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1. Introduction

The notion of ϕ-variation of a real function was introduced by L.C. Young
[13] (see also [14]) in connection with investigation of the behaviour of Fourier
series. This concept seems to be one of the most important generalizations
of the classical variation in the sense of Jordan. It is worth to recall that the
space of functions of bounded ϕ-variation from the point of view of functional
analysis and some applications was studied by J. Musielak and W. Orlicz
[11], and R. Leśniewicz and W. Orlicz [9]. Moreover, composing functions of
bounded ϕ-variation was investigated by J. Ciemnoczo lowski and W. Orlicz
[6]; in particular they proved a generalization of the result by M. Josephy [8]
concerning composing functions of bounded variation in the sense of Jordan.

Recall that basic results concerning the superposition operator in different
spaces, in particular in the space of functions of bounded variation in the
sense of Jordan as well as exhaustive references on this topic one can find in
[2].

Recall also that the parameter t in ϕ(t, u) in connection with spaces of
functions of bounded ϕ-variation was introduced and investigated in papers
by S. Gni lka (see e.g. [7]). Such spaces are called spaces of functions of
generalized bounded ϕ-variation.

In this paper we would like to pursue two purposes. First, we are inter-
ested in the superposition operator acting in the space of functions of gen-
eralized bounded ϕ-variation. In particular, for the large class of functions
ϕ(t, u), we formulate the conditions which ensure the composition operator
maps the space of functions of generalized bounded ϕ-variation into itself
(see Corollary 1). Our results extend the results proved by Ciemnoczo lowski
and Orlicz [6].

Second, we are interested in solutions, in particular in continuous so-
lutions, to nonlinear integral equations which are functions of generalized
bounded ϕ-variation.

Our results generalize the previous ones from the papers [3], [4] and [5].
Let us draw a reader’s attention to Remark 1. In a sense, this remark explains
the significance of our results. In particular, for some class of functions ϕ(t, u)
we obtain solutions to equations under consideration, which are functions
of bounded variation in the sense of Jordan, constant on each interval of
continuity.

The paper is organized as follows; in Section 2 we collect a few definitions
and facts which will be needed in the sequel. Section 3 contains results about
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acting of the autonomous superposition operator in the space of functions
of generalized bounded ϕ-variation. Finally, in Sections 4-6 we deal with
solutions to the nonlinear Hammerstein as well as the Volterra-Hammerstein
integral equation which are functions of generalized bounded ϕ-variation. We
prove a few existence results concerning local and global solutions to these
equations.

The proofs of the theorems from Section 6 are based on the Leray-
Schauder alternative for contractions from [12].

2. Preliminaries

In this section we collect some definitions and results which will be needed
in the sequel. Throughout this paper we assume that ϕ : [0, a]× R+ → R+,
a < +∞ satisfies the following conditions:

(i) ϕ(t, u) is a continuous, nondecreasing function of u ≥ 0 for every t ∈
[0, a], ϕ(t, u) → +∞ as u→ +∞;

(ii) ϕ(t, 0) = 0 for every t ∈ [0, a] and ϕ(0, u) = 0 implies u = 0.

Let X = {x : [0, a] → R}. Recall that for a function x ∈ X, the number

Vϕ(x) = sup
π

n∑
i=1

ϕ(si, |x(ti)− x(ti−1)|),

where the supremum is taken over all partitions π : 0 = t0 < t1 < . . . < tn = a
with intermidiate points si ∈ [ti−1, ti], i = 1, . . . , n, is called the generalized
ϕ-variation of the function x in [0, a]. Denote

BVϕ = BVϕ(I) = {x ∈ X : Vϕ(λx) < +∞ for some λ > 0},

where I = [0, a]. It is well-known that, if ϕ satisfies the condition:

(iii) ϕ(t, u) is a convex function of u for all t ∈ [0, a],

then BVϕ(I) with the norm

‖x‖Vϕ = inf{ε > 0 : Vϕ(
x

ε
) ≤ 1}
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is a Banach space (see [10], Theorem 10.8, p.71 and Theorem 1.5, pp. 2-3).
Elements of this space will be called generalized BVϕ-functions and solutions
to integral equations belonging to this space will be called generalized BVϕ-
solutions.

Let us denote ψ(u) = sup
0≤s≤a

ϕ(s, u) and we will assume that the following

condition is satisfied

(iv) if ψ(u) = 0, then u = 0.

