The unique minimality of an averaging projection

Dominik Mielczarek

AGH University of Science and Technology Faculty of Applied Mathematics e-mail: dmielcza@wms.mat.agh.edu.pl

IMUJ PREPRINT 2007/3

Abstract

In this paper we will prove that an averaging projection $P_a: K(H) \to Y$, given by a formula $P_a(A) = \frac{A+A^T}{2}$, is the only norm-one projection. Here K(H) is a space of compact operators on a separable real Hilbert space H, and Y is a subspace of K(H) consisting of all symmetric operators.

Key words: compact operator, self-adjoint operators, minimal projection, uniqueness of minimal projection.

1 Introduction

Let X be a normed space over \mathbb{R} and let Y be a linear subspace of X. A bounded linear operator $P \colon X \to Y$ is called a projection if $P|_Y = \operatorname{Id}|_Y$. The

Email address: dmielcza@wms.mat.agh.edu.pl (Dominik Mielczarek).

set of all projections from X onto Y will be denoted by P(X, Y). A projection P_0 is called minimal if

$$||P_0|| = \inf\{||P|| : P \in P(X, Y)\}.$$
 (1.1)

The constant

$$\Lambda(X, Y) = \inf \{ \|P\| : P \in P(X, Y) \},$$
 (1.2)

is called the relative projection constant.

A projection $P_0 \in P(X, Y)$ is called minimal if

$$||P_0|| = \Lambda(X, Y).$$
 (1.3)

One of the difficult problems in the theory of projections is the uniqueminimality of minimal projection. The research concerning this problem has its origin in a famous paper [9] where the unique minimality of the classical Fourier projection F_n (defined on $C_0(2\pi)$) onto the subspace of trigonometric polynomials of degree $\leq n$ has been proved.

Since then, many results concerning the unique minimality of minimal projection has been obtained

(see e.g. [7], [8], [10], [17], [18], [25], [26], [27], [28]). For other results concerning minimal projection

see e.g.[1], [2], [3], [4], [5], [6], [13], [14], [15], [16], [19], [20], [21], [22], [23].

The aim of this paper is to show the unique minimality of an averaging projection

$$P_a(A) = \frac{A + A^T}{2},\tag{1.4}$$

defined on the space of all compact operators acting on a separable Hilbert space. More precisely, let H denote any real separable Hilbert space and

$$K(H) = \{T \colon H \to H : T \text{ is compact and linear}\},$$
 (1.5)

$$Y = \left\{ A \in K(H) : A = A^T \right\}. \tag{1.6}$$

Let $\{e_n\}_{n=1}^{\infty}$ denote an orthonormal basis of H. For $x \in H$ we define the norm by the formula $||x|| = \sqrt{\langle x, x \rangle}$, where obviously $\langle \cdot, \cdot \rangle$ is a scalar product in H. Hence for each element $x \in H$ there holds well-known Fourier and Parseval formulas

$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n, \tag{1.7}$$

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2.$$

$$(1.8)$$

In this paper (see section 2) we will prove that an averaging projection $P_a: K(H) \to Y$ given by a formula $P_a(A) = \frac{A+A^T}{2}$ is the only norm-one projection. In order to do this we introduce some notations and we state some preliminary results.

With any operator $A \in K(H)$ we will associate an infinite matrix $L(A) = \{a_{ij}\}_{(i,j) \in \mathbb{N} \times \mathbb{N}}$ given by a formula $a_{ij} = \langle Ae_j, e_i \rangle$.

Let us define $L(A) = \{a_{ij}\}_{(i,j) \in \mathbb{N} \times \mathbb{N}}$.

We know that for any A on H we can define the conjugate operator A^T by

$$\langle Ax, y \rangle = \langle x, A^T y \rangle,$$
 (1.9)

for any $x, y \in H$. We say that operator A is symmetric in H if $A = A^T$. We start with

Lemma 1.1 For any operator $A = \{a_{ij}\}_{(i,j) \in \mathbb{N} \times \mathbb{N}} \in K(H) \text{ and any } i \in \mathbb{N}$

$$\sum_{i=1}^{\infty} |a_{ij}|^2 < \infty,\tag{1.10}$$

$$\sum_{j=1}^{\infty} |a_{ji}|^2 < \infty. \tag{1.11}$$

PROOF. Since for each natural number i we have $Ae_i \in H$ by (1.7)

$$\|Ae_i\|^2 = \sum_{j=1}^{\infty} |\langle Ae_i, e_j \rangle|^2 = \sum_{j=1}^{\infty} |a_{ji}|^2,$$

$$\|A^T e_i\|^2 = \sum_{j=1}^{\infty} |\langle A^T e_i, e_j \rangle|^2 = \sum_{j=1}^{\infty} |\langle e_i, Ae_j \rangle|^2 = \sum_{j=1}^{\infty} |a_{ij}|^2,$$
(1.12)

which obviously completes the proof. \Box

Set

$$M = \left\{ (i, j) \in \mathbb{N} \times \mathbb{N} : i < j \right\} \text{ and}$$
 (1.13)

$$L = \left\{ (i, i) : i \in \mathbb{N} \right\}. \tag{1.14}$$

For $z = (i, j) \in M$ we define a functional $f_z \in (K(H))^*$ by

$$f_{ij}(B) = f_z(B) = b_{ij} - b_{ji},$$
 (1.15)

for $L(B)=\{b_{ij}\}_{(i,j)\in\mathbb{N}\times\mathbb{N}}\in K(H)$. It is easy to show that f_z is bounded on K(H).

Let

$$Y = \bigcap_{z \in M} \ker f_z. \tag{1.16}$$

Lemma 1.2 For any $A \in K(H)$ if $A \in Y$, then the operator A is symmetric.

