ON THE STABLE EQUIVALENCE PROBLEM

Robert Dryło

PREPRINT IMUJ 2005/14

Abstract

In this paper we deal with the stable equivalence problem in a "strong version" over an algebraically closed field \mathbb{K} of characteristic 0. For this purpose we introduce a notion of stabilizing hypersurfaces, i.e., a hypersurface H in an affine variety X is called *stabilizing* if every isomorphism $f: X \times \mathbb{K}^m \to Y \times \mathbb{K}^m$ such that $f(H \times \mathbb{K}^m) = H' \times \mathbb{K}^m$, where H' is a hypersurface in a variety Y, satisfies the condition: for each $x \in X$ there exists $y \in Y$ such that $f(\{x\} \times \mathbb{K}^m) = \{y\} \times \mathbb{K}^m$ (obviously, then f induces the isomorphism $\tilde{f}: X \to Y$ such that $\tilde{f}(H) = H'$). We prove that a non-uniruled hypersurface in a smooth affine variety and a non- \mathbb{C} -uniruled hypersurface in a smooth affine and dominated by \mathbb{C}^n variety are examples of stabilizing hypersurfaces. In particular, the stable equivalence problem has an affirmative solution for any non- \mathbb{C} -uniruled hypersurface in \mathbb{C}^n .

1 Introduction

Throughout this paper \mathbb{K} denotes an algebraically closed field of characteristic 0. Let X and Y be algebraic sets in \mathbb{K}^n . Following [17], we say that X and Y are *equivalent* if there exists an automorphism of \mathbb{K}^n that takes X onto Y. Furthermore, we say that X and Y are *stably equivalent* if for some $m \geq 0$ the cylinders $X \times \mathbb{K}^m$ and $Y \times \mathbb{K}^m$ are equivalent in \mathbb{K}^{n+m} .

STABLE EQUIVALENCE PROBLEM. Are any two stably equivalent hypersurfaces in \mathbb{K}^n equivalent?

This problem for curves in \mathbb{K}^2 was solved affirmatively by Makar-Limanov, van Rossum, Shpilrain and Yu in [17]. Furthermore, it was proved by Shpilrain and Yu in [18] that two stably equivalent hypersurfaces in \mathbb{C}^n are equivalent if one of them is the set of zeros of a so-called test polynomial in the class of monomorphisms. The same was proved in [3] provided that one hypersurface is non-uniruled.

In this paper we will generalize the last result. We will consider the stable equivalence problem in a stronger version. For this purpose we introduce a notion of stabilizing hypersurfaces. (Let us note that we will mean by a variety an irreducible algebraic variety, and by a hypersurface in a variety a closed subset of pure codimension one.)

A hypersurface H in an affine variety X is called *stabilizing* if it satisfies the condition: if $f : X \times \mathbb{K}^m \to Y \times \mathbb{K}^m$ is an isomorphism such that $f(H \times \mathbb{K}^m) = H' \times \mathbb{K}^m$, where H' is a hypersurface in a variety Y, then for each $x \in X$ there exists $y \in Y$ such that $f(\{x\} \times \mathbb{K}^m) = \{y\} \times \mathbb{K}^m$ (obviously, then f induces the isomorphism between X and Y that takes H onto H').

We will give some sufficient geometric condition for a hypesurface to be stabilizing, namely, a non-uniruled hypersurface in a smooth affine variety and a non- \mathbb{C} -uniruled hypersurface in a smooth affine and dominated by \mathbb{C}^n variety are stabilizing. In particular, the stable equivalence problem has an affirmative solution for non- \mathbb{C} -uniruled hypersurfaces in \mathbb{C}^n .

This article is divided into five section. In section 2 we give some examples of uniruled varieties. Section 3 contains a brief summary of properties of the Jelonek set. In sections 4 and 5 are stated and proved our main results mentioned above. Furthermore, we prove there that the set of zeros of a test polynomial in the class of monomorphisms is a stabilizing hypersurface in \mathbb{C}^n (this is a sharpened version of the result from [18]).

2 Uniruledness

A variety X of dimension n > 0 is said to be uniruled (K-uniruled) if there exists a variety W of dimension n-1 and a dominant rational map $W \times \mathbb{P}^1(\mathbb{K}) \dashrightarrow X$ (a dominant morphism $W \times \mathbb{K} \to X$). A reducible variety is said to be uniruled (K-uniruled) if all its irreducible components are uniruled (K-uniruled).

