smooth a�ne varieties of dimension n such
that X dominates Y and conversely, and if f : X→Y is a dominant mor-
phism, then every (n− 1)-dimensional irreducible component of the set Sf is
uniruled.

Proof. The idea of this proof is due to [11,12]. By [8] for the rational map
f : X 99K Y there exists a commutative diagram

Z

g

��

h

��?
??

??
??

??
??

??
??

?

X f
//______ Y
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where g : Z→X is a composition of blowing ups with smooth centers and
h is a morphism. Let E⊂Z be the largest exceptional divisor for g. By
properties of blowing up E is ruled, i.e., is birational to V ×P1. Consequently
every (n− 1)-dimensional irreducible component of the set h(E) is uniruled.
Clearly, Y \ Y is contained in h(g−1(X \ X)) = h((X \ X)

′
) ∪ h(E), where

(X \X)
′ denotes the proper transform of X \X by g. Therefore every non-

uniruled component of Y \Y coincides with some component of h((X \X)
′
).

This proves (i). To prove (ii) it su�ces to check that Sf ⊂ h(g−1(X \ X)).
This is equivalent that res f : f−1(U)→U is a proper morphism, where
U = Y \ h(g−1(X \ X)). It is clear that f−1(U) is contained in X and the
following diagram commutes

g−1(f−1(U)) = h−1(U)

res g

��

res h

""FFFFFFFFFFFFFFFFFFF

f−1(U)
res f

// U

Since the vertical arrow is surjective and the wedge arrow is proper, the
horizontal arrow is proper too. This completes the proof.

4 Stabilizing hypersurfaces

We shall begin with an easy necessary condition for a hypersurface to be
stabilizing.

Proposition 4.1. Let X be an a�ne variety. Suppose that F is a regular
function on X such that the set F−1(0) is a stabilizing hypersurface. Then
D(F ) 6= 0 for every non-zero locally nilpotent K-derivation D on the coordi-
nate ring K[X].

Proof. A locally nilpotent K-derivation D on K[X] induces the automor-
phism exp TD : K[X][T ] 3 G 7→

∑∞
i=0

1
i!
Di(G)T i ∈ K[X][T ], where D

is extended on K[X][T ] such that D(T ) = 0 (see [5, p.17]). Therefore if
D(F ) = 0 and a hypersurface F−1(0) is stabilizing then exp TD(F ) = F ,
and consequently exp TD(K[X]) ⊂ K[X], so D = 0.

Note the following

Proposition 4.2. Let H be a hypersurface in an a�ne variety X. Suppose
that the variety X \H has the strong cancellation property (in particular, if
X \H is either non-K-uniruled or if κ(X \H) ≥ 0). Then H is stabilizing.
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For example, if n = dim X and F1, . . . , Fn are algebraically independent
regular functions on X then {x ∈ X : F1(x) . . . Fn(x) = 0} is a stabilizing
hypersurface.

Proof. The assertion follows immediately from section 2 and an easy observa-
tion that for a morphism f : Y ×Km→Z the set {y ∈ Y : dim f({y}×Km) =
0} is closed in Y .

Now we give the main result of this section.

Theorem 4.3. A non-uniruled hypersurface contained in a smooth a�ne
variety is stabilizing.

We will need three lemmas.

Lemma 4.4. Let f : X→Y be a dominant morphism between smooth va-
rieties of equal dimension. Suppose that f is étale at a ∈ X, proper at
b = f(a), and f−1(b) = {a}. Then there exists a neighborhood U of b such
that res f : f−1(U)→U is an isomorphism.

Proof. We may assume that f is proper. Let Rf be the set of points at which
f is not étale. Then f(Rf ) is closed in Y and b ∈ Y \ f(Rf ). Replacing
Y \ f(Rf ) by Y and X \ f−1(f(Rf )) by X we may assume that f is étale.
Hence f is an étale covering, so it is a �nite morphism (see [9, p.248]). Now
we may assume that X and Y are a�ne. Consider the corresponding �nite
extension of coordinate rings K[Y ]⊂K[X]. Let (ϑx, mx) and (ϑy, my) be
local rings of points x and y, respectively. Put M = my ∩ K[Y ]. Clearly,
the extension ϑy = K[Y ]M ⊂K[X]K[Y ]\M is �nite and the ring K[X]K[Y ]\M
has a unique maximal ideal. Thus K[X]K[Y ]\M = ϑx and consequently ϑx is
a �nitely generated ϑy-module. Moreover, mx = myϑx, since f is étale at x.
Because ϑx/mx

