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Abstract

In this paper we deal with the stable equivalence problem in a
"strong version" over an algebraically closed field K of characteristic
0. For this purpose we introduce a notion of stabilizing hypersurfaces,
i.e., a hypersurface H in an affine variety X is called stabilizing if every
isomorphism f : X x K™ —Y x K™ such that f(H x K™) = H x K™,
where H' is a hypersurface in a variety Y, satisfies the condition: for
each z € X there exists y € Y such that f({z} xK™) = {y} x K™
(obviously, then f induces the isomorphism f : X —Y such that
f (H) = H'). We prove that a non-uniruled hypersurface in a smooth
affine variety and a non-C-uniruled hypersurface in a smooth affine and
dominated by C" variety are examples of stabilizing hypersurfaces. In
particular, the stable equivalence problem has an affirmative solution
for any non-C-uniruled hypersurface in C".



1 Introduction

Throughout this paper K denotes an algebraically closed field of character-
istic 0. Let X and Y be algebraic sets in K". Following [17], we say that
X and Y are equivalent if there exists an automorphism of K" that takes X
onto Y. Furthermore, we say that X and Y are stably equivalent if for some
m > 0 the cylinders X x K™ and Y x K™ are equivalent in K",

STABLE EQUIVALENCE PROBLEM. Are any two stably equivalent
hypersurfaces in K" equivalent?

This problem for curves in K? was solved affirmatively by Makar-Limanov,
van Rossum, Shpilrain and Yu in [17]. Furthermore, it was proved by Sh-
pilrain and Yu in [18] that two stably equivalent hypersurfaces in C" are
equivalent if one of them is the set of zeros of a so-called test polynomial in
the class of monomorphisms. The same was proved in 3] provided that one
hypersurface is non-uniruled.

In this paper we will generalize the last result. We will consider the stable
equivalence problem in a stronger version. For this purpose we introduce a
notion of stabilizing hypersurfaces. (Let us note that we will mean by a
variety an irreducible algebraic variety, and by a hypersurface in a variety a
closed subset of pure codimension one.)

A hypersurface H in an affine variety X is called stabilizing if it satis-
fies the condition: if f : X x K™ —=Y x K™ is an isomorphism such that
f(HxK™) = H' xK™, where H' is a hypersurface in a variety Y, then
for each x € X there exists y € Y such that f({z} xK™) = {y} x K"
(obviously, then f induces the isomorphism between X and Y that takes
H onto H').

We will give some sufficient geometric condition for a hypesurface to be
stabilizing, namely, a non-uniruled hypersurface in a smooth affine variety
and a non-C-uniruled hypersurface in a smooth affine and dominated by C"
variety are stabilizing. In particular, the stable equivalence problem has an
affirmative solution for non-C-uniruled hypersurfaces in C".

This article is divided into five section. In section 2 we give some examples
of uniruled varieties. Section 3 contains a brief summary of properties of the
Jelonek set. In sections 4 and 5 are stated and proved our main results
mentioned above. Furthermore, we prove there that the set of zeros of a test
polynomial in the class of monomorphisms is a stabilizing hypersurface in C"
(this is a sharpened version of the result from [18]).



2  Uniruledness

A variety X of dimension n > 0 is said to be wuniruled (K-uniruled) if
there exists a variety W of dimension n — 1 and a dominant rational map
W x PY(K) --» X (a dominant morphism W x K— X). A reducible vari-
ety is said to be uniruled (K-uniruled) if all its irreducible components are
uniruled (K-uniruled).

Example 2.1. (i) Let X be an affine variety of dimension n. Suppose that
Fy, ..., F, are algebraically independent reqular functions on X. Then the
variety V. = X\ {z € X : Fi(x)... F,(z) = 0} is non-K-uniruled.

(i) A smooth hypersurface in P™ of degree greater than n is non-uniruled.

Proof. (i) Since we have a dominant morphism (Fi,..., F,) : V —(K")", it
suffices to show that (K*)" is non-K-uniruled. Let g : W x K—(K")" be a
morphism, where W is affine of dimension n—1. If g = (G4, ..., G,) then all
function G; are invertible in the coordinate ring K[ x K], and hence they
are in K[W]. Thus g is not dominant.

(ii) see [12]. O

We say that a variety X has the strong cancellation property if every
isomorphism f : X x K™ —Y x K™ satisfies the condition: for each z € Y
there exists y € X such that f({z} x K™) = {y} x K™ (clearly, f induces
the isomorphism between X and Y'). For example, a variety of non-negative
logarithmic Kodaira dimension has this property, which was proved by litaka
and Fujita in [10]. Other examples are given by

Proposition 2.2. ([4]) A non-K-uniruled affine variety has the strong can-
cellation property.