Example 2.1. (i) Let X be an affine variety of dimension n. Suppose that F_1, \ldots, F_n are algebraically independent regular functions on X. Then the variety $V = X \setminus \{x \in X : F_1(x) \ldots F_n(x) = 0\}$ is non-K-uniruled. (ii) A smooth hypersurface in \mathbb{P}^n of degree greater than n is non-uniruled.

Proof. (i) Since we have a dominant morphism $(F_1, \ldots, F_n) : V \to (\mathbb{K}^*)^n$, it suffices to show that $(\mathbb{K}^*)^n$ is non- \mathbb{K} -uniruled. Let $g : W \times \mathbb{K} \to (\mathbb{K}^*)^n$ be a morphism, where W is affine of dimension n-1. If $g = (G_1, \ldots, G_n)$ then all function G_i are invertible in the coordinate ring $\mathbb{K}[W \times \mathbb{K}]$, and hence they are in $\mathbb{K}[W]$. Thus g is not dominant. (ii) see [12].

We say that a variety X has the strong cancellation property if every isomorphism $f: X \times \mathbb{K}^m \to Y \times \mathbb{K}^m$ satisfies the condition: for each $x \in Y$ there exists $y \in X$ such that $f(\{x\} \times \mathbb{K}^m) = \{y\} \times \mathbb{K}^m$ (clearly, f induces the isomorphism between X and Y). For example, a variety of non-negative logarithmic Kodaira dimension has this property, which was proved by Iitaka and Fujita in [10]. Other examples are given by

Proposition 2.2. ([4]) A non- \mathbb{K} -uniruled affine variety has the strong cancellation property.

3 The Jelonek set

Let $f: X \to Y$ be a morphism between varieties. We say that f is proper at $y \in Y$ if there exists a neighborhood U of y such that res $f: f^{-1}(U) \to U$ is a proper morphism. It is well-known that over \mathbb{C} a morphism f is proper at y if and only if f is proper at y in the \mathbb{C} -topology, i.e., there exists an open (in the \mathbb{C} -topology) neighborhood U of y such that for each compact set $T \subset U$ the inverse image $f^{-1}(T)$ is compact.

A very important role in our consideration will play the *Jelonek set*

 $S_f := \{ y \in Y : f \text{ is not proper at } y \}.$

Theorem 3.1. (Jelonek, [13].) Let $f : X \to Y$ be a dominant morphism between complex affine varieties of equal dimension. Suppose that X is dominated by \mathbb{C}^n . Then the set S_f is either empty or it is a \mathbb{C} -uniruled hypersurface.

The first version of this theorem was stated in [11], where the author proved that for a dominant morphism $f : \mathbb{C}^n \to \mathbb{C}^n$ the set S_f is either empty or it is a uniruled hypersurface. We will use the same idea to establish a little more general result below, which will be needed in the proof of Theorem 4.3. Note, that Theorem 3.1 was partially carried over an arbitrary algebraically closed field by Stasica [19]. Other generalization was given by Jelonek and Karaś in [15].

Now we give two well-known facts.

(1) By theorem of Hironaka [8] for a smooth affine variety there exists a smooth compactification (we mean by a *compactification* of a variety X any projective variety which contains X as an open subset).

(2) If X is an affine variety and a variety X' contains X as an open subset then the set $X' \setminus X$ is either empty or it is of pure dimension dim X - 1.

Theorem 3.2. Let $f : X \to Y$ be a dominant morphism between affine varieties of dimension n. Suppose that X is smooth. Let \overline{X} be a smooth compactification of X and \overline{Y} a compactification of Y. Let

 $r := number of non-uniruled irreducible components of the set <math>\overline{X} \setminus X$, $s := number of non-uniruled irreducible components of the set <math>\overline{Y} \setminus Y$.

Then

(i) $r \geq s$;

(ii) if r = s then every (n - 1)-dimensional irreducible component of the set S_f is uniruled.

In particular, if X and Y are smooth affine varieties of dimension n such that X dominates Y and conversely, and if $f: X \to Y$ is a dominant morphism, then every (n-1)-dimensional irreducible component of the set S_f is uniruled.