For other basic concepts concerning modular spaces (as e.g. ϕ-function,
s-convexity, the condition ∆2 for small u) a reader is refereed to [10].

3. Superposition operator in BVϕ(I)

We start with the following

Lemma 1 Let ϕ : [0, a] × R+ → R+ satisfy conditions (i) and (ii). Let
Fn : R → R be a sequence of functions such that Fn(0) = 0. Assume that for
any v > 0 there exists Kv > 0 such that for any u1, u2 ∈ [−v, v] and n ∈ N

|Fn(u1)− Fn(u2)| ≤ Kv|u1 − u2|.

Then for any x ∈ BVϕ there exists λ > 0 such that

sup
n∈N

Vϕ(λ(Fn ◦ x)) < +∞;

P r o o f. Fix x ∈ BVϕ and λ > 0 with Vϕ(λx) < +∞. By [10] Theorem 10.7,
(a), p. 69, there exists v > 0 such that for any t ∈ [0, a], |x(t)| < v. By our
assumptions, for any partition Π = {to, t1, ..., tl} of [0, a] and si ∈ [ti−1, ti],
i = 1, ..., l, we have

l∑
i=1

ϕ(si, (λ/Kv)|Fn(x(ti))− Fn(x(ti−1))|)

≤
l∑

i=1

ϕ(si, λ|x(ti)− x(ti−1)|) ≤ Vϕ(λx) < +∞.

Hence sup
n
Vϕ((λ/Kv)(Fn ◦ x)) < +∞, as required.
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Before presenting next results, we introduce some notation. Let g : R+ →
R+ be a continuous, nondecreasing function such that

(v) lim
u→+∞

g(u) = +∞;

(vi) g(u) = 0 if and only if u = 0;

(vii) g satisfies ∆2 condition for small u.

Assume furthermore that there exist positive constants M,m and uo > 0
such that for any u ∈ [0, uo] and t ∈ [0, a]

mg(u) ≤ ϕ(t, u) ≤Mg(u).(1)

Now we can state

Theorem 1 Let ϕ : [0, a]×R+ → R+ and g : R+ → R+ satisfy the conditions
(i),(ii), (v)-(vii) and (1). Let Fn : R → R be a sequence of functions such
that Fn(0) = 0. Then the following conditions are equivalent:

(a) For any x ∈ BVϕ there exists k > 0 such that

sup
n∈N

Vϕ(k(Fn ◦ x)) < +∞;

(b) For any v > 0 there exists Kv > 0 such that for any u1, u2 ∈ [−v, v]
and n ∈ N

g(|Fn(u1)− Fn(u2)|) ≤ Kvg(|u1 − u2|).

P r o o f. Assume that condition (a) is satisfied and fix x ∈ BVϕ. By [10]
Theorem 10.7, (b), p. 69, there exists M > 0 such that for any n ∈ N and
t ∈ [0, a],

|Fn(x(t))| < M.(2)

Hence there exists k1 > 0 such that k1|Fn(x(t))| < uo/2 for any t ∈ [0, a] and
n ∈ N. Without loss of generality, we can assume that k < 1 and k1 < 1.
Note that for any partition P = {to, t1, ..., tl} of [0, a], by (1) and (a),

l∑
i=1

g(k1k|Fn(x(ti))− Fn(x(ti−1))|)

≤
l∑

i=1

ϕ(ti, k1k|Fn(x(ti))− Fn(x(ti−1))|)/m

≤ (sup
n∈N

Vϕ(k(Fn ◦ x)))/m < +∞.
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Consequently for any x ∈ BVϕ

sup
n∈N

Vg(k1k(Fn ◦ x)) < +∞.(3)

Observe that by (1) and [10], Theorem 10.11, p. 74, BVϕ = BVg. Hence for
any x ∈ BVg (3) holds true. Now we show that

sup
n∈N

Vg(Fn ◦ x) < +∞(4)

for any x ∈ BVg. Since g satisfies local ∆2 condition and g is nondecreasing,
for any M > 0 and u ∈ [0,M ], there exists LM > 0

g(2u) ≤ LMg(u).