3 The Jelonek set

Let f: X —Y be a morphism between varieties. We say that f is proper at
y € Y if there exists a neighborhood U of y such that res f : f~1(U)— U is a
proper morphism. It is well-known that over C a morphism f is proper at y
if and only if f is proper at y in the C-topology, i.e., there exists an open (in
the C-topology) neighborhood U of y such that for each compact set T C U
the inverse image f~!(T) is compact.

A very important role in our consideration will play the Jelonek set

S;:={y €Y : fis not proper at y}.



Theorem 3.1. (Jelonek, [13].) Let f : X =Y be a dominant morphism
between complex affine varieties of equal dimension. Suppose that X is dom-
inated by C". Then the set Sy is either empty or it is a C-uniruled hypersur-
face.

The first version of this theorem was stated in [11|, where the author
proved that for a dominant morphism f : C" — C" the set Sy is either empty
or it is a uniruled hypersurface. We will use the same idea to establish a little
more general result below, which will be needed in the proof of Theorem 4.3.
Note, that Theorem 3.1 was partially carried over an arbitrary algebraically
closed field by Stasica [19]. Other generalization was given by Jelonek and
Kara$ in [15].

Now we give two well-known facts.

(1) By theorem of Hironaka [8] for a smooth affine variety there exists a
smooth compactification (we mean by a compactification of a variety X any
projective variety which contains X as an open subset).

(2) If X is an affine variety and a variety X’ contains X as an open subset
then the set X'\ X is either empty or it is of pure dimension dim X — 1.

Theorem 3.2. Let f : X =Y be a dominant morphism between affine va-
rieties of dimension n._Suppose that X is smooth. Let X be a smooth com-
pactification of X and'Y a compactification of Y. Let

r = number of non-uniruled irreducible components of the set X \ X,
s := number of non-uniruled irreducible components of the set Y \ Y.

Then

(i) r > s;

(i1) if r = s then every (n — 1)-dimensional irreducible component of the set
Sy is uniruled.

In particular, if X and Y are smooth affine varieties of dimension n such
that X dominates Y and conversely, and if f : X —Y is a dominant mor-
phism, then every (n — 1)-dimensional irreducible component of the set Sy is
uniruled.

Proof. The idea of this proof is due to [11,12]. By [8] for the rational map
f X --+ Y there exists a commutative diagram

Z



where ¢ : Z— X is a composition of blowing ups with smooth centers and
h is a morphism. Let ' C Z be the largest exceptional divisor for g. By
properties of blowing up F is ruled, i.e., is birational to V x P'. Consequently
every (n — 1)-dimensional irreducible component of the set h(E) is uniruled.
Clearly, Y \ Y is contained in h(g~'(X \ X)) = (X \ X)) U h(E), where
(X \ X)' denotes the proper transform of X \ X by g. Therefore every non-
uniruled component of Y \ Y coincides with some component of h((X \ X)").
This proves (i). To prove (ii) it suffices to check that Sy C h(g~1(X \ X)).
This is equivalent that res f : f~}(U)— U is a proper morphism, where
U=Y\h(g'(X\ X)). Tt is clear that f~1(U) is contained in X and the
following diagram commutes

res g

f7HU)

U

res f

Since the vertical arrow is surjective and the wedge arrow is proper, the
horizontal arrow is proper too. This completes the proof. O]

4 Stabilizing hypersurfaces

We shall begin with an easy necessary condition for a hypersurface to be
stabilizing.

Proposition 4.1. Let X be an affine variety. Suppose that F is a reqular
function on X such that the set F~(0) is a stabilizing hypersurface. Then
D(F) # 0 for every non-zero locally nilpotent K-derivation D on the coordi-
nate ring K[X].

Proof. A locally nilpotent K-derivation D on K[X] induces the automor-
phism expTD : K[X][T] 5 G — > +DYG)T" € K[X][T], where D
is extended on K[X][T] such that D(T) = 0 (see |5, p.17]). Therefore if
D(F) = 0 and a hypersurface F~1(0) is stabilizing then expTD(F) = F,

and consequently exp TD(K[X]) C K[X], so D = 0. O
Note the following

Proposition 4.2. Let H be a hypersurface in an affine variety X. Suppose
that the variety X \ H has the strong cancellation property (in particular, if
X\ H is either non-K-uniruled or if R(X \ H) > 0). Then H is stabilizing.
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For example, if n = dim X and Fi, ..., F, are algebraically independent
regular functions on X then {x € X : Fi(z)...F,(x) = 0} is a stabilizing
hypersurface.