PROOF. Let $L(A) = \{a_{ij}\}_{(i,j) \in \mathbb{N} \times \mathbb{N}}$ and $A \in Y$. It is sufficient to show that

$$\langle Ax, y \rangle = \langle x, Ay \rangle, \tag{1.17}$$

for each $x, y \in H$. By 1.7 for $x = \sum_{i=1}^{\infty} \langle x, e_i \rangle e_i$ and $y = \sum_{j=1}^{\infty} \langle y, e_j \rangle e_j$ we get

$$\langle Ax, y \rangle = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle x, e_i \rangle \langle y, e_j \rangle \langle Ae_i, e_j \rangle =$$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle x, e_i \rangle \langle y, e_j \rangle a_{ji} =$$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle x, e_i \rangle \langle y, e_j \rangle a_{ij} =$$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle x, e_i \rangle \langle y, e_j \rangle \langle e_i, Ae_j \rangle =$$

$$\langle x, Ay \rangle . \tag{1.18}$$

The following result is a consequence of the Banach-Steinhaus Theorem

Theorem 1.3 Let $\{T_n\}_{n=1}^{\infty} \subset B(X, Y)$, where X and Y are Banach spaces. Suppose that $T_n(x)$ is convergent in Y for each $x \in X$, then the operator $T(x) = \lim_{n \to \infty} T_n(x)$ is bounded.

PROOF. We will show that T is bounded on X. Since for each $x \in X$ the sequence $\{T_n(x)\}_{n=1}^{\infty}$ is convergent, hence it is bounded on Y. Applying the Banach-Steinhaus Theorem we obtain that there exists a constant M > 0, such that

$$||T_n(x)||_Y \le M||x||_X,\tag{1.19}$$

for $x \in X$ and each n.

Hence

$$||T(x)||_Y = \lim_{n \to \infty} ||T_n(x)||_Y \le M||x||_X,$$
 (1.20)

for each $x \in X$. This obviously concludes the proof of Theorem 1.1.

We say that a sequence of bounded operators $\{T_n\}_{n=1}^{\infty}$ is convergent to operator T in a weak operator topology (WOT), if and only if for each $x, y \in H$ we have

$$\lim_{n \to \infty} \langle T_n(x), y \rangle = \langle T(x), y \rangle. \tag{1.21}$$

Analogously, the sequence of bounded operators $\{T_n\}_{n=1}^{\infty}$ is convergent to operator T in a strong operator topology (SOT) if and only if for each $x \in H$ we have

$$\lim_{n \to \infty} T_n(x) = T(x). \tag{1.22}$$

2 The unique minimality of an averaging projection in space $l_2(\mathbb{N})$

In this section we will show that the averaging projection P_a is the only normone projection.

Let $z = (i, j) \in M$. Define an operator B_{ij} on the basis $\{e_l\}_{l=1}^{\infty}$ by

$$B_{ij}(e_l) = \begin{cases} -\frac{1}{2}e_j & \text{if} \quad l = i\\ \frac{1}{2}e_i & \text{if} \quad l = j\\ 0 & \text{if} \quad l \neq i, \ l \neq j, \end{cases}$$
 (2.1)

for $l \in \mathbb{N}$. It is easy to show that for any $z \in M$, B_z is a bounded operator. Now we prove a general formula for projections belonging to P(K(H), Y) (Th 2.11). We need some preliminary results.

For any $A = \{a_{ij}\}_{(i,j) \in \mathbb{N} \times \mathbb{N}} \in K(H) \text{ and } i \in \mathbb{N} \text{ define}$

$$C_i^n(A) = \sum_{j=i+1}^n f_{ij}(A)B_{ij},$$
 (2.2)

where $f_{ij}(A) = a_{ij} - a_{ji}$.

Theorem 2.1 For each $x \in H$ and $A \in K(H)$ we have that $\lim_{n \to \infty} \{C_i^n(A)(x)\}_{n=1}^{\infty}$ exists.

PROOF. It is enough to show that for fixed $A \in K(H)$, $x \in H$, $i \in \mathbb{N}$ $\{C_i^n(A)(x)\}_{n=1}^{\infty}$ is a Cauchy sequence in H. Let us define $x = \sum_{l=1}^{\infty} \langle x, e_l \rangle e_l$. Note that

$$\left\| C_i^n(A)(x) - C_i^m(A)(x) \right\|^2 = \left\| \sum_{j=n+1}^m f_{ij}(A) B_{ij}(x) \right\|^2$$

$$= \left\| \sum_{j=n+1}^m f_{ij}(A) \left(\langle x, e_i \rangle \frac{-e_j}{2} + \langle x, e_j \rangle \frac{e_i}{2} \right) \right\|^2$$

$$= \left| \langle x, e_i \rangle \right|^2 \frac{1}{4} \sum_{j=n+1}^m |f_{ij}(A)|^2 + \frac{1}{4} \left| \sum_{j=n+1}^m f_{ij}(A) \langle x, e_j \rangle \right|^2$$

$$\leq \frac{\|x\|^2}{4} \sum_{j=n+1}^\infty |f_{ij}(A)|^2 + \frac{\|x\|^2}{4} \sum_{j=n+1}^\infty |f_{ij}(A)|^2$$

$$= \frac{\|x\|^2}{2} \sum_{j=n+1}^\infty |f_{ij}(A)|^2. \tag{2.3}$$

By Lemma 1.1 the sequence $\{C_i^n(A)(x)\}_{n=1}^{\infty}$ is a Cauchy sequence, which completes the proof. \square

Denote for $A \in K(H)$, $x \in H$ and $i \in \mathbb{N}$

$$C_i(A)(x) = \lim_{n \to \infty} \sum_{j=i+1}^n f_{ij}(A)B_{ij}(x) = \sum_{j=i+1}^\infty f_{ij}(A)B_{ij}(x).$$
 (2.4)

By Theorem 1.3 we get that $C_i(A)$ is a bounded operator on H. Let us define for any $A = \{a_{ij}\}_{(i,j) \in \mathbb{N} \times \mathbb{N}} \in K(H)$ and $n \in \mathbb{N}$

$$S_n(A) = \sum_{i=1}^n C_i(A).$$
 (2.5)

Theorem 2.2 For each $x \in H$, $A \in K(H)$ we have that $\lim_{n \to \infty} \{S^n(A)(x)\}_{n=1}^{\infty}$ exists.