Fix M > 0 satisfying (2) and w ∈ N such that 2−w < kk1. Note that for any
partition P = {to, t1, ..., tl} of [0, a] and n ∈ N,

l∑
i=1

g(|Fn(x(ti))− Fn(x(ti−1))|)

≤ (LM)w

l∑
i=1

g(2−w|Fn(x(ti))− Fn(x(ti−1))|)

≤ (LM)w(
l∑

i=1

g(kk1|Fn(x(ti))− Fn(x(ti−1))|))

< (LM)w sup
n∈N

Vg(kk1(Fn ◦ x)) < +∞,

which shows our claim. By (4) and [12], Theorem 1 applied to g, for any
v > 0 there exists Kv > 0 such that for any u1, u2 ∈ [−v, v] and n ∈ N

g(|Fn(u1)− Fn(u2)|) ≤ Kvg(|u1 − u2|),(5)

which shows (b).
Now assume that (b) is satisfied and fix x ∈ Vϕ. Let k > 0 be so chosen that
Vϕ(kx) < +∞. By [10], Theorem 10.7 a), p. 69 x is a bounded function.
Choose v > 0 such that |x(t)| < v for any t ∈ [0, a]. Since g is nondecreasing,
lim

u→+∞
g(u) = +∞, and Fn(0) = 0, by (5),

sup{|Fn(u)| : n ∈ N, u ∈ [−v, v]} < +∞.
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Hence making k smaller, if necessary, we can assume that k|x(t)| < uo and
k|Fn(x(t))| ≤ uo/2 for any t ∈ [0, a] and n ∈ N. Since g satisfies local ∆2

condition, by (b) there exists Lv > 0 such that for any u1, u2 ∈ [−v, v] and
n ∈ N,

g(k|Fn(u1)− Fn(u2)|) ≤ Lvg(k|u1 − u2|).(6)

Note that for any partition P = {to, t1, ..., tl} of [0, a] and si ∈ [ti−1, ti],
i = 1, ..., l, by (1) and (6),

l∑
i=1

ϕ(si, k|Fn(x(ti))− Fn(x(ti−1))|) ≤M(
l∑

i=1

g(k|Fn(x(ti))− Fn(x(ti−1))|))

≤ (MLv)(
l∑

i=1

g(k|x(ti))− x(ti−1))|))

≤ (MLv/m)(
l∑

i=1

ϕ(si, k|x(ti)− x(ti−1)|)) ≤ (MLv/m)Vϕ(kx) < +∞.

Hence
sup

n
Vϕ(kFn ◦ x) < +∞,

which completes the proof.

Theorem 2 Let ϕ and g be as in Theorem 1. Assume furthermore that g
is s-convex for some s ∈ (0, 1] or there exists t ∈ [0, a] such that ϕ(t, .) is
s-convex for some s ∈ (0, 1]. Then (a) is equivalent to

(c) For any v > 0 there exists Kv > 0 such that for any u1, u2 ∈ [−v, v]
and n ∈ N

|Fn(u1)− Fn(u2)| ≤ Kv|u1 − u2|.

P r o o f. First assume that g is s-convex. By Theorem 1, (a) implies (b).
Fix v > 0 and positive constant Lv corresponding to v by (b). Without loss
of generality we can assume that Lv > 1. By s-convexity,

g(|Fn(u1)− Fn(u2)|/(Lv)1/s) ≤ g(|Fn(u1)− Fn(u2)|)/Lv ≤ g(|u1 − u2|).

Since g is nondecreasing, this implies that

|Fn(u1)− Fn(u2)| ≤ (Lv)1/s|u1 − u2|
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as required. Now assume that ϕ(t, .) is an s-convex function for some t ∈ [0, a]
and s ∈ (0, 1]. We show that (b) implies (c). Fix v > 0. Reasoning as in the
proof of Theorem 1 we can show that

sup{|Fn(u)| : u ∈ [−v, v], n ∈ N} < +∞.

Hence we can find k ∈ (0, 1) such that k|Fn(u)| < uo/2 and k|u| < uo/2 for
any n ∈ N and u ∈ [−v, v]. Since g satisfies local ∆2 condition, by (b) and
(1)

ϕ(t, k|Fn(u1)− Fn(u2)|) ≤Mg(k|Fn(u1)− Fn(u2)|) ≤ (LvM)g(|u1 − u2|)

≤Mvg(k|u1 − u2|) ≤ (Mv/m)ϕ(t, k|u1 − u2|)

with some constant Mv > 0. Since ϕ(t, .) is s-convex, reasoning as in the
previous case, we get

k|Fn(u1)− Fn(u2)|/(MvM/m)1/s ≤ k|u1 − u2|,

which immediately give us (c) with the constant (MvM/m)1/s. By Lemma 1,
(c) implies (a). The proof is complete.