∼= ϑy/my
∼= K, so ϑx = ϑy + mx = ϑy + myϑx. Hence, by

Nakayama's lemma, ϑy = ϑx. From this the assertion follows at once.
Note that for complex varieties we may argue as follows. Choose an

open (in the C-topology) neighborhood V of a such that f : V → f(V ) is a
biholomorphism. By properness of f at b there is an open neighborhood U
of b such that f−1(U) is contained in V . This means that the generic �ber
of f consists of one point, so f is birational. By Zariski's Main Theorem f−1

is regular at b.

In the sequel πX denotes the projection X ×Km 3 (x, y) 7→ x ∈ X.

Lemma 4.5. Let X be a smooth a�ne variety and W be a subvariety of
X ×Km. Suppose that W is non-singular at points a1, . . . , as ∈ W and
πX(ai) 6= πX(aj) for i 6= j. Then there exists a morphism p : X→Km

such that its graph meets W transversally at a1, . . . , as.

6



Proof. It su�ces to give a proof for X = Kn. (Indeed, if X is contained in Kn

and a morphism p : Kn→Km satis�es the above condition then resX p sat-
is�es this condition too.) Choose n-dimensional a�ne subspaces L1, . . . , Ls

in Kn×Km such that Li and W are transversal at ai and the projection
Li→Kn is an isomorphism for all i. Using an easy interpolation we can
�nd a polynomial mapping p : Kn→Km the graph of which pass through
a1, . . . , as and has Li as a tangent space at ai for all i. This concludes the
proof.

Lemma 4.6. Let f : X→Y be a birational morphism between smooth va-
rieties. If a �ber of f contains at least two points then its all irreducible
components have positive dimension.

Proof. Let f−1(y) satisfy the assumptions. Since f−1 is not regular at y,
by Zariski's Main Theorem there exists an exceptional divisor E contain-
ing f−1(y). Hence all irreducible components of f−1(y) = (f |E)−1(y) have
positive dimension.

Proof of Theorem 4.3. Let X be a smooth a�ne variety and H a non-
uniruled hypersurface in X. Let f : X ×Km→Y ×Km be an isomorphism
such that f(H ×Km) = H ′×Km, where H ′ is a hypersurface in Y . We may
assume that H is irreducible.

For any morphism p : X→Km de�ne the morphism fp : X 3 x 7→
πY (f(x, p(x))) ∈ Y . We shall show that fp is birational.

Let a ∈ X, A := (a, p(a)) and Γp denote the graph of p. By Proposition
2.2, f({a}×Km) = {b}×Km for some b ∈ H ′. Clearly, Γp and {a}×Km

are transversal at A, hence f(Γp) and {b}×Km are transversal at f(A) too.
Consequently res πY : f(Γp)→Y is étale at f(A). This implies that fp is
étale at a as a composition of étale morphisms. It is clear that fp : H→H ′

is an isomorphism and f−1
p (fp(x)) = {x} for each x ∈ H ′. Furthermore, X

dominates Y and conversely, so by Theorem 3.2, fp is proper at some point
of H ′. It implies that fp is birational by Lemma 4.4.

Suppose now that πX(f−1({y}×Km)) has positive dimension for some
y ∈ Y . Choose two points a, b ∈ f−1({y}×Km) such that πX(a) 6= πX(b).
By Lemma 4.5 there exists a morphism p : X→Km such that its graph
meets transversally f−1({y}×Km) at a, b. Hence {πX(a)} and {πX(b)} are
components of the �ber f−1

p (y), which is impossible by Lemma 4.6. The
proof is complete.
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5 Stabilizing hypersurfaces over C
Theorem 5.1. Let X be a complex a�ne and smooth variety which is dom-
inated by Cn. Then any non-C-uniruled hypersurface in X is stabilizing.

Proof. The proof of Theorem 4.3 works also in this case, we need only use
Theorem 3.1 instead of Theorem 3.2.