PROOF. Define $x = \sum_{l=1}^{\infty} \langle x, e_l \rangle e_l \in H$. Analogously, as in the proof for Theorem 2.1, we will show that $S^n(A)(x)$ is a Cauchy sequence on H. Note that

$$||S_n(A)(x) - S_m(A)(x)||^2 = \left\| \sum_{i=n+1}^m C_i(A)(x) \right\|^2$$
$$= \left\| \sum_{i=n+1}^m C_i(A) \left(\sum_{l=1}^\infty \langle x, e_l \rangle e_l \right) \right\|^2.$$

Let us calculate

$$\left\| \sum_{i=n+1}^{m} C_i(A) \left(\sum_{l=1}^{\infty} \langle x, e_l \rangle e_l \right) \right\|^2 = \left\| \sum_{i=n+1}^{m} \sum_{l=1}^{\infty} \langle x, e_l \rangle C_i(A)(e_l) \right\|^2$$
$$= \left\| \sum_{i=n+1}^{m} \sum_{l=i}^{\infty} \langle x, e_l \rangle C_i(A)(e_l) \right\|^2.$$

Hence

$$\left\| \sum_{i=n+1}^{m} \left(\langle x, e_i \rangle C_i(A)(e_i) + \sum_{l=i+1}^{\infty} \langle x, e_l \rangle C_i(A)(e_l) \right) \right\|^2$$

$$= \left\| \sum_{i=n+1}^{m} \left(\sum_{j=i+1}^{\infty} \frac{-f_{ij}(A)}{2} \langle x, e_i \rangle e_j + \sum_{l=i+1}^{\infty} \langle x, e_l \rangle \frac{f_{il}(A)}{2} e_i \right) \right\|^2$$

$$= \sum_{k=1}^{\infty} \left| \left\langle \sum_{i=n+1}^{m} \sum_{j=i+1}^{\infty} \frac{-f_{ij}(A)}{2} \langle x, e_i \rangle e_j + \sum_{i=n+1}^{m} \sum_{l=i+1}^{\infty} \langle x, e_l \rangle \frac{f_{il}(A)}{2} e_i, e_k \right\rangle \right|^2.$$

Therefore

$$\sum_{k=1}^{\infty} \left| \sum_{i=n+1}^{m} \sum_{j=i+1}^{\infty} \frac{-f_{ij}(A)}{2} \left\langle x, e_{i} \right\rangle \left\langle e_{j}, e_{k} \right\rangle + \sum_{i=n+1}^{m} \sum_{l=i+1}^{\infty} \left\langle x, e_{l} \right\rangle \frac{f_{il}(A)}{2} \left\langle e_{i}, e_{k} \right\rangle \right|^{2}$$

$$= \sum_{k=n+1}^{\infty} \left| \sum_{i=n+1}^{m} \sum_{j=i+1}^{\infty} \frac{-f_{ij}(A)}{2} \left\langle x, e_{i} \right\rangle \left\langle e_{j}, e_{k} \right\rangle + \sum_{i=n+1}^{m} \sum_{l=i+1}^{\infty} \left\langle x, e_{l} \right\rangle \frac{f_{il}(A)}{2} \left\langle e_{i}, e_{k} \right\rangle \right|^{2}$$

$$= \sum_{k=n+1}^{m} \left| \sum_{i=n+1}^{m} \sum_{j=i+1}^{\infty} \frac{-f_{ij}(A)}{2} \left\langle x, e_{i} \right\rangle \left\langle e_{j}, e_{k} \right\rangle + \sum_{i=n+1}^{m} \sum_{l=i+1}^{\infty} \left\langle x, e_{l} \right\rangle \frac{f_{il}(A)}{2} \left\langle e_{i}, e_{k} \right\rangle \right|^{2}$$

$$+ \sum_{k=m+1}^{\infty} \left| \sum_{i=n+1}^{m} \sum_{j=i+1}^{\infty} \frac{-f_{ij}(A)}{2} \left\langle x, e_{i} \right\rangle \left\langle e_{j}, e_{k} \right\rangle + \sum_{i=n+1}^{m} \sum_{l=i+1}^{\infty} \left\langle x, e_{l} \right\rangle \frac{f_{il}(A)}{2} \left\langle e_{i}, e_{k} \right\rangle \right|^{2}.$$

Hence

$$\sum_{k=n+1}^{m} \left| \sum_{i=n+1}^{k-1} \frac{-f_{ik}(A)}{2} \langle x, e_i \rangle + \sum_{l=k+1}^{\infty} \langle x, e_l \rangle \frac{f_{kl}(A)}{2} \right|^2 + \sum_{k=m+1}^{\infty} \left| \sum_{i=n+1}^{m} \langle x, e_i \rangle \frac{-f_{ik}(A)}{2} \right|^2 = \sum_{k=n+1}^{m} \left| \sum_{l=n+1}^{\infty} \langle x, e_l \rangle \frac{f_{kl}(A)}{2} \right|^2 + \sum_{k=m+1}^{\infty} \left| \sum_{i=n+1}^{m} \langle x, e_i \rangle \frac{-f_{ik}(A)}{2} \right|^2.$$
 (2.6)