Proof. The idea of this proof is due to [11,12]. By [8] for the rational map $f: \overline{X} \dashrightarrow \overline{Y}$ there exists a commutative diagram

where $g: Z \to \overline{X}$ is a composition of blowing ups with smooth centers and h is a morphism. Let $E \subset Z$ be the largest exceptional divisor for g. By properties of blowing up E is ruled, i.e., is birational to $V \times \mathbb{P}^1$. Consequently every (n-1)-dimensional irreducible component of the set h(E) is uniruled. Clearly, $\overline{Y} \setminus Y$ is contained in $h(g^{-1}(\overline{X} \setminus X)) = h((\overline{X} \setminus X)') \cup h(E)$, where $(\overline{X} \setminus X)'$ denotes the proper transform of $\overline{X} \setminus X$ by g. Therefore every non-uniruled component of $\overline{Y} \setminus Y$ coincides with some component of $h((\overline{X} \setminus X)')$. This proves (i). To prove (ii) it suffices to check that $S_f \subset h(g^{-1}(\overline{X} \setminus X))$. This is equivalent that res $f: f^{-1}(U) \to U$ is a proper morphism, where $U = \overline{Y} \setminus h(g^{-1}(\overline{X} \setminus X))$. It is clear that $f^{-1}(U)$ is contained in X and the following diagram commutes

Since the vertical arrow is surjective and the wedge arrow is proper, the horizontal arrow is proper too. This completes the proof. $\hfill \Box$

4 Stabilizing hypersurfaces

We shall begin with an easy necessary condition for a hypersurface to be stabilizing.

Proposition 4.1. Let X be an affine variety. Suppose that F is a regular function on X such that the set $F^{-1}(0)$ is a stabilizing hypersurface. Then $D(F) \neq 0$ for every non-zero locally nilpotent K-derivation D on the coordinate ring $\mathbb{K}[X]$.

Proof. A locally nilpotent K-derivation D on $\mathbb{K}[X]$ induces the automorphism $\exp TD : \mathbb{K}[X][T] \ni G \mapsto \sum_{i=0}^{\infty} \frac{1}{i!} D^i(G) T^i \in \mathbb{K}[X][T]$, where D is extended on $\mathbb{K}[X][T]$ such that D(T) = 0 (see [5, p.17]). Therefore if D(F) = 0 and a hypersurface $F^{-1}(0)$ is stabilizing then $\exp TD(F) = F$, and consequently $\exp TD(\mathbb{K}[X]) \subset \mathbb{K}[X]$, so D = 0.

Note the following

Proposition 4.2. Let H be a hypersurface in an affine variety X. Suppose that the variety $X \setminus H$ has the strong cancellation property (in particular, if $X \setminus H$ is either non- \mathbb{K} -uniruled or if $\overline{\kappa}(X \setminus H) \geq 0$). Then H is stabilizing.

For example, if $n = \dim X$ and F_1, \ldots, F_n are algebraically independent regular functions on X then $\{x \in X : F_1(x) \ldots F_n(x) = 0\}$ is a stabilizing hypersurface.

Proof. The assertion follows immediately from section 2 and an easy observation that for a morphism $f: Y \times \mathbb{K}^m \to Z$ the set $\{y \in Y : \dim f(\{y\} \times \mathbb{K}^m) = 0\}$ is closed in Y. \Box

Now we give the main result of this section.

Theorem 4.3. A non-uniruled hypersurface contained in a smooth affine variety is stabilizing.

We will need three lemmas.

Lemma 4.4. Let $f : X \to Y$ be a dominant morphism between smooth varieties of equal dimension. Suppose that f is étale at $a \in X$, proper at b = f(a), and $f^{-1}(b) = \{a\}$. Then there exists a neighborhood U of b such that res $f : f^{-1}(U) \to U$ is an isomorphism.

Proof. We may assume that f is proper. Let R_f be the set of points at which f is not étale. Then $f(R_f)$ is closed in Y and $b \in Y \setminus f(R_f)$. Replacing $Y \setminus f(R_f)$ by Y and $X \setminus f^{-1}(f(R_f))$ by X we may assume that f is étale. Hence f is an étale covering, so it is a finite morphism (see [9, p.248]). Now we may assume that X and Y are affine. Consider the corresponding finite extension of coordinate rings $\mathbb{K}[Y] \subset \mathbb{K}[X]$. Let $(\vartheta_x, \mathfrak{m}_x)$ and $(\vartheta_y, \mathfrak{m}_y)$ be local rings of points x and y, respectively. Put $M = \mathfrak{m}_y \cap \mathbb{K}[Y]$. Clearly, the extension $\vartheta_y = \mathbb{K}[Y]_M \subset \mathbb{K}[X]_{\mathbb{K}[Y]\setminus M}$ is finite and the ring $\mathbb{K}[X]_{\mathbb{K}[Y]\setminus M}$ has a unique maximal ideal. Thus $\mathbb{K}[X]_{\mathbb{K}[Y]\setminus M} = \vartheta_x$ and consequently ϑ_x is a finitely generated ϑ_y -module. Moreover, $\mathfrak{m}_x = \mathfrak{m}_y \vartheta_x$, since f is étale at x. Because $\vartheta_x/\mathfrak{m}_x \cong \vartheta_y/\mathfrak{m}_y \cong \mathbb{K}$, so $\vartheta_x = \vartheta_y + \mathfrak{m}_x = \vartheta_y + \mathfrak{m}_y \vartheta_x$. Hence, by Nakayama's lemma, $\vartheta_y = \vartheta_x$. From this the assertion follows at once.