Corollary 5.2. Two stably equivalent hypersurfaces in Cn are equivalent if
one of them is non-C-uniruled.

Corollary 5.3. Let X be an irreducible curve in C2 which is either non-C-
uniruled or it is simply connected. Then any curve in C2 stably equivalent to
X is equivalent to it.

Proof. It remains to prove the case when X is simply connected, but this
follows at once from two remarks. (1) By theorems of Abhyankar-Moh [2]
and Lin-Zaidenberg [16] (see also [7]) we know that two simply connected
curves in C2 are isomorphic if and only if they are equivalent. (2) A�ne
curves have the cancellation property, i.e., if C1 and C2 are a�ne curves and
C1×Km ∼= C2×Km then C1

∼= C2 (this follows, for example, from a more
general theorem proved by Abhyankar, Eakin and Heinzer in [1]).

Our next purpose is to give a sharpened version of the result of Shpilrain
and Yu from [18]. Recall that a polynomial P ∈ C[T1, . . . , Tn] is said to be
a test polynomial in the class of monomorphisms if every C-monomorphism
Φ : C[T1, . . . , Tn]→C[T1, . . . , Tn] such that Φ(P ) = cP for some c ∈ C∗ is
an automorphism. A question about the existence and some properties of
such polynomials were stated by van den Essen and Shpilrain in [6]. Later
it was showed by Jelonek in [14] that a generic polynomial in C[T1, . . . , Tn]
of degree greater than n is a test polynomial in the class of monomorphisms.
(Note that the above de�nition is due to [14] and it is slightly di�erent than
that introduced in [6].)

Proposition 5.4. Let P ∈ C[T1, . . . , Tn] be a test polynomial in the class of
monomorphisms. Then the set P−1(0) is a stabilizing hypersurface in Cn.

Proof. Let P = P r1
1 . . . P rs

s , where P1, . . . , Ps are pairwise di�erent irreducible
factors of P . Observe that P ′ = P1 . . . Ps is a test polynomial in the class
of monomorphisms too. Indeed, if Φ : C[T1, . . . , Tn]→C[T1, . . . , Tn] is a
monomorphism such that Φ(P ′) = cP ′ for some c ∈ C∗ then Φ(Pi) = ciPσ(i),
where σ is a permutation of the set {1, . . . , s} and ci ∈ C∗. Hence Φs!(Pi) =
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c′iPi, so Φs!(P ) = c′P , where c′i, c
′ ∈ C∗. This implies that Φs! is an au-

tomorphism, and so is Φ. Therefore for this proof we may assume that
r1 = . . . = rs = 1.

Put H = P−1(0) and Hi = P−1
i (0). Suppose that H is not stabilizing. Let

f : Cn×Cm→X ×Cm be an isomorphism such that f(H ×Cm) = H ′×Cm

and for some x ∈ X the dimension of πCn(f−1({x}×Cm)) is positive. Choose
points ai ∈ Hi \

⋃
j 6=i Hj such that Hi is non-singular at ai for all i. Assume

that f(ai) lies on {bi}×Cm for some bi ∈ X (we identify Cn with Cn×{0}).
By Lemma 4.5 there exists a morphism p : Cn→Cm such that its graph
meets transversally f−1({bi}×Cm) at ai and cuts f−1({x}×Cm) in at least
two points. Similarly, we can �nd a morphism q : X→Cm with the graph
meeting transversally f({ai}×Cm) at f(ai) for all i. Consider the morphism
g := f−1

q ◦ fp : Cn→Cn, where fp : Cn 3 x 7→ πX(f(x, p(x))) ∈ X and
f−1

q : X 3 x 7→ πCn(f−1(x, q(x))) ∈ Cn. By de�nition, g is not injec-
tive, g(ai) = ai and g is a local biholomorphism at ai. In particular, g is
dominant. Obviously, g−1(H) = H. Hence for the induced monomorphism
g∗ : C[T1, . . . , Tn]→C[T1, . . . , Tn] we have g∗(P ) = cP d1

1 . . . P ds
s for some

c ∈ C∗ and d1, . . . , ds > 0. But the tangent space to H at ai is given by two
equations dai

P = 0 and dai
g∗(P ) = 0, so d1 = . . . = ds = 1. Consequently g

is an automorphism, despite g is not injective. This concludes the proof.
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