Corollary 1 Let ϕ, g be as in Theorem 2. Assume that F : R → R satisfies
F (0) = 0. Then the composition operator x → F ◦ x maps BVϕ into BVϕ if
and only if F satisfies local Lipschitz condition.

P r o o f. Follows immediately from Lemma 1 and Theorem 2, taking
Fn = F for any n ∈ N.

Corollary 2 Let ϕ, g and Fn be as in Theorem 2. Assume that there exists
s ∈ (0, 1] such that ϕ(t, ·) is an s-convex function for any t ∈ [0, a]. Then (a)
is equivalent to

(d) There exists C > 0 such that

sup{‖Fn ◦ x‖ϕ,s : x ∈ Vϕ, ‖x‖s,ϕ = 1, n ∈ N} ≤ C.

P r o o f. By Theorem 2, (a) implies (c). By s-convexity of, ϕ(t, ·) (c)
implies (d). Conversely, (d) implies

(e) For any x ∈ Vϕ, there exists Cx > 0 with sup
n
‖Fn ◦ x‖ϕ,s < Cx.
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It is clear that (e) implies (a), which completes the proof.

4. Hammerstein integral equation

For simplicity assume that a = 1. Assume also that ϕ satisfies (i)-(iii)
from Section 2. Consider the Hammerstein integral equation

x(t) = g(t) + ν

∫
I

K(t, s)f(x(s))ds for t ∈ I, ν ∈ R.(7)

Assume that

10 g : I → R is a generalized BVϕ-function (g(0) = 0);

20 f : R → R is a locally Lipschitz function;

30 K : I × I → R is a function such that K(t, ·) is integrable in the
Lebesgue sense (briefly: L-integrable) for every t ∈ I, K(0, s) = 0 and
there exists a number α > 0 such that
1∨
0

ϕ

(
K(·,s)

α

)
≤ M(s) for a.e. s ∈ I, where M : I → R+ is an L-

integrable function.

Theorem 3 Under the above assumptions there exists a number ρ > 0 such
that for every ν with |ν| < ρ, equation (7) has a unique generalized BVϕ-
solution, defined on I.

P r o o f. First, let us observe that from 30 it follows that

inf{ε > 0 :

∫
I

Vϕ

(
K(·, s)
ε

)
ds ≤ 1} =: c < +∞.

Indeed, by 30 we have
∫
I

Vϕ

(
K(·,s)

α

)
ds < +∞. Let β =

∫
I

Vϕ

(
K(·,s)

α

)
ds and

γ = max(1, β)α. Now, we have∫
I

Vϕ

(
K(·, s)
γ

)
ds ≤ 1

max(1, β)

∫
I

Vϕ

(
K(·, s)
α

)
ds =

β

max(1, β)
≤ 1,
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so
∫
I

Vϕ

(
K(·,s)

γ

)
ds ≤ 1. Thus inf{ε > 0 :

∫
I
Vϕ

(
K(·,s)

ε

)
ds ≤ 1} =: c ≤ γ.

Choose a positive number r > 0 such that ‖g‖Vϕ < r. Denote by Lr

the Lipschitz constant which corresponds to the function f and the interval
[−r, r]. Choose a number ρ > 0 such that ‖g‖Vϕ + ρ < sup

[−r,r]

|f(t)| < r and

ρLrcc̃ < 1, where c̃ > 0 is the infimum of all positive numbers ˜̃c such that
‖x‖sup ≤ ˜̃c‖x‖Vϕ . The existence such a number c̃ follows from [10], 10.7c,
p. 69 and [1], Theorem 4.1, p. 119. Let B̄r denote the closed ball of center
zero and radius r in the space BVϕ(I). Fix ν such that |ν| < ρ. Define the
operators

F (x)(t) =

∫
I

K(t, s)f(x(s))ds,

G(x)(t) = g(t) + νF (x)(t),

where x ∈ B̄r and t ∈ I. By Lemma 1, f(x) ∈ BVϕ(I), so in view of [10],
10.7a, p.69 and Theorem 10.9, p.71 it is Lebesgue measurable and bounded.
Thus the mappings F and G are well defined. Now, we verify that G maps
B̄r into itself. Indeed, for any x ∈ B̄r, we have

‖G(x)‖Vϕ ≤ ‖g‖Vϕ + ‖νF (x)‖Vϕ = ‖g‖Vϕ + inf{ε > 0 : Vϕ

(
νF (x)

ε

)
≤ 1}.