Proof. The assertion follows immediately from section 2 and an easy observa-
tion that for a morphism f : Y x K™ — Z theset {y € Y : dim f({y} x K™) =
0} is closed in Y. O

Now we give the main result of this section.

Theorem 4.3. A non-uniruled hypersurface contained in a smooth affine
variety s stabilizing.

We will need three lemmas.

Lemma 4.4. Let f : X =Y be a dominant morphism between smooth va-
rieties of equal dimension. Suppose that f s étale at a € X, proper at
b= f(a), and f~1(b) = {a}. Then there exists a neighborhood U of b such
that res f = f~1(U) — U is an isomorphism.

Proof. We may assume that f is proper. Let R; be the set of points at which
f is not étale. Then f(Ry) is closed in Y and b € Y \ f(Ry). Replacing
Y\ f(Ry) by Y and X \ f~'(f(Ry)) by X we may assume that f is étale.
Hence f is an étale covering, so it is a finite morphism (see |9, p.248]). Now
we may assume that X and Y are affine. Consider the corresponding finite
extension of coordinate rings K[Y|CK[X]. Let (¥,,m,;) and (J,,m,) be
local rings of points = and y, respectively. Put M = m, N K[Y]. Clearly,
the extension ¥, = K[Y]|y CK[X]gpy\as is finite and the ring K[ X gy m
has a unique maximal ideal. Thus K[X|x;yj\» = ¥, and consequently 9, is
a finitely generated v,-module. Moreover, m, = m,v,, since f is étale at x.
Because ¥, /m, = 9J,/m, = K, so ¥, = ¥, + m, = 9J, + m,J,. Hence, by
Nakayama’s lemma, ¥, = ¥,. From this the assertion follows at once.

Note that for complex varieties we may argue as follows. Choose an
open (in the C-topology) neighborhood V' of a such that f: V — f(V) is a
biholomorphism. By properness of f at b there is an open neighborhood U
of b such that f~1(U) is contained in V. This means that the generic fiber
of f consists of one point, so f is birational. By Zariski’s Main Theorem f~!
is regular at b. O

In the sequel mx denotes the projection X x K™ 3 (z,y) — z € X.

Lemma 4.5. Let X be a smooth affine variety and W be a subvariety of
X xK™. Suppose that W is non-singular at points a,...,a, € W and
wx(a;) # mwx(a;) for i # j. Then there erists a morphism p : X - K™
such that its graph meets W transversally at a, ..., as.
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Proof. Tt suffices to give a proof for X = K". (Indeed, if X is contained in K"
and a morphism p : K" — K™ satisfies the above condition then resx p sat-
isfies this condition too.) Choose n-dimensional affine subspaces Ly, ..., L
in K" x K™ such that L; and W are transversal at a; and the projection
L; — K" is an isomorphism for all 7. Using an easy interpolation we can
find a polynomial mapping p : K" — K™ the graph of which pass through
ai,...,as and has L; as a tangent space at a; for all 7. This concludes the
proof. O

Lemma 4.6. Let [ : X =Y be a birational morphism between smooth va-
rieties. If a fiber of f contains at least two points then its all irreducible
components have positive dimension.

Proof. Let f~'(y) satisfy the assumptions. Since f~! is not regular at y,
by Zariski’s Main Theorem there exists an exceptional divisor E contain-
ing f~1(y). Hence all irreducible components of f~1(y) = (f|g)"*(y) have
positive dimension. O

Proof of Theorem 4.3. Let X be a smooth affine variety and H a non-
uniruled hypersurface in X. Let f: X x K™ —=Y x K™ be an isomorphism
such that f(H x K™) = H' x K™, where H' is a hypersurface in Y. We may
assume that H is irreducible.

For any morphism p : X — K" define the morphism f, : X > z —
7y (f(z,p(x))) € Y. We shall show that f, is birational.

Let a € X, A := (a,p(a)) and I', denote the graph of p. By Proposition
2.2, f({a} xK™) = {b} x K™ for some b € H'. Clearly, I', and {a} x K™
are transversal at A, hence f(I',) and {b} x K™ are transversal at f(A) too.
Consequently resmy @ f(I')) =Y is étale at f(A). This implies that f, is
étale at a as a composition of étale morphisms. It is clear that f, : H — H'
is an isomorphism and f,*(f,(z)) = {z} for each x € H'. Furthermore, X
dominates Y and conversely, so by Theorem 3.2, f,, is proper at some point
of H'. Tt implies that f, is birational by Lemma 4.4.