Note that for complex varieties we may argue as follows. Choose an open (in the \mathbb{C} -topology) neighborhood V of a such that $f: V \to f(V)$ is a biholomorphism. By properness of f at b there is an open neighborhood U of b such that $f^{-1}(U)$ is contained in V. This means that the generic fiber of f consists of one point, so f is birational. By Zariski's Main Theorem f^{-1} is regular at b.

In the sequel π_X denotes the projection $X \times \mathbb{K}^m \ni (x, y) \mapsto x \in X$.

Lemma 4.5. Let X be a smooth affine variety and W be a subvariety of $X \times \mathbb{K}^m$. Suppose that W is non-singular at points $a_1, \ldots, a_s \in W$ and $\pi_X(a_i) \neq \pi_X(a_j)$ for $i \neq j$. Then there exists a morphism $p : X \to \mathbb{K}^m$ such that its graph meets W transversally at a_1, \ldots, a_s .

Proof. It suffices to give a proof for $X = \mathbb{K}^n$. (Indeed, if X is contained in \mathbb{K}^n and a morphism $p : \mathbb{K}^n \to \mathbb{K}^m$ satisfies the above condition then $\operatorname{res}_X p$ satisfies this condition too.) Choose *n*-dimensional affine subspaces L_1, \ldots, L_s in $\mathbb{K}^n \times \mathbb{K}^m$ such that L_i and W are transversal at a_i and the projection $L_i \to \mathbb{K}^n$ is an isomorphism for all *i*. Using an easy interpolation we can find a polynomial mapping $p : \mathbb{K}^n \to \mathbb{K}^m$ the graph of which pass through a_1, \ldots, a_s and has L_i as a tangent space at a_i for all *i*. This concludes the proof. \Box

Lemma 4.6. Let $f : X \to Y$ be a birational morphism between smooth varieties. If a fiber of f contains at least two points then its all irreducible components have positive dimension.

Proof. Let $f^{-1}(y)$ satisfy the assumptions. Since f^{-1} is not regular at y, by Zariski's Main Theorem there exists an exceptional divisor E containing $f^{-1}(y)$. Hence all irreducible components of $f^{-1}(y) = (f|_E)^{-1}(y)$ have positive dimension.

Proof of Theorem 4.3. Let X be a smooth affine variety and H a nonuniruled hypersurface in X. Let $f: X \times \mathbb{K}^m \to Y \times \mathbb{K}^m$ be an isomorphism such that $f(H \times \mathbb{K}^m) = H' \times \mathbb{K}^m$, where H' is a hypersurface in Y. We may assume that H is irreducible.

For any morphism $p : X \to \mathbb{K}^m$ define the morphism $f_p : X \ni x \mapsto \pi_Y(f(x, p(x))) \in Y$. We shall show that f_p is birational.

Let $a \in X$, A := (a, p(a)) and Γ_p denote the graph of p. By Proposition 2.2, $f(\{a\} \times \mathbb{K}^m) = \{b\} \times \mathbb{K}^m$ for some $b \in H'$. Clearly, Γ_p and $\{a\} \times \mathbb{K}^m$ are transversal at A, hence $f(\Gamma_p)$ and $\{b\} \times \mathbb{K}^m$ are transversal at f(A) too. Consequently res $\pi_Y : f(\Gamma_p) \to Y$ is étale at f(A). This implies that f_p is étale at a as a composition of étale morphisms. It is clear that $f_p : H \to H'$ is an isomorphism and $f_p^{-1}(f_p(x)) = \{x\}$ for each $x \in H'$. Furthermore, Xdominates Y and conversely, so by Theorem 3.2, f_p is proper at some point of H'. It implies that f_p is birational by Lemma 4.4.