Now we will show that

$$\sum_{k=n+1}^{m} \left| \sum_{l=n+1}^{\infty} \langle x, e_l \rangle \frac{f_{kl}(A)}{2} \right|^2 \le \left\| \frac{A - A^T}{2} \left(\sum_{l=n+1}^{\infty} \langle x, e_l \rangle e_l \right) \right\|^2 \text{ and } (2.7)$$

$$\sum_{k=m+1}^{\infty} \left| \sum_{i=n+1}^{m} \langle x, e_i \rangle \frac{-f_{ik}(A)}{2} \right|^2 \le \left\| \frac{A - A^T}{2} \left(\sum_{i=n+1}^{m} \langle x, e_i \rangle e_i \right) \right\|^2. \tag{2.8}$$

Let us calculate

$$\left\| \frac{A - A^T}{2} \left(\sum_{l=n+1}^{\infty} \langle x, e_l \rangle e_l \right) \right\|^2 = \sum_{k=1}^{\infty} \left| \left\langle \frac{A - A^T}{2} \left(\sum_{l=n+1}^{\infty} \langle x, e_l \rangle e_l \right), e_k \right\rangle \right|^2$$

$$= \sum_{k=1}^{\infty} \left| \sum_{l=n+1}^{\infty} \langle x, e_l \rangle \left\langle \frac{A - A^T}{2} e_l, e_k \right\rangle \right|^2.$$

Consequently

$$\sum_{k=1}^{\infty} \left| \sum_{l=n+1}^{\infty} \langle x, e_l \rangle \frac{f_{kl}(A)}{2} \right|^2 \ge \sum_{k=n+1}^{m} \left| \sum_{l=n+1}^{\infty} \langle x, e_l \rangle \frac{f_{kl}(A)}{2} \right|^2, \tag{2.9}$$

which proves (2.7). Analogously

$$\left\| \frac{A - A^T}{2} \left(\sum_{i=n+1}^m \langle x, e_i \rangle e_i \right) \right\|^2 = \sum_{k=1}^\infty \left| \left\langle \frac{A - A^T}{2} \left(\sum_{i=n+1}^m \langle x, e_i \rangle e_i \right), e_k \right\rangle \right|^2.$$

Hence

$$\sum_{k=1}^{\infty} \left| \sum_{i=n+1}^{m} \langle x, e_i \rangle \left\langle \frac{A - A^T}{2} e_i, e_k \right\rangle \right|^2 = \sum_{k=1}^{\infty} \left| \sum_{i=n+1}^{m} \langle x, e_i \rangle \frac{f_{ki}(A)}{2} \right|^2$$

$$\geq \sum_{k=m+1}^{\infty} \left| \sum_{i=n+1}^{m} \langle x, e_i \rangle \frac{-f_{ik}(A)}{2} \right|^2. \quad (2.10)$$

Note that

$$\left\| \frac{A - A^{T}}{2} \left(\sum_{l=n+1}^{\infty} \langle x, e_{l} \rangle e_{l} \right) \right\|^{2} \leq \left\| \frac{A - A^{T}}{2} \right\|^{2} \left\| \sum_{l=n+1}^{\infty} \langle x, e_{l} \rangle e_{l} \right\|^{2}$$

$$= \left\| \frac{A - A^{T}}{2} \right\|^{2} \sum_{l=n+1}^{\infty} |\langle x, e_{l} \rangle|^{2} \qquad (2.11)$$

$$\left\| \frac{A - A^{T}}{2} \left(\sum_{i=n+1}^{m} \langle x, e_{i} \rangle e_{i} \right) \right\|^{2} \leq \left\| \frac{A - A^{T}}{2} \right\|^{2} \left\| \sum_{i=n+1}^{m} \langle x, e_{i} \rangle e_{i} \right\|^{2}$$

$$= \left\| \frac{A - A^{T}}{2} \right\|^{2} \sum_{i=n+1}^{m} |\langle x, e_{i} \rangle|^{2}. \qquad (2.12)$$

By (2.11), and (2.12) $S_n(A)(x)$ is a Cauchy sequence in H. Thus for any $A \in K(H)$ we have $S(A) \in K(H)$, where

$$S(A) = \lim_{n \to \infty} \sum_{i=1}^{n} C_i(A) = \sum_{i=1}^{\infty} C_i(A) = \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(A) B_{ij}.$$
 (2.13)

By Theorem 1.3 S(A) is bounded on H. \square

In order to conclude the proof, it is sufficient to show that the limit of this sequence in SOT topology is a compact operator.

Theorem 2.3 For each operator $A \in K(H)$ the sequence $\{S^n(A)\}_{n=1}^{\infty}$ is convergent to the operator $\frac{A-A^T}{2}$ in the strong operator topology.

PROOF. By Theorem 2.2 for each operator $A \in K(H)$, $x \in H$ there exists

$$S(A)(x) = \lim_{n \to \infty} \sum_{i=1}^{n} C_i(A)(x) = \sum_{i=1}^{\infty} C_i(A)(x) = \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(A)B_{ij}(x).$$
(2.14)

By Theorem 1.3 S(A) is a bounded operator on H. In order to finish the proof it is sufficient to show that

$$L(S(A)) = L\left(\frac{A - A^T}{2}\right). \tag{2.15}$$

But for any l, k

$$\langle S(A)(e_l), e_k \rangle = \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(A) \langle B_{ij}(e_l), e_k \rangle.$$
 (2.16)

Also

$$\langle B_{ij}(e_l), e_k \rangle = \begin{cases} -\frac{1}{2} & \text{if} & (i, j) = (l, k) \\ \frac{1}{2} & \text{if} & (l, k) = (j, i) \\ 0 & \text{for the remaining} & (l, k). \end{cases}$$
 (2.17)

Hence

$$\langle S(A)(e_l), e_k \rangle = \begin{cases} -\frac{a_{kl} - a_{lk}}{2} & \text{if } l < k \\ \frac{a_{kl} - a_{lk}}{2} & \text{if } l > k \\ 0 & \text{if } l = k, \end{cases}$$
(2.18)

which gives

$$\langle S(A)(e_l), e_k \rangle = \left\langle \frac{A - A^T}{2}(e_l), e_k \right\rangle.$$
 (2.19)

We have shown that the sequence of operators $\{S^n(A)\}_{n=1}^{\infty}$ is convergent to $\frac{A-A^T}{2}$ in the strong operator topology. We will show that this sequence is weakly convergent in K(H). First we will present a few well known results. Let S(V) denote the unit sphere in a Banach space V, and let extS(V) denote the set of extreme points of S(V).