Suppose now that 7x(f~!({y} x K™)) has positive dimension for some
y € Y. Choose two points a,b € f~1({y} x K™) such that 7x(a) # mx(b).
By Lemma 4.5 there exists a morphism p : X — K" such that its graph
meets transversally f~'({y} x K™) at a,b. Hence {nx(a)} and {7x(b)} are
components of the fiber fp_l(y), which is impossible by Lemma 4.6. The
proof is complete. n



5 Stabilizing hypersurfaces over C

Theorem 5.1. Let X be a complex affine and smooth variety which is dom-
inated by C". Then any non-C-uniruled hypersurface in X is stabilizing.

Proof. The proof of Theorem 4.3 works also in this case, we need only use
Theorem 3.1 instead of Theorem 3.2. ]

Corollary 5.2. Two stably equivalent hypersurfaces in C" are equivalent if
one of them is non-C-uniruled.

Corollary 5.3. Let X be an irreducible curve in C* which is either non-C-
uniruled or it is simply connected. Then any curve in C* stably equivalent to
X s equivalent to it.

Proof. It remains to prove the case when X is simply connected, but this
follows at once from two remarks. (1) By theorems of Abhyankar-Moh [2]
and Lin-Zaidenberg [16] (see also [7]) we know that two simply connected
curves in C* are isomorphic if and only if they are equivalent. (2) Affine
curves have the cancellation property, i.e., if C; and C5y are affine curves and
C; x K™ 2 Cy x K™ then Cy = Cy (this follows, for example, from a more
general theorem proved by Abhyankar, Eakin and Heinzer in [1]). O

Our next purpose is to give a sharpened version of the result of Shpilrain
and Yu from [18]. Recall that a polynomial P € C[Ty,...,T,] is said to be
a test polynomial in the class of monomorphisms if every C-monomorphism
o . CTh,...,T,)] —C[T,...,T,] such that ®(P) = cP for some ¢ € C* is
an automorphism. A question about the existence and some properties of
such polynomials were stated by van den Essen and Shpilrain in [6]. Later
it was showed by Jelonek in [14] that a generic polynomial in C[T},...,T,]
of degree greater than n is a test polynomial in the class of monomorphisms.
(Note that the above definition is due to [14] and it is slightly different than
that introduced in [6].)

Proposition 5.4. Let P € C[Ty,...,T,| be a test polynomial in the class of
monomorphisms. Then the set P~(0) is a stabilizing hypersurface in C".

Proof. Let P = P;* ... Pl*, where P, ..., P, are pairwise different irreducible
factors of P. Observe that P’ = P;... P, is a test polynomial in the class
of monomorphisms too. Indeed, if ® : C[Ty,...,T,| > C[Iy,...,T,] is a
monomorphism such that ®(P’) = cP’ for some ¢ € C* then ®(F;) = ¢; Py,
where o is a permutation of the set {1,...,s} and ¢; € C*. Hence ®*(P;) =



c,P;, so ®(P) = P, where ¢,,¢ € C*. This implies that ®* is an au-
tomorphism, and so is ®. Therefore for this proof we may assume that
rn=...=rg=1.

Put H = P~1(0) and H; = P, *(0). Suppose that H is not stabilizing. Let
f:C"xC™— X x C™ be an isomorphism such that f(H x C") = H' x C™
and for some z € X the dimension of mcen (f~1({z} x C™)) is positive. Choose
points a; € H; \ Uj# H; such that H; is non-singular at a; for all i. Assume
that f(a;) lies on {b;} x C™ for some b; € X (we identify C" with C" x{0}).
By Lemma 4.5 there exists a morphism p : C"— C™ such that its graph
meets transversally f~'({b;} x C™) at a; and cuts f~'({z} x C™) in at least
two points. Similarly, we can find a morphism ¢ : X — C™ with the graph
meeting transversally f({a;} x C™) at f(a;) for all . Consider the morphism
g:=f1,0f: C"=C" where f, : C" 5 z — 7x(f(z,p(z))) € X and
[, X 32— men(fNz,q(z))) € C". By definition, g is not injec-
tive, g(a;) = a; and ¢ is a local biholomorphism at a;. In particular, g is
dominant. Obviously, g~'(H) = H. Hence for the induced monomorphism
g* : C[Ty,...,T,| > C[Ty,...,T,] we have g*(P) = cP®...P% for some
c€ C"and dy,...,ds > 0. But the tangent space to H at a; is given by two
equations d,, P = 0 and d,,g*(P) =0, s0 d; = ... =ds; = 1. Consequently g
is an automorphism, despite g is not injective. This concludes the proof. [
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