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Abstract. In this paper we are interested in two kinds of singu-
lar points of weakly holomorphic functions. Points where a weakly
holomorphic function is not holomorphic and points at which it
just is not continuous. The latter are closely connected to points of
irreducibility of the given analytic set. We investigate the struc-
ture of such points proving they form analytically constructible
sets. We prove also that non-holomorphicity points of a given
weakly or c-holomorphic function form an analytic subset of the
singularities.

1. Introduction

Throughout this paper A ⊂ Cm is a locally analytic set.
When trying to figure out which complex functions defined on A are the best

generalization of the notion of a holomorphic function one comes across two
natural notions. The first one is due to R. Remmert.

Definition 1.1. (cf. [Wh]) A mapping f : A → Cn is called c-holomorphic if
it is continuous and the restriction of f to the subset RegA of regular points is
holomorphic. We denote by Oc(A, Cn) the ring of c-holomorphic mappings, and
by Oc(A) the ring of c-holomorphic functions.

A well-known theorem states that a mapping defined in an open set is holo-
morphic if and only if it is continuous and its graph is an analytic set (it is then
a submanifold). We have a similar result for c-holomorphic mappings (cf. [Wh]
4.5Q), which motivates this generalization:
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Theorem 1.2. A mapping f : A → Cn is c-holomorphic iff it is continuous and
its graph Γf := {(x, f(x)) | x ∈ A} is locally analytic in Cm × Cn.

On the other hand, there is the notion of weakly holomorphic functions which
usually people are much more acquainted with. They were introduced by H.
Cartan.

Definition 1.3. A holomorphic function f : RegA → C is called weakly holomor-
phic if it is locally bounded on A (i.e. for any a ∈ A there exists a neighbourhood
U of a such that f is bounded on U ∩A).
A mapping f : RegA → Cn is called weakly holomorphic if all its components are
weakly holomorphic. We denote by Ow(A, Cn) the ring of weakly holomorphic
mappings and put Ow(A) := Ow(A, C).

One checks as in [Wh] that if A =
⋃

Aι is the decomposition of A into irre-
ducible components, then f has a unique extension onto RegAι for each ι (and
that works in fact for germs). Then f is weakly holomorphic iff it is such on each
irreducible component of A.

It is useful to observe that for locally irreducible sets weak holomorphic and
c-holomorphic functions are just the same (see [Wh], c-holomorphic stands in fact
for continuous weak holomorphic).

Recall that an analytically constructible subset of some open set Ω ⊂ Cm is
a set which can be written locally in Ω in the form

⋃p
ι=1

⋂qj

j=1{Fιj ∗ιj 0}, where
∗ι,j ∈ {=, 6=} and Fιj are holomorphic (see [ L]). In particular the difference of
two analytic sets is analytically constructible and the closure of a constructible
set is analytic.

In [D2] we proved a weakly holomorphic counterpart of theorem 1.2. It seems
strange that it was not stated anywhere till now. It clearly implies theorem 1.2.
For convenience sake we recall it with its proof:

Theorem 1.4. ([D2]) Let f : RegA → Cn be a mapping locally bounded on an
analytic subset A of an open set Ω ⊂ Cm. The following three conditions are then
equivalent:

(1) f ∈ Ow(A, Cn);
(2) Γf is analytic in Ω× Cn;
(3) Γf is analytically constructible in Ω× Cn.

Proof. First note that we may restrict ourselves to the case n = 1 since Γf =⋂n
j=1 Γj , where

Γj := {(x, y1, . . . , yj−1, fj(x), yj+1, . . . , yn) | x ∈ RegA, yι ∈ C}.

We may as well assume that A has pure dimension k (using restrictions to the
irreducible components of A) with 0 < k < m (otherwise, since there are no
singularities, there is nothing to do — cf. the Analytic Graph Theorem).

If we have (1)⇔(2), the equivalence (2)⇔(3) is quite immediate. Indeed, if Γf

is analytic, then Γf = Γf \(SngA×C) is the difference of two analytic sets, thence
is analytically contructible. On the other hand, if Γf is analytically constructible,
then its closure is analytic and so f ∈ Ow(A).

We turn now to proving (1)⇔(2). The problem being local we may assume
that h ∈ O(Ω) is a global universal denominator for A. Having fixed f ∈ Ow(A)
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we can find g ∈ O(Ω) such that fh = g on RegA. Consider the analytic set
X := {(z, t) ∈ A× C | h(z)t = g(z)}. It remains now to observe that the set

Γf ∩ {(z, t) ∈ Ω× C | h(z) 6= 0} =

= X ∩ (RegA× C) ∩ {(z, t) ∈ Ω× C | h(z) 6= 0} =

= X \
[
(X ∩ (SngA× C)) ∪ {(z, t) ∈ Ω× C | h(z) = 0}

]
is dense in Γf . Its closure in Ω× C is clearly analytic. �

Note. In the case A = Ω the theorem above asserts that a necessary and suffi-
cient condition for a locally bounded mapping to be holomorphic is the analytic
constructibility of its graph.