Suppose now that $\pi_X(f^{-1}(\{y\} \times \mathbb{K}^m))$ has positive dimension for some $y \in Y$. Choose two points $a, b \in f^{-1}(\{y\} \times \mathbb{K}^m)$ such that $\pi_X(a) \neq \pi_X(b)$. By Lemma 4.5 there exists a morphism $p : X \to \mathbb{K}^m$ such that its graph meets transversally $f^{-1}(\{y\} \times \mathbb{K}^m)$ at a, b. Hence $\{\pi_X(a)\}$ and $\{\pi_X(b)\}$ are components of the fiber $f_p^{-1}(y)$, which is impossible by Lemma 4.6. The proof is complete.

5 Stabilizing hypersurfaces over \mathbb{C}

Theorem 5.1. Let X be a complex affine and smooth variety which is dominated by \mathbb{C}^n . Then any non- \mathbb{C} -uniruled hypersurface in X is stabilizing.

Proof. The proof of Theorem 4.3 works also in this case, we need only use Theorem 3.1 instead of Theorem 3.2. \Box

Corollary 5.2. Two stably equivalent hypersurfaces in \mathbb{C}^n are equivalent if one of them is non- \mathbb{C} -uniruled.

Corollary 5.3. Let X be an irreducible curve in \mathbb{C}^2 which is either non- \mathbb{C} uniruled or it is simply connected. Then any curve in \mathbb{C}^2 stably equivalent to X is equivalent to it.

Proof. It remains to prove the case when X is simply connected, but this follows at once from two remarks. (1) By theorems of Abhyankar-Moh [2] and Lin-Zaidenberg [16] (see also [7]) we know that two simply connected curves in \mathbb{C}^2 are isomorphic if and only if they are equivalent. (2) Affine curves have the cancellation property, i.e., if C_1 and C_2 are affine curves and $C_1 \times \mathbb{K}^m \cong C_2 \times \mathbb{K}^m$ then $C_1 \cong C_2$ (this follows, for example, from a more general theorem proved by Abhyankar, Eakin and Heinzer in [1]).

Our next purpose is to give a sharpened version of the result of Shpilrain and Yu from [18]. Recall that a polynomial $P \in \mathbb{C}[T_1, \ldots, T_n]$ is said to be a test polynomial in the class of monomorphisms if every \mathbb{C} -monomorphism $\Phi : \mathbb{C}[T_1, \ldots, T_n] \to \mathbb{C}[T_1, \ldots, T_n]$ such that $\Phi(P) = cP$ for some $c \in \mathbb{C}^*$ is an automorphism. A question about the existence and some properties of such polynomials were stated by van den Essen and Shpilrain in [6]. Later it was showed by Jelonek in [14] that a generic polynomial in $\mathbb{C}[T_1, \ldots, T_n]$ of degree greater than n is a test polynomial in the class of monomorphisms. (Note that the above definition is due to [14] and it is slightly different than that introduced in [6].)

Proposition 5.4. Let $P \in \mathbb{C}[T_1, \ldots, T_n]$ be a test polynomial in the class of monomorphisms. Then the set $P^{-1}(0)$ is a stabilizing hypersurface in \mathbb{C}^n .

Proof. Let $P = P_1^{r_1} \dots P_s^{r_s}$, where P_1, \dots, P_s are pairwise different irreducible factors of P. Observe that $P' = P_1 \dots P_s$ is a test polynomial in the class of monomorphisms too. Indeed, if $\Phi : \mathbb{C}[T_1, \dots, T_n] \to \mathbb{C}[T_1, \dots, T_n]$ is a monomorphism such that $\Phi(P') = cP'$ for some $c \in \mathbb{C}^*$ then $\Phi(P_i) = c_i P_{\sigma(i)}$, where σ is a permutation of the set $\{1, \dots, s\}$ and $c_i \in \mathbb{C}^*$. Hence $\Phi^{s!}(P_i) =$ $c'_i P_i$, so $\Phi^{s!}(P) = c'P$, where $c'_i, c' \in \mathbb{C}^*$. This implies that $\Phi^{s!}$ is an automorphism, and so is Φ . Therefore for this proof we may assume that $r_1 = \ldots = r_s = 1$.