The sign ” sup
π,{si}

” below denotes that the supremum is taken over all partitions

π with all possible intermidiate points si ∈ [ti−1, ti], i = 1, . . . , n. By the
Jensen inequality, we have

Vϕ

(
νF (x)

ε

)
= sup

π,{si}

n∑
i=1

ϕ(si,
|ν|
ε
|F (x)(ti)− F (x)(ti−1)|)

≤ sup
π,{si}

n∑
i=1

ϕ(si,

∫ 1

0

|ν|
ε
|K(ti, s)−K(ti−1, s)||f(x)(s)|ds)

≤ sup
π,{si}

n∑
i=1

ϕ(si,

∫ 1

0

|ν|
ε

sup
s∈I

|f(x)(s)||K(ti, s)−K(ti−1, s)|ds)

≤ sup
π,{si}

n∑
i=1

ϕ(si,

∫ 1

0

|ν|
ε

sup
t∈[−r,r]

|f(t)||K(ti, s)−K(ti−1, s)|ds)
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≤ sup
π,{si}

n∑
i=1

∫ 1

0

ϕ(si,
|ν|
ε

sup
t∈[−r,r]

|f(t)||K(ti, s)−K(ti−1, s)|ds)

≤
∫ 1

0

ϕ(|ν| sup
t∈[−r,r]

|f(t)|K(·, s)
ε

)ds

and

inf{ε > 0 : Vϕ

(
νF (x)

ε

)
≤ 1}

≤ inf{ε > 0 :

∫ 1

0

Vϕ

(
|ν| sup

t∈[−r,r]

|f(t)|K(·, s)
ε

)
ds ≤ 1}

= |ν| sup
t∈[−r,r]

|f(t)| inf{ε > 0 :

∫ 1

0

Vϕ

(
K(·, s)
ε

)
ds ≤ 1}

= |ν| sup
t∈[−r,r]

|f(t)|c.

Therefore, we conclude that

‖G(x)‖Vϕ ≤ ‖g‖Vϕ + |ν| sup
[−r,r]

|f(t)|c < r,

which means that G maps B̄r into itself.
Similarly, for any x, y ∈ B̄r we have

Vϕ

(
ν(F (x)− F (y))

ε

)
≤ sup

π,{si}

n∑
i=1

ϕ(si,

∫ 1

0

|ν|
ε
|K(ti, s)−K(ti−1, s)||f(x(s))− f(y(s))|ds)

≤ sup
π,{si}

n∑
i=1

∫ 1

0

ϕ(si,
|ν|
ε

sup
s∈I

|f(x(s))− f(y(s))||K(ti, s)−K(ti−1, s)|)ds

≤ sup
π,{si}

n∑
i=1

∫ 1

0

ϕ(si,
|ν|
ε
Lr sup

s∈I
|x(s)− y(s)||K(ti, s)−K(ti−1, s)|)ds

≤
∫ 1

0

Vϕ(|ν|Lr sup
s∈I

|x(s)− y(s)|K(·, s)
ε

)ds,

and

‖G(x)−G(y)‖Vϕ = inf{ε > 0 : Vϕ

(
ν(F (x)− F (y))

ε

)
≤ 1}
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≤ inf{ε > 0 :

∫ 1

0

Vϕ(|ν|Lr sup
s∈I

|x(s)− y(s)|K(·, s)
ε

)ds ≤ 1}

= |ν|Lrcc̃‖x− y‖Vϕ ,

so G is a contraction. Now, applying the Banach contraction principle we
infer that G has a unique fixed point in B̄r, which is a generalized BVϕ-
solution to equation (7).

Remark 1 1) Let ϕ be a ϕ-function without parameter. Then Theorem 3
covers with Theorem 1 from [3].

2) Again, let ϕ be a ϕ-function without parameter satisfying the condi-
tions u−1ϕ(u) → +∞ as u → 0+ and ϕ(u1 + . . . + un) ≤ k(ϕ(λu1) + . . . +
ϕ(λun)) for n ∈ N with some constants k, λ > 0. Let us denote

sx(t) = x(0 + 0)− x(0) +
∑
ti<t

(x(ti + 0)− x(ti − 0)) + x(t)− x(t− 0)

for 0 < x ≤ a for every x ∈ Vϕ, where t1, t2, . . . are all points of discontinuity
of x. It can be shown that in this case x(t) = sx(t) for every t ∈ [0, a] (see
[10], pp. 73-74 for details).