Finally, we will call simply holomorphic the restrictions to A of holomorphic
functions defined in a neighbourhood of A. Their ring will be denoted O(A).
Obviously O(A) ( Oc(A) ( Ow(A) (see [Wh]).

2. Proper projections of analytic sets and irreducibility points

In this section we consider the following situation: X ⊂ CN is a locally analytic
set and π : X → A is a proper holomorphic surjection. Without loss of generality
we may assume that N = m + n and π is just the restriction to X of the natural
projection onto the first m coordinates. Then its multiplicity is well-defined and
locally bounded (see e.g. [Ch]). We fix now a neighbourhood Ω of zero in Cm

and put U := Ω× Cn assuming that X and A are closed in U .
The central result of this section is the following theorem. Recall that a func-

tion f : Z → C is called analytically constructible (where Z is constructible too)
if its graph is analytically constructible.

Theorem 2.1. In the introduced setting the function

µπ : A 3 a 7→ #π−1(a) ∈ Z

is analytically constructible.

Proof. Similarly to [T] we start with observing that the analytic constructibility
of µπ is equivalent to the fibres µ−1

π (p) being analytically constructible (indeed,
the graph coincides with

⋃
p∈Z µ−1

π (p)×{p}). The problem is clearly a local one.
Let d := max{#π−1(a) | a ∈ A}. Consider then the fibred product

X{d} := X ×π . . .×π X︸ ︷︷ ︸
d times

= {x ∈ Xd | π(xι) = π(xj), ι, j = 1, . . . , d}.

It is analytic since it coincides with (π × . . . × π)−1(∆Ad), where ∆Ad is the
diagonal in Ad (i.e. the set of all points (a, . . . , a) ∈ Ad).

Observe that

fι,j : X{d} 3 (x1, . . . , xd) 7→ (xι − xj) ∈ Cn, 1 ≤ ι < j ≤ d,

is a finite collection of holomorphic functions and the mapping

ρ : X{d} 3 x 7→ π(x1) ∈ A

is clearly holomorphic and proper (since π is proper).
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Now it is obvious that

{µπ = 0} = Ω \A and {µπ = 1} = A \ ρ

⋃
ι<j

{fι,j 6=, 0}

 ,

whence both these sets are analytically constructible. Indeed, due to the proper-
ness of ρ, the set ρ

(⋃
ι<j{fι,j 6=, 0}

)
= {µπ > 1} is constructible by the Chevalley-

Remmert Theorem (see [ L]).
Observe that in the case d = 1, 2 there is nothing more to prove (for d = 1

leads to A = {µπ = 1} while d = 2 yields {µπ = 2} = A \ {µπ = 1}). We might
suppose thus that d ≥ 3.

It is enough to prove that each set {µπ > p} is analytically constructible, since
{µπ = p} = {µπ > p− 1} \ {µπ > p}.

Clearly enough, we have in general for p ∈ {2, . . . , d},

{µπ > p− 1} = ρ

 ⋃
1≤ι1<...<ιp≤r

⋂
1≤j<κ≤p

{fιj ,ικ 6= 0}

 .

The Chevalley-Remmert Theorem ends the proof. �

This theorem has many interesting consequences. The first one concerns the
irreducibility points of A, i.e. points at which A induces an irreducible germ.

Corollary 2.2. In the introduced setting let

A≺ := {a ∈ SngA | the germ Aa is irreducible}.
Then A≺ is analytically constructible.

Before we prove this corollary, observe that one cannot possibly hope to obtain
analycity of A≺ in general, unless dimA = 1:

Example 2.3. Let X := {x2y = z2} be Whitney’s Umbrella and consider Y :=
{z = 0} ∪ {y2 = x3}, both sets being taken in C3. Then

X≺ = {(0, 0)}, but Y ≺ = {x = y = 0, z 6= 0}.
The difference in structure of these sets is due to the fact that Y is globally
reducible while X is not and in both cases the singularities are along one-
dimensional sets.

The corollary above is actually itself a corollary to the following one.

Corollary 2.4. The function

µ : SngA 3 a 7→ #{irreducible components of Aa} ∈ Z
is analytically constructible.