Theorem 2.4 (see e. g. [11]) Let $S(K(H)^*)$ be the unit sphere in $(K(H))^*$. Then

$$extS(K(H)^*) = extS(H) \otimes extS(H),$$
 (2.20)

where $(x \otimes y)(L) = \langle Lx, y \rangle$.

Let $B(X^*)$ denote the unit ball in X^* .

Theorem 2.5 (see e. g. [29]) Let X be a separable Banach space. Then the unit ball $B(X^*)$ is metrizable and $\omega*$ -compact.

In particular if H is a separable Hilbert space, then K(H) is separable. The following result will be the main tool in our investigations.

Theorem 2.6 (Choquet) (see e.g. [28]) Let K be a convex and compact subset of a linear topological space X, such that there exists a sequence $\{f_n\} \in X^*$, which is a total set for K. Then the set of extreme points of K is a Borel set and for each $a \in K$ there is a probabilistic measure v, defined on Borel's subsets of K, such that

$$v(extK) = 1,$$

$$a = \int_{K} xd(v) = \int_{extK} xd(v).$$
(2.21)

Recall that a set $F \subset X^*$ is total for K if for any $x \in K \setminus \{0\}$ there exists $f \in F$ such that $f(x) \neq 0$.

In particular from Theorem 2.5 and 2.6 one can deduce

Theorem 2.7 (see e.g [29]) Let H be a real separable Hilbert space. Then for each $f \in B(K(H)^*)$ there exists a probabilistic and Borel measure v determined on Borel's subsets of $B(K(H)^*)$ such that

$$f(\cdot) = \int_{extS(K(H)^*)} x(\cdot)d(v). \tag{2.22}$$

In the sequel we need

Theorem 2.8 Let H be a real and separable Hilbert space. Then the sequence L_n converges weakly to L in K(H) if and only if for any $f \in extS(K(H)^*)$ $f(L_n)$ is convergent to f(L).

PROOF. It is enough to show that if the sequence L_n converges weakly on the set $\text{ext}S(K(H)^*)$, then it is weakly convergent. Fix $f \in B(K^*(H))$. Then by Choquet's theorem

$$f = \int_{\text{ext}S(K(H)^*)} x d(v) = \int_{\text{ext}(S(H)) \otimes \text{ext}S(H)} x \otimes y d(v).$$
 (2.23)

Note that

$$f(L_n) = \int_{\text{ext}(S(H) \otimes \text{ext}S(H))} (x \otimes y)(L_n) d(v).$$
 (2.24)

We will show that for each $x \in H \{L_n(x)\}$ is weakly convergent in H. If $y \in H = H^*$, then

$$\lim_{n \to \infty} y(L_n(x)) = \lim_{n \to \infty} \langle L_n(x), y \rangle =$$

$$\lim_{n \to \infty} ||x|| ||y|| \left\langle L_n\left(\frac{x}{||x||}\right), \frac{y}{||y||} \right\rangle = ||x|| ||y|| \left\langle L\left(\frac{x}{||x||}\right), \frac{y}{||y||} \right\rangle. \tag{2.25}$$

Therefore for each $x \in H\{L_n(x)\}$ is weakly convergent, and consequently bounded. By the Banach-Steinhaus Theorem the sequence $\{\|L_n\|\}$ is bounded. By the Lebesgue Theorem we obtain

$$\lim_{n \to \infty} f(L_n) = \int_{\text{ext}(S(H) \otimes \text{ext}S(H))} \lim_{n \to \infty} (x \otimes y)(L_n) d(v) =$$

$$\int_{\text{ext}(S(H) \otimes \text{ext}S(H))} \lim_{n \to \infty} \langle L_n(x), y \rangle d(v) =$$

$$\int_{\text{ext}(S(H) \otimes \text{ext}S(H))} \lim_{n \to \infty} \langle L(x), y \rangle d(v) = f(L). \qquad (2.26)$$

From Theorem 2.8 we get the following

Theorem 2.9 For any operator $A \in K(H)$ the sequence $\{S^n(A)\}_{n=1}^{\infty}$ is weakly convergent to the operator $\frac{A-A^T}{2}$.

PROOF. We know that the sequence $S_n(A)$ is SOT-convergent. Therefore, it follows from the Banach-Steinhaus Theorem, that this sequence is bounded. In order to show the weak convergence $S_n(A)$, based on Theorem 2.8, it is enough to show that

$$\lim_{n \to \infty} f(S_n(A)) = f\left(\frac{A - A^T}{2}\right),\tag{2.27}$$

for any $f \in \text{ext}S(K(H)^*)$.

Fix $f \in \text{ext}S(K(H)^*)$. By Theorem 2.4 we know that $f = x \otimes y$ for $x, y \in \text{ext}S(H)$. Therefore

$$\lim_{n \to \infty} f(S_n(A)) = \lim_{n \to \infty} (x \otimes y)(S_n(A)) = \lim_{n \to \infty} \langle S_n(A)(x), y \rangle . \tag{2.28}$$

Because $S_n(A)$ is SOT-convergent, it is in particular WOT convergent. Hence

$$\lim_{n \to \infty} \langle S_n(A)(x), y \rangle = \left\langle \lim_{n \to \infty} S_n(A)(x), y \right\rangle = \left\langle \frac{A - A^T}{2}(x), y \right\rangle, \tag{2.29}$$

which concludes our proof. \Box

Remark. By the Mazur Theorem Th. 2.9 is not valid for $A \in B(H)$. Let us state another simple lemma.