3) Now, assume that ϕ(t, u) satisfies the condition uψ−1(u) → +∞, as
u → 0+, where ψ is the function defined in (iv) and let x ∈ Vϕ. One can
easily verify then, that the function x is of bounded variation in [0, a], in the
usual sense. Moreover, it can be shown that x is constant in each interval of
continuity (see again [10], p. 73 for details).

5. Volterra-Hammerstein integral equation

Throughout this section we assume that ϕ-function ϕ is convex and sat-
isfies following ∆2-condition:

ϕ(t, 2u) ≤ kϕ(t, u) for 0 ≤ u ≤ u0, t ∈ [0, a],

where u0 > 0 is fixed and k is a positive constant.

For x ∈ X, we shall denote by
1∨
s

ϕ(x) the ϕ-variation of x on the interval

[s, 1], where 0 ≤ s < 1.
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Consider the following Volterra-Hammerstein integral equation

x(t) = g(t) +

t∫
0

K(t, s)f(x(s))ds for t ∈ I.(8)

In what follows we shall need the following assumption

40 Let T = {(t, s) : 0 ≤ t ≤ 1, 0 ≤ s ≤ t} and K : T → R be a functin
such that K(t, ·) is an L-integrable on [0, t] for every t ∈ I, and there

exists a number α > 0 such that sup
0≤w≤1
s≤t≤1

ϕ
(
w, |K(t,s)|

α

)
+

1∨
s

ϕ

(
K(·,s)

α

)
≤

m(s) for a.e. s ∈ I, where m : I → R+ is an L-integrable function.

Now, we prove the following

Theorem 4 Suppose conditions 10, 20 and 40 are satisfied. Then there exists
an interval J ⊂ I such that the equation (8) has a unique generalized BVϕ-
solution, defined on J .

P r o o f. Let r, Lr and c̃ be as in the proof of Theorem 3. Choose
a positive integer N such that sup

t∈[−r,r]

|f(t)| α
2N + ‖g‖Vϕ < r and Lrc̃

α
2N < 1.

Further, let 0 < d ≤ min{u0, 1} be such that∫ d

0

[ sup
0≤w≤d
s≤t≤d

ϕ

(
w,

2N |K(t, s)|
α

)
+

d∨
s

ϕ

(
2NK(·, s)

α

)
]ds(9)

≤ KN

∫ d

0

m(s)ds ≤ 1.

Indeed, by 40 and the absolute continuity of the Lebesgue integral, there
exists 0 < d ≤ min{u0, 1} such that∫ d

0

[ sup
0≤w≤d
s≤t≤d

ϕ

(
w,
|K(t, s)|

α

)
+

d∨
s

ϕ

(
K(·, s)
α

)
]ds ≤

∫ d

0

m(s)ds ≤ 1.

In view of the ∆2-condition, we obtain∫ d

0

[ sup
0≤w≤d
s≤t≤d

ϕ

(
w,

2|K(t, s)|
α

)
+

d∨
s

ϕ

(
2K(·, s)

α

)
]ds ≤ K

∫ d

0

m(s)ds,
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so one can choose d such that K
∫ d

0
m(s)ds ≤ 1. Arguing in such a way

as above we deduce that for every N ∈ N there exists a number 0 < d ≤
min{u0, 1} which satisfies (9). From (9) we get the inequality

(10)

inf{ε > 0 :

∫ d

0

[ sup
0≤w≤d
s≤t≤d

ϕ

(
w,
|K(t, s)|

ε

)
+

d∨
s

ϕ

(
K(·, s)
ε

)
]ds ≤ 1} ≤ α

2N
.

Define K̃(t, s) =

{
K(t, s) , 0 ≤ s ≤ t,

0 , s < t ≤ d,
J = [0, d] and G(x)(t) = g(t) +

F (x)(t), where

F (x)(t) =

∫ t

0

K(t, s)f(x(s))ds, for x ∈ B̄r, t ∈ J,

(B̄r denotes here the same ball as in the proof of Theorem 3). Now, we verify
that G maps B̄r into itself. We have obviously

‖G(x)‖Vϕ ≤ ‖g‖Vϕ + ‖F (x)‖Vϕ = ‖g‖Vϕ + inf{ε > 0 :
d∨
0

ϕ(
F (x)

ε
) ≤ 1}.