Proof of corollary 2.2. The problem being local we may suppose that zero belongs
to A≺, A is a closed analytic subset of some neighbourhood of zero and π : N → A
is its normalization, where N ⊂ Cm × Ck for some k ≥ 1 (see e.g. [ L] Local
Normalization Theorem). We are exactly in the situation of theorem 2.1 and
µ = µπ|SngA, whence A≺ = {µ = 1} is constructible. �

Proof of corollary 2.4. Once again it suffices to consider the local normalizing
mapping π and apply theorem 2.1 to µ = µπ|SngA. �
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Note. The matter being local, the corollary above has clearly a counterpart on
complex analytic manifolds (assumed to be second-countable by definition) since
the local maps are biholomorphisms and so they preserve analytic constructibility
(i.e. we consider A as an analytic subset of some analytic manifold Ω).

Corollary 2.5. If A is analytic in the open set (or more generally in the analytic
manifold) Ω, then the function µ̂ : Ω → Z defined by

µ̂(x) =


µ(x), when x ∈ SngA;
1, when x ∈ RegA;
0, when x 6∈ A,

is analytically constructible and locally bounded.

Proof. Clearly µ̂−1(0) = Ω \ A is analytically constructible. As to µ̂−1(1), it is
the union of µ−1(1) and RegA, and both are analytically constructible. �

Recall now that an analytic cycle on some manifold Ω is the formal sum Z =∑
αιZι, where αι ∈ Z and {Zι} is a locally finite family of pairwise distinct,

analytic, irreducible subsets of Ω (see [T]). The analytic set |Z| :=
⋃

Zι is called
the support of the cycle Z. We define also the degree of Z by

ν(Z, x) :=
∑

αιν(Zι, x),

where ν(Zι, x) is the classical degree or Lelong number of Zι at x ∈ Ω (if x 6∈ Zι,
then ν(Zι, x) = 0).

By [T] (2.1), there exists exactly one analytic cycle Z in Ω such that µ̂ coincides
with ν(Z), where

ν(Z) : Ω 3 x 7→ ν(Z, x) ∈ Z
is the degree function of Z. A natural question arises here: what kind of infor-
mation on A does Z bring with, and, besides, what actually is Z as a cycle?

Note that in general A ( |Z| (otherwise, if A = |Z|, we obtain αι = 1 and
so µ̂(x) = ν(A, x) which is not true in general as one can see for instance by
considering Whitney’s Umbrella).

3. Singular points of weakly holomorphic functions

Fix a function f ∈ Ow(A) and put

N (f) := {a ∈ SngA | f is not continuous at a}.

Theorem 3.1. The set N (f) is analytically constructible.

Proof. We know by theorem 1.4 that Γf is analytic. Moreover, for each a ∈ SngA

there is #({a} × C) ∩ Γf < +∞. Indeed, for any such a point we have a finite
decomposition of the germ Aa into irreducible germs, say r of them, and the
restriction of f to each of them is continuous at a (see e.g. [Wh]). Thus at a we
have at most r possible values for f(a).

Now let π be the restriction to Γf of the natural projection Cm × C → Cm.
Clearly it is a proper mapping (since f is locally bounded) and N (f) = {µπ > 1}
according to the notation introduced in the previous section. Thus, by theorem
2.1, the set N (f) is analytically constructible. �



6

Recall that the Zariski tangent space of an analytic germ X at a point a ∈ Cm

is defined as
TZar

a X :=
⋂
{Ker daφ | φ ∈ Ia(X)},

where Ia(X) ⊂ Om is the ideal of germs of holomorphic functions vanishing on
the germ X (see [Wh]).

There is a nice holomorphicity criterion for c-holomorphic functions, whose
short proof one can find in [D1]. The point is that this proof works also in the
weakly holomorphic case and we obtain the following

Theorem 3.2. Let a ∈ A \N (f). Then f is holomorphic at a iff

TZar
(a,f(a))Γf ∩ ({0} × C) = {0}.

Proof. For simplicity sake assume that a = f(a) = 0. If F ⊃ f is a holomorphic
extension of f to a neighbourhood of zero in Cm, then ϕ(z, t) = t − F (z) (here
(z, t) ∈ Cm × C) belongs to I0(Γf ). Since ϕ is a submersion, then Ker d0ϕ =
T0ΓF . Hence

TZar
0 Γf ∩ ({0} × C) ⊂ T0ΓF ∩ ({0} × C) = {0}.

To prove the ‘only if’ part first note that the assumption leads to m ≥
dimTZar

0 Γf . We know (cf. [Wh]) that there exists a submanifold Γ such that
Γ0 ⊃ (Γf )0 and T0Γ = TZar

0 Γf . We apply now Lemma (1.4) from [D1] to find
an m-dimensional submanifold Γ̃ whose germ at zero contains the germ Γ0 and
whose tangent space at zero meets {0} × C only at zero.