Lemma 2.10 For each $z = (l, k) \in M$ and for each $A \in K(H)$ we have

$$f_z(S(A)) = f_z(A). (2.30)$$

PROOF. Note that

$$f_z(S(A)) = f_z \left(\sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(A) B_{ij} \right) = \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(A) f_z(B_{ij}) = f_z(A).$$
 (2.31)

Now let $P \in P(K(H), Y)$. Then applying Lemma 1.1 and Lemma 1.2 we obtain that for each $A \in K(H)$

$$A - S(A) \in Y. \tag{2.32}$$

Therefore P(A - S(A)) = A - S(A). Hence

$$P(A) = A + P(S(A)) - S(A) = A + \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(A)(P(B_{ij}) - B_{ij}).$$
(2.33)

Obviously for each $z, w \in M$

$$f_z(P(B_w) - B_w) = f_z(B_w) = \delta_{zw}.$$
 (2.34)

Hence we have proved the following

Theorem 2.11 For any projection $P \in P(K(H), Y)$ there exists a family of operators $\{F_z\}_{z \in M} \subset K(H)$, which fulfill the following conditions

- a) A sequence $\sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(A) F_{ij}$ is weakly convergent for each $A \in K(H)$.
- b) For each $w, z \in M$ we get $f_z(F_w) = \delta_{zw}$.
- c) $P(A) = A \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(A)F_{ij}$, for any $A \in K(H)$.

Theorem 2.12 The averaging projection P_a has the form

$$P_a(\cdot) = Id - \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(\cdot) B_{ij}.$$
 (2.35)

PROOF. By Theorem 2.11 there exists a sequence $\{F_{ij}\}$ satisfying a), b), c) such that

$$P_a(\cdot) = Id - \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(\cdot) F_{ij}.$$
(2.36)

Let $F_z = \{f_{lk}^z\}_{(l,k)\in\mathbb{N}\times\mathbb{N}}$. Since $P_a(A) = P_a(A^T)$ we obtain for fixed $z = (i, j) \in M$

$$0 = P_a(F_{ij}) = P_a(F_{ij}^T) = F_{ij}^T - \sum_{l=1}^{\infty} \sum_{k=l+1}^{\infty} f_{lk}(F_{ij}^T) F_{lk}.$$
(2.37)

Since for $A \in K(H)$ $f_{lk}(A^T) = -f_{lk}(A)$, therefore

$$F_{ij}^T + F_{ij} = 0. (2.38)$$

Hence

$$f_{lk}^z + f_{kl}^z = 0, (2.39)$$

for each $l, k \in \mathbb{N}$. Since $f_z(F_w) = \delta_{zw}$,

$$f_{lk}^{z} + f_{kl}^{z} = 0,$$

$$f_{lk}^{z} - f_{kl}^{z} = 0,$$
(2.40)

for $(l, k) \neq (i, j)$. Hence

$$f_{lk}^z = 0, (2.41)$$

for $(l, k) \neq (i, j)$.

Additionally for i, j we have

$$f_{ij}^{z} + f_{ji}^{z} = 0,$$

$$f_{ij}^{z} - f_{ji}^{z} = 1.$$
(2.42)

Consequently, $f_{ij}^z = \frac{1}{2}$, $f_{ji}^z = -\frac{1}{2}$, therefore $F_z = B_z$. \square

We now return to the proof of unique minimality of our averaging projection. For the purpose of the proof, let us denote by

$$A_{ij}(\theta)(e_l) = \begin{cases} \sin \theta e_i - \cos \theta e_j & \text{if} \quad l = i \\ \cos \theta e_i + \sin \theta e_j & \text{if} \quad l = j \\ e_l & \text{if} \quad l \in \{1, \dots, j\} \setminus \{i, j\} \\ 0 & \text{if} \quad l \neq i, l \neq j. \end{cases}$$
(2.43)

for fixed $(i, j) \in M, \ \theta \in \mathbb{R}$.

It is easy to show that each operator $A_{ij}(\theta)$ is a compact and bounded on the space H.

Now we will state and prove the principal result of this paper:

Theorem 2.13 In separable real Hilbert space the averaging projection P_a is the only norm-one projection in K(H).

PROOF. Fix $Q \in P(K(H), Y)$ and ||Q|| = 1. By Theorem 2.11 we obtain

$$Q(\cdot) = Id - \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} f_{ij}(\cdot) F_{ij}, \qquad (2.44)$$

where $f_w(F_z) = \delta_{wz}$, for $w, z \in M$.

By Theorem 2.12 it is enough to show that the matrix of the operator $F_z =$ $\{f_{lk}^z\}_{(l, k) \in \mathbb{N}}$ has the form

$$f_{lk}^{z} = \begin{cases} \frac{1}{2} & \text{if} \quad (l, \ k) = (i, \ j) \\ \frac{1}{2} & \text{if} \quad (l, \ k) = (j, \ i) \\ 0 & \text{if} \quad (l, \ k) \neq (i, \ j). \end{cases}$$
 (2.45)

To do this, fix $z = (i, j) \in M$. For each $\theta \in \mathbb{R}$

$$Q(A_{ij}(\theta)) = Id(A_{ij}(\theta)) - \sum_{l=1}^{\infty} \sum_{k=l+1}^{\infty} f_{lk}(A_{ij}(\theta)) F_{lk} =$$

$$= A_{ij}(\theta) - 2\cos(\theta) F_{(i,j)}.$$
(2.46)

Since Q is a norm-one projection

$$||A_{ij}(\theta) - 2\cos(\theta)F_{(i,j)}|| = \sup_{\|x\|_2 = 1} ||(A_{ij}(\theta) - 2\cos(\theta)F_{(i,j)})x|| \le 1, \quad (2.47)$$

for each $\theta \in \mathbb{R}$.