Put $H = P^{-1}(0)$ and $H_i = P_i^{-1}(0)$. Suppose that H is not stabilizing. Let $f: \mathbb{C}^n \times \mathbb{C}^m \to X \times \mathbb{C}^m$ be an isomorphism such that $f(H \times \mathbb{C}^m) = H' \times \mathbb{C}^m$ and for some $x \in X$ the dimension of $\pi_{\mathbb{C}^n}(f^{-1}(\{x\} \times \mathbb{C}^m))$ is positive. Choose points $a_i \in H_i \setminus \bigcup_{j \neq i} H_j$ such that H_i is non-singular at a_i for all i. Assume that $f(a_i)$ lies on $\{b_i\} \times \mathbb{C}^m$ for some $b_i \in X$ (we identify \mathbb{C}^n with $\mathbb{C}^n \times \{0\}$). By Lemma 4.5 there exists a morphism $p: \mathbb{C}^n \to \mathbb{C}^m$ such that its graph meets transversally $f^{-1}(\{b_i\} \times \mathbb{C}^m)$ at a_i and cuts $f^{-1}(\{x\} \times \mathbb{C}^m)$ in at least two points. Similarly, we can find a morphism $q: X \to \mathbb{C}^m$ with the graph meeting transversally $f(\{a_i\} \times \mathbb{C}^m)$ at $f(a_i)$ for all i. Consider the morphism $g := f^{-1}{}_q \circ f_p: \mathbb{C}^n \to \mathbb{C}^n$, where $f_p: \mathbb{C}^n \ni x \mapsto \pi_X(f(x, p(x))) \in X$ and $f^{-1}{}_q: X \ni x \mapsto \pi_{\mathbb{C}^n}(f^{-1}(x, q(x))) \in \mathbb{C}^n$. By definition, g is not injective, $g(a_i) = a_i$ and g is a local biholomorphism at a_i . In particular, g is dominant. Obviously, $g^{-1}(H) = H$. Hence for the induced monomorphism $g^*: \mathbb{C}[T_1, \ldots, T_n] \to \mathbb{C}[T_1, \ldots, T_n]$ we have $g^*(P) = cP_1^{d_1} \ldots P_s^{d_s}$ for some $c \in \mathbb{C}^*$ and $d_1, \ldots, d_s > 0$. But the tangent space to H at a_i is given by two equations $d_{a_i}P = 0$ and $d_{a_i}g^*(P) = 0$, so $d_1 = \ldots = d_s = 1$. Consequently g is an automorphism, despite g is not injective. This concludes the proof.

Acknowledgements. I would like to express my gratitude to Professor Kamil Rusek for introducing me to the subject and helpful discussion. I thank also to Grzegorz and Michał Kapustka for indicated me how to simplify the proof of Theorem 4.3.

References

- [1] S. S. Abhyankar, P. Eakin, and W. J. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
- [2] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
- [3] R. Dryło, Non-uniruledness and the cancellation problem, Ann. Polon. Math. (to appear).
- [4] R. Dryło, Cancellation theorem for algebraic line bundles, Preprint IMUJ, 2005/13.
- [5] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190, Birkhäuser, 2000.
- [6] A. van den Essen and V. Shpilrain, Some combinatorial questions about polynomial mappings, J. Pure and Appl. Alg. 119 (1997), 47-52.

- [7] R. V. Gurjar and M. Miyanishi, On contractible curves in the complex affine plane, Tahôku Math. J. 48 (1996), 459-469.
- [8] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326.
- [9] S. Iitaka, An Introduction to Birational Geometry of Algebraic Varieties, Springer, Berlin, 1982.
- [10] S. Iitaka and T. Fujita, Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. Tokyo 24 (1977), 123-127.
- [11] Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
- [12] Z. Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), 601-617.
- [13] Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
- [14] Z. Jelonek, Test polynomials, J. Pure and Appl. Alg. 147 (2000), 125-132.
- [15] Z. Jelonek and M. Karaś, The set of points at which a morphism of affine schemes is not finite, Colloq. Math. 92 (2002), 59-66.
- [16] M. Zeidenberg and V. Lin, An irreducible simply connected algebraic curves in \mathbb{C}^2 is equivatent to a quasihomogeneous curve, Soviet Math. Dokl. **28** (1983), 200-204.
- [17] L. Makar-Limanov, P. van Rossum, V. Shpilrain and J. T. Yu, The stable equivalence and cancellation problems, Comment. Math. Helv. 79 (2004), 341-349.
- [18] V. Shpilrain and Y. T. Yu, Affine varieties with equivalent cylinders, J. Algebra 251 (2002), 295-307.
- [19] A. Stasica, Geometry of the Jelonek set, J. Pure and Appl. Alg. 198 (2005), 317-327.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: Robert.Drylo@im.uj.edu.pl