By the Implicit Function Theorem it is now clear that Γ̃ is the germ of the
graph of a holomorphic function over Cm. �

Now let us introduce the set

Ow(f) := {a ∈ A | f is not holomorphic at a}.

It is clearly a closed subset of SngA.

Theorem 3.3. The set Ow(f) is an analytic subset of SngA.

Proof. First observe that N (f) ⊂ Ow(f).
Since Ow(f) is closed, we only need to show its constructibility at any point

a ∈ Ow(f). Fix such a point a. There is a finite set {b1, . . . , br} ⊂ C such that
Γf ∩ ({a} × C) = {(a, b1), . . . , (a, br)}. Take pairwise disjoint discs Dj 3 bj . Let
π(z) = (z1, . . . , zm) denote the natural projection from Cm × C onto Cm. It is
proper on Γf .

By Cartan’s Coherence Theorem (see [ L]), we can find pairwise disjoint neigh-
bourhoods Uj = V × Wj ⊂ Ω × Dj of (a, bj) and some holomorphic functions
gj,1, . . . , gj,rj ∈ O(Uj) whose germs at z ∈ Uj generate the ideal Iz(Γf ). Then,
for z ∈ Uj ∩ Γf ,

TZar
z Γf =

rj⋂
ι=1

Ker dzgj,ι.

Indeed, the inclusion ‘⊂’ is quite obvious from the definition of the Zariski tangent
space. To prove that the converse one holds too, observe that any g ∈ Iz(Γf )
can be written as the sum

∑rj

1 hιgj,ι with some holomorphic germs hι. Then
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dzg =
∑rj

1 (hι(z)dzgj,ι + gj,ι(z)dzhι) and since gj,ι(z) = 0, there is Ker dzg ⊃⋂rj

1 Ker dzgj,ι.
Observe that {0}×C ⊂ TZar

z Γf (where z ∈ Uj∩Γf ) is equivalent to ∂gj,ι

∂zm+1
(z) =

0 for all ι = 1, . . . , rj . Now,

Ow(f)∩V = (N (f)∩V )∪
r⋃

j=1

π

({
z ∈ Γf ∩ Uj |

∂gj,ι

∂zm+1
(z) = 0, ι = 1, . . . , rj

})
.

Indeed, to see that ‘⊃’ holds note that if x is a point from the set on the righthand
side and x 6∈ N (f) ∩ V , then f(x) is well-defined as the only point over x in
Γf and so (x, f(x)) belongs to exactly one of the sets Uj . By Theorem 3.2, f
cannot be holomorphic at x. On the other hand, if x ∈ Ow(f) ∩ V \N (f), then
once again x is a continuity point of f at which f is not holomorphic and since
{(x, f(x))} = Γf ∩ ({x} × C), there is exactly one j such that (x, f(x)) ∈ Uj .
Then we apply Theorem 3.2.

Finally, Remmert’s Proper Mapping Theorem implies that the projections un-
der consideration ara analytic in V , whence Ow(f)∩V is analytically constructible
in V . �

Corollary 3.4. The set A \
⋂
{Ow(g) | g ∈ Ow(A)} coincides with the set of

normal points of A and its complement in A is an analytic set.

Corollary 3.5. If f ∈ Oc(A), then the set

Oc(f) := {a ∈ A | f is not holomorphic at a}
is analytic in SngA.
In particular, A \

⋂
{Oc(g) | g ∈ Oc(A)} is the set of weakly normal points of A

and its complement in A is analytic.

Obviously, Oc(f) = Ow(f), but we would like to distinguish the c-holomorphic
case from the weak holomorphic one. In doing so we are aiming at the following
proposition.

First fix an open set Ω in which A is closed and put U := Ω \ N (f). Then
U is open (we are substracting an analytic subset of SngA). Let X := A ∩ U .
Notice that X 6= ∅ but there may be SngX = ∅.

Proposition 3.6. In the introduced setting f |X ∈ Oc(X) and the following holds:
(1) The set Oc(f |X) is analytically constructible in Ω;
(2) There is Ow(f) = N (f) ∪ Oc(f |X), the union being disjoint.

Proof. Observe first that
N (f) ⊂ Ow(f).

Indeed, f cannot have a holomorphic extension at a point a ∈ ∂N (f), since
otherwise this extension would be discontinuous in a sequence of points converging
to a.

Clearly enough f |X is c-holomorphic. Therefore, by theorem 3.5, Oc(f |X) is
analytic in U . But it is also easy to see that

Ow(f) = N (f) ∪ Oc(f |X)

the union being disjoint by definition. Since Ow(f) is analytic, then there is
Oc(f |X) = Ow(f) \ N (f) is the difference of two analytic sets and so is con-
structible. �
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