Let us fix $l \in \{1, ..., j\} \setminus \{i, j\}$. We will show that $f_{ll}^z = 0$. By equation (2.47) we get

$$||(A_{ij}(\theta) - 2\cos(\theta)F_{(i,j)})e_l|| \le 1,$$
 (2.48)

for each $\theta \in \mathbb{R}$. In particular,

$$|1 - 2\cos(\theta)f_{ll}^z| \le 1,$$
 (2.49)

for any $\theta \in \mathbb{R}$. Hence $f_{ll}^z = 0$ and

$$f_{lk}^z = 0,$$
 (2.50)
 $f_{kl}^z = 0,$ (2.51)

$$f_{kl}^z = 0, (2.51)$$

for any $k \in \mathbb{N}$.

We will show that $l > j f_{ll}^z = 0$.

Let us define

$$A_{ij}^{l}(\theta)(e_k) = \begin{cases} \sin \theta e_i - \cos \theta e_j & \text{if} & k = i \\ \cos \theta e_i + \sin \theta e_j & \text{if} & k = j \\ e_k & \text{if} & k \in \{1, \dots, j, l\} \setminus \{i, j\} \\ 0 & \text{for remaining } k. \end{cases}$$

$$(2.52)$$

Then

$$Q(A_{ij}^{l}(\theta)) = Id(A_{ij}^{l}(\theta)) - \sum_{l=1}^{\infty} \sum_{k=l+1}^{\infty} f_{lk}(A_{ij}^{l}(\theta)) F_{lk} =$$

$$= A_{ij}^{l}(\theta) - 2\cos(\theta) F_{(i,j)}. \tag{2.53}$$

Hence

$$||(A_{ij}^l(\theta) - 2\cos(\theta)F_{(i,j)})e_l||_2 \le 1, \tag{2.54}$$

for each $\theta \in \mathbb{R}$.

Therefore

$$|1 - 2\cos(\theta)f_{ll}^z| \le 1,$$
 (2.55)

for each $\theta \in \mathbb{R}$. Hence $f_{ll}^z = 0$ and

$$f_{lk}^z = 0,$$

 $f_{kl}^z = 0,$ (2.56)

for each $k \in \mathbb{N}$.

Now we show that $f_{ii}^z = f_{jj}^z = 0$.

By (2.47),

$$\|(A_{ij}(\theta) - 2\cos(\theta)F_{(i,j)})\sin(\theta)e_i\| \le 1.$$
 (2.57)

Hence

$$-1 \le \sin^2 \theta - 2\sin \theta \cos \theta f_{ii}^z \le 1, \tag{2.58}$$

for each $\theta \in \mathbb{R}$.

After simple calculations we get

$$\frac{\sin^2 \theta - 1}{\sin 2\theta} \le f_{ii}^z \le \frac{\sin^2 \theta + 1}{\sin 2\theta} \text{ for } \theta \in \left(0, \frac{\pi}{2}\right),$$

$$\frac{\sin^2 \theta + 1}{\sin 2\theta} \le f_{ii}^z \le \frac{\sin^2 \theta - 1}{\sin 2\theta} \text{ for } \theta \in \left(-\frac{\pi}{2}, 0\right).$$
(2.59)

Hence

$$\lim_{\theta \to \frac{\pi}{2}^{-}} \frac{\sin^2 \theta - 1}{\sin 2\theta} \le f_{ii}^z,$$

$$f_{ii}^z \le \lim_{\theta \to -\frac{\pi}{2}^{+}} \frac{\sin^2 \theta - 1}{\sin 2\theta}.$$
(2.60)

Therefore $f_{ii}^z=0$. Proceeding analogously, we obtain that $f_{jj}^z=0$. In order to end the proof, it is necessary to show that $f_{ij}^z=\frac{1}{2},\ f_{ji}^z=-\frac{1}{2}$. Set $a:=1-2f_{ij}^z$. We will show that

$$\sin\theta + |\cos\theta||a|,\tag{2.61}$$

is an eigenvalue of the operator $A_{ij}(\theta) - 2\cos(\theta)F_{(i,j)}$. Set

$$\delta = \operatorname{sgn}(a\cos\theta). \tag{2.62}$$

Note that

$$(A_{ij}(\theta) - 2\cos(\theta)F_{(i,j)})(e_i + \delta e_j) =$$

$$A_{ij}(\theta)(e_i + \delta e_j) - 2\cos(\theta)F_{(i,j)})(e_i + \delta e_j) =$$

$$A_{ij}(\theta)e_i + \delta A_{ij}(\theta)e_j - 2\cos(\theta)F_{ij}e_i - 2\delta\cos(\theta)F_{ij}e_j =$$

$$(\sin(\theta)e_i - \cos(\theta)e_j) + \delta(\sin(\theta)e_j + \cos(\theta)e_i) =$$

$$-2\cos(\theta)f_{ji}^z e_j - 2\delta\cos(\theta)f_{ij}^z e_i =$$

$$(\sin(\theta) + \delta\cos(\theta) - 2\delta\cos(\theta)f_{ij}^z)e_i =$$

$$+(-\cos(\theta) + \delta\sin(\theta) - 2\cos(\theta)(f_{ij}^z - 1))e_j =$$

$$(\sin(\theta) + \delta\cos(\theta)a)e_i + (\delta\sin(\theta) + \cos(\theta)a)e_j =$$

$$(\sin(\theta) + |\cos(\theta)a|)e_i + (\sin(\theta) + |\cos(\theta)a|)\delta e_j =$$

$$(\sin(\theta) + |\cos(\theta)a|)(e_i + \delta e_j). \tag{2.63}$$

In particular for each $\theta \in \mathbb{R}$

$$\sin \theta + |\cos \theta||a| < 1. \tag{2.64}$$

Hence

$$|a| \le \frac{1 - \sin \theta}{\cos \theta},\tag{2.65}$$

for $\theta \in \left[0, \frac{\pi}{2}\right)$, which gives

$$|a| \le \lim_{\theta \to \frac{\pi}{\alpha}^{-}} \frac{1 - \sin \theta}{\cos \theta} = 0. \tag{2.66}$$