Since

d∨
0

ϕ

(
F (x)

ε

)
= sup

π,{si}

n∑
i=1

ϕ(si,
1

ε
|F (x)(ti)− F (x)(ti−1)|)

= sup
π,{si}

n∑
i=1

ϕ(si, |
∫ ti

0

1

ε
K(ti, s)f(x(s))ds−

∫ ti−1

0

1

ε
K(ti−1, s)f(x(s))ds|)

= sup
π,{si}

n∑
i=1

ϕ(si, |
∫ d

0

1

ε
(K̃(ti, s)− K̃(ti−1, s))f(x(s))ds|)

≤ sup
π,{si}

n∑
i=1

ϕ(si,
1

d

∫ d

0

d
1

ε
sup
s∈J

|f(x(s))||K̃(ti, s)− K̃(ti−1, s)|ds)

≤ sup
π,{si}

n∑
i=1

1

d

∫ d

0

ϕ(si,
d

ε
sup

t∈[−r,r]

|f(t)||K̃(ti, s)− K̃(ti−1, s)|ds)

≤
∫ d

0

d∨
0

ϕ( sup
t∈[−r,r]

|f(t)|K̃(·, s)
ε

)ds,
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so

inf{ε > 0 :
d∨
0

ϕ

(
F (x)

ε

)
≤ 1}

≤ inf{ε > 0 :

∫ d

0

d∨
0

ϕ

(
sup

t∈[−r,r]

|f(t)|K̃(·, s)
ε

)
ds ≤ 1}

= sup
t∈[−r,r]

|f(t)| inf{ε > 0 :

∫ d

0

d∨
0

ϕ

(
K̃(·, s)
ε

)
ds ≤ 1}.

Further, since∫ d

0

d∨
0

ϕ

(
K̃(·, s)
ε

)
ds ≤

∫ d

0

[ sup
0≤w≤d
s≤t≤d

ϕ(w,
|K(t, s)|

ε
) +

d∨
s

ϕ(
K(·, s)
ε

)]ds,

by (10), we get

inf{ε > 0 :
d∨
0

ϕ(
F (x)

ε
) ≤ 1} ≤ sup

t∈[−r,r]

|f(t)| α
2N
.

Thus ‖G(x)‖Vϕ < r, which means that G(B̄r) ⊂ B̄r.
Now, for any x, y ∈ B̄r we have

‖G(x)−G(y)‖Vϕ = inf{ε > 0 :
d∨
0

ϕ(
F (x)− F (y)

ε
) ≤ 1}

and

d∨
0

ϕ(
F (x)− F (y)

ε
)

= sup
π,{si}

n∑
i=1

ϕ(si,
1

ε
|F (x)(ti)− F (x)(ti−1)− F (y)(ti) + F (y)(ti−1)|)

≤ sup
π,{si}

n∑
i=1

ϕ(si,

∫ d

0

1

ε
|K̃(ti, s)− K̃(ti−1, s)||f(x(s))− f(y(s))|ds)

≤ sup
π,{si}

n∑
i=1

∫ d

0

ϕ(si,
1

ε
sup
s∈J

|f(x(s))− f(y(s))||K̃(ti, s)− K̃(ti−1, s)|)ds

15



≤ sup
π,{si}

n∑
i=1

∫ d

0

ϕ(si,
1

ε
Lr sup

s∈J
|x(s)− y(s)||K̃(ti, s)− K̃(ti−1, s)|)ds

≤
∫ d

0

d∨
0

ϕ(Lr sup
s∈J

|x(s)− y(s)|K̃(·, s)
ε

)ds,

so, by (10), we get

‖G(x)−G(y)‖Vϕ

≤ inf{ε > 0 :

∫ d

0

d∨
0

ϕ(Lr sup
s∈J

|x(s)− y(s)|K̃(·, s)
ε

)ds ≤ 1}

≤ Lr sup
s∈J

|x(s)− y(s)| α
2N

≤ Lrc̃
α

2N
‖x− y‖Vϕ .

By the Banach contraction principle, we infer that G has a unique fixed point
in B̄r, which is a generalized BVϕ-solution of the equation (8).

6. Global solutions of equations (7) and (8)

Let us begin with the Hammerstein integral equation of the form

x(t) = g(t) +

∫
I

K(t, s)f(x(s))ds, for t ∈ I,(11)

where I = [0, 1] for simplicity. Assume that

50 f : R → R;

60 there exists Ψ : [0,+∞) → [0,+∞) with Ψ(u) > 0 for u > 0 and
sup

s∈[0,1]

|f(x(s))| ≤ Ψ(‖x‖Vϕ) for any x ∈ BVϕ(I);

70 there exists M0 > 0 with M0

‖g‖Vϕ+Ψ(M0)c
> 1, where c is the constant

defined in the proof of Theorem 3;

80 there exists a continuous and nondecreasing function ϕM0 : [0,+∞) →
[0,+∞) such that cϕM0(c̃z) < z for z > 0 and |f(x)−f(y)| < ϕM0(|x−
y|), for |x|, |y| ≤ M0, where c̃ is the constant defined in the proof of
Theorem 3.
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Now we prove the following existence result for equation (11).