Therefore |a|=0, consequently $f_{ij}^z=\frac{1}{2}$. The proof is complete. \square

References

- [1] J. Blatter, E. W. Cheney, Minimal projections onto hyperplanes in sequence spaces, Ann. Mat. Pura Appl. 101 (1974), 215-227.
- [2] H. F. Bohnenblust, Subspaces of $l_{p,n}$ -spaces, Amer. J. Math. 63 (1941), 64-72.
- [3] B. L. Chalmers, G. Lewicki, Symmetric spaces with maximal projections constants, J. Funct. Anal. 200 (1) (2003), 1-22.
- [4] B. L. Chalmers, D. Mupasiri and M. Prophet, A characterization and equations for shape-preserving projections, Journ. Approx. Th. vol. 138 (2006), 184 196.
- [5] B. L. Chalmers, F. T. Metcalf, *The determination of minimal projections and extensions in L*₁, Trans. Amer. Math. Soc. 329 (1992), 289-305.
- [6] E. W. Cheney, P. D. Morris, On the existence and characterization of minimal projections, J. Reine Angew. Math. 270 (1974), 61-76.
- [7] E. W. Cheney, W. A. Light, Approximation Theory in Tensor Product Spaces, Lectures Notes in Math., Springer-Verlag, Berlin 1985.
- [8] E. W. Cheney, C. R. Hobby, P. D. Morris, F. Schurer and D. E. Wulbert, *On the minimal property of Fourier projection*, Bull. Amer. Math. Soc. 75 (1969), 51-52.
- [9] E. W. Cheney, C. R. Hobby, P. D. Morris, F. Schurer and D. E. Wulbert, On the minimal property of Fourier projection, Trans. Amer. Math. Soc. 143 (1969), 249-258.
- [10] H. B. Cohen, F. E. Sullivan, Projections onto cycles in smooth, reflexive Banach spaces, Pac. J. Math. 265 (1981), 235-246.
- [11] H. S. Collins, W. Ruess, Weak compactness in spaces of compact operators and of vector-valued functions, Pac. J. Math. 106 (1983), 45-70.
- [12] S. D. Fisher, P.D. Morris, D.E. Wulbert *Unique minimality of Fourier projections*, Trans. Amer. Math. Soc. 265 (1981), 235-246.
- [13] C. Franchetti, *Projections onto hyperplanes in Banach spaces*, J. Approx. Theory 38 (1983), 319-333.
- [14] J. E. Jamison, A. Kaminska and G. Lewicki, One-complemented subspaces of Musielak-Orlicz sequence spaces, Journ. Approx. Th. vol. 130, (2004), 1 37.
- [15] H. Koenig, N. Tomczak-Jaegermann, Norms of minimal projections, J. Funct. Anal. 119 (1994), 253-280.
- [16] G. Lewicki, Best approximation in spaces of bounded linear operators, Dissertations Math. 330 (1994), 1-103.
- [17] G. Lewicki, On the unique minimality of the Fourier type-type extensions in L_1 space, in: "Proceedings Fifth Internat. Conf. On Function Spaces, Poznan 1998, Lect. Not. Pure and Applied Math. 213 (1998), 337-345.

- [18] G. Lewicki, G. Marino and P. Pietramala, Fourier-type minimal extensions in real L_1 -space, Rocky Mount. J. Math. 30 no.3 (2000), 1025-1037.
- [19] G. Lewicki, M. Prophet, Codimension-one minimal projections onto Haar subspaces, Journ. Approx. Th. vol. 127 (2004), 198 206.
- [20] P. V. Lambert, Minimum norm property of the Fourier projection in spaces of continuous function Bull. Soc. Math. Belg. 21 (1969), 359-369.
- [21] P. V. Lambert, Minimum norm property of the Fourier projection in spaces of L_1 -spaces Bull. Soc. Math. Belg. 21 (1969), 370-391.
- [22] W. Odyniec, G. Lewicki, *Minimal projections in Banach Spaces*, in: Lectures Notes in Mathematics, Vol. 1449, Springer, Berlin, Heildelberg, New York, 1990.
- [23] R. Phelps, *Lectures on Choquet's Theorem*, in: D.Van Nistrand Company, Vol. 1449, Springer, New York 1996.
- [24] B. Randriannantoanina, One-complemented subspaces of real sequence spaces, Results Math. (33) (1998), 139-154.
- [25] L. Skrzypek, Uniqueness of minimal projections in smooth matrix spaces, J. Approx. Theory (107) (2000), 315-336.
- [26] L. Skrzypek, B. Shekhtman, Uniqueness of minimal projections onto twodimensional subspaces, Studia Math. (168) (2005), 237-284.
- [27] L. Skrzypek, B. Shekhtman, Norming points and unique minimality of orthogonal projections, to appear in Abstract and Applied Analysis.
- [28] L. Skrzypek, On the uniqueness of norm-one projection in James-type spaces generated by lattice norms, East Journal an Approximations (6) (2000), 21-51.
- [29] P. Wojtaszczyk, Banach Spaces For Analysts, Cambridge Univ. Press, 1991.