Theorem 5 Under the assumptions 10, 30, 50-80, equation (11) has a gen-
eralized BVϕ-solution, defined on I.

P r o o f. Let B̄M0 denote the closed ball of center zero and radius M0 in
the space BVϕ(I). Define

G(x)(t) = g(t) +

∫
I

K(t, s)f(x(s))ds, for x ∈ B̄M0 and t ∈ I.

For any x, y ∈ B̄M0 we have

‖G(x)−G(y)‖Vϕ

= inf{ε > 0 :

∫
I

Vϕ

(
K(·, s)
ε

sup
s∈I

ϕM0(|x(s)− y(s)|)
)
ds ≤ 1}

≤ cϕM0(c̃‖x− y‖Vϕ).

From the above inequality it follows, in particular, that G(B̄M0) is a bounded
set. Now suppose that x ∈ BVϕ(I) with ‖x‖Vϕ = M0 is a solution of

x(t) = λ(g(t) +

∫
I

K(t, s)f(x(s))ds) for t ∈ I,

where λ ∈ (0, 1]. By 60 and 70, we have

‖x‖Vϕ ≤ ‖g‖Vϕ + sup
s∈I

|f(x(s))| · c ≤ ‖g‖Vϕ + cΨ(‖x‖Vϕ),

so

‖x‖Vϕ

‖g‖Vϕ + cΨ(‖x‖Vϕ)
≤ 1.(12)

Since ‖x‖Vϕ = M0, (12) implies that

M0

‖g‖Vϕ + cΨ(M0)
≤ 1
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which contradicts 70. Applying the nonlinear alternative of Leray-Schauder
type (see [12]) we infer that G has a fixed point in the open ball BM0 , which
obviously is a global generalized BVϕ solution of (11).

Now, consider again equation (8). Define

K̃(t, s) =

{
K(t, s) , 0 ≤ s ≤ t,

0 , t < s ≤ 1,

and write (8) in the following form

x(t) = g(t) +

∫
I

K̃(t, s)f(x(s))ds, for t ∈ I.(13)

Hence, as a corollary from Theorem 5 we obtain the following result for
equation (8).

Theorem 6 Suppose 10, 40, 50 and 60 are satisfied. Moreover, assume that

90 there exists M0 > 0 with M0

‖g‖Vϕ+Ψ(M0)c̄
> 1, where c̄ = inf{ε > 0 :

1∫
0

[ sup
0≤w≤1
s≤t≤1

ϕ(w, |K(t,s)|
ε

) +
1∨
s

ϕ(K(·,s)
ε

)]ds ≤ 1}

and condition 80 with c̄ instead of c holds. Then equation (13) has a gener-
alized BVϕ-solution, defined on I.

P r o o f. Indeed, the results follows from Theorem 5. We have

1∨
0

ϕ(
K̃(·, s)
α

) ≤ sup
0≤w≤1
s≤t≤1

ϕ(w,
|K(t, s)|

α
) +

1∨
s

ϕ(
K(·, s)
α

) ≤ m(s)

for a.e. s ∈ I, so K̃ satisfies 30. Moreover,

inf{ε > 0 :

∫
I

1∨
0

ϕ(
K̃(·, s)
ε

)ds ≤ 1}

≤ inf{ε > 0 :

∫
I

[ sup
0≤w≤1
s≤t≤1

ϕ(w,
|K(t, s)|

ε
) +

1∨
s

ϕ(
K(·, s)
ε

)]ds ≤ 1} = c̄

and thus we can take here c = c̄.
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Remark 2 Note that the inequality ‖x‖sup ≤ ˜̃c‖x‖Vϕ , x ∈ BVϕ(I), men-
tioned in the proof of Theorem 3, in particular implies that continuous func-
tions of bounded generalized ϕ-variation form a closed subspace of the space
BVϕ(I). Therefore, it is clear that assuming additionally that g is continuous
and imposing a suitable continuity assumption on the kernel K, one can ob-
tain the existence and uniqueness results concerning continuous generalized
BVϕ solutions to equations (7) and (8).
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