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Abstract

In this paper we will prove that an averaging projection P,: K(H) — Y, given by

a formula P,(A) = A+2AT, is the only norm-one projection. Here K(H) is a space
of compact operators on a separable real Hilbert space H, and Y is a subspace of

K (H) consisting of all symmetric operators.
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1 Introduction

Let X be a normed space over R and let Y be a linear subspace of X. A
bounded linear operator P: X — Y is called a projection if P’Y = Id‘y. The
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set of all projections from X onto Y will be denoted by P(X, Y).
A projection Py is called minimal if

1Pyl| = inf{||P|| . PeP(X, Y)}. (1.1)

The constant
AKX, Y) = inf{||P|| . PeP(X, Y)}, (1.2)

is called the relative projection constant.
A projection Py € P(X, Y) is called minimal if

[P0l = A(X, Y). (1.3)

One of the difficult problems in the theory of projections is the unique-
minimality of minimal projection. The research concerning this problem has
its origin in a famous paper [9] where the unique minimality of the classical
Fourier projection F), (defined on Cy(27)) onto the subspace of trigonometric
polynomials of degree < n has been proved.
Since then, many results concerning the unique minimality of minimal projec-
tion has been obtained
(see e.g. [7], [8], [10], [17], [18], [25], [26], [27], [28]). For other results concern-
ing minimal projection
see e.g.[1], (2], [3], [4], [5], [6], [13], [14], [15], [16], [19], [20], [21], [22], [23].
The aim of this paper is to show the unique minimality of an averaging pro-
jection

A+ AT
— 5
defined on the space of all compact operators acting on a separable Hilbert
space. More precisely, let H denote any real separable Hilbert space and

Fa(A)

(1.4)

K(H) = {T: H — H : T iscompact and linear}, (1.5)

Yy — {A € K(H) : A= AT}. (1.6)

Let {e,}>2, denote an orthonormal basis of H. For x € H we define the norm

by the formula ||z|| = /(z, ), where obviously (-,) is a scalar product in H.
Hence for each element x € H there holds well-known Fourier and Parseval
formulas

[e.e]

r=> (z, en)en, (1.7)

n=1

ol = i (@, en) [ (18)



In this paper (see section 2) we will prove that an averaging projection

P,: K(H) — Y given by a formula P,(A) = # is the only norm-one
projection. In order to do this we introduce some notations and we state some
preliminary results.

With any operator A € K(H) we will associate an infinite matrix

L(A) = {ai;} i j)enxn given by a formula a;; = (Ae;, €;).

Let us define L(A) = {a;;} ¢ j)enxn.

We know that for any A on H we can define the conjugate operator AT by

(Az,y) = (2. ATy), (1.9)

for any z, y € H. We say that operator A is symmetric in H if A = AT. We
start with

Lemma 1.1 For any operator A = {a;;}i jjenxy € K(H) and any i € N

> la* < oo, (1.10)
Jj=1
> ajl? < oo (1.11)
j=1

PROOF. Since for each natural number i we have Ae; € H by ( 1.7)

2 0 00
[ e[ =1 der, e P =3 lasl,
j=1 j=1
2 o0 00 [e’e)
[A%ei| =S 1 {ATe, ) =Y less Ae) =Y lo’,  (112)
j=1 j=1 j=1
which obviously completes the proof. O
Set
M:{(z’, j)ENXN z'<j} and (1.13)

L= {(i, 0 : e N}. (1.14)
For z = (i, j) € M we define a functional f, € (K(H))* by

[ij(B) = [f=(B) = bi; — b, (1.15)
for L(B) = {bij}qjjenxn € K(H). It is easy to show that f. is bounded on
K(H).

Let
Y = () kerf.. (1.16)
zeM



Lemma 1.2 Forany A € K(H) if A €Y, then the operator A is symmetric.

PROOF. Let L(A) = {a;;} ¢ jjenxn and A € Y. It is sufficient to show that

(Az, y) = (z, Ay), (1.17)
for each z, y € H. By 1.7forx =Y (z, ¢;)e;andy = > _(y, e;) e; we get
n=1 =1

(Az, y) ZZ z,e;) (y,e;) (Aei,ej) =

i=1j5=1

0o o0
> (zei) (y,e5) aji =
i=175=1

0o

YD (we) (y,e5) ay =

i=1j=1

ZZ x,€;) (Y, e;) (e;, Aej) =

i=1j=1

(x, Ay) . (1.18)

The following result is a consequence of the Banach-Steinhaus Theorem

Theorem 1.3 Let {T,,}°, C B(X, Y), where X and Y are Banach spaces.
Suppose that T, (x) is convergent in Y for each x € X, then the operator
T(z) = lim T, (x) is bounded.

PROOF. We will show that 7" is bounded on X. Since for each x € X the
sequence {T,,(x)}52, is convergent, hence it is bounded on Y. Applying the
Banach-Steinhaus Theorem we obtain that there exists a constant M > 0,
such that

1T (2)[ly < M|z, (1.19)
for x € X and each n.
Hence
1T (2)|ly = lim [T, (2)]ly < Ml|z||x, (1.20)

for each x € X. This obviously concludes the proof of Theorem 1.1.
O



We say that a sequence of bounded operators {T},}22 , is convergent to operator
T in a weak operator topology (WOT), if and only if for each =, y € H we
have

Tim (T, (2),y) = (T(x). ). (1.21)

Analogously, the sequence of bounded operators {T,,}5° ; is convergent to op-
erator 7' in a strong operator topology (SOT) if and only if for each x € H
we have

lim 7, (x) = T(x). (1.22)

n—oo

2 The unique minimality of an averaging projection in space [5(N)

In this section we will show that the averaging projection P, is the only norm-
one projection.
Let z = (i, j) € M. Define an operator B;; on the basis {e;}72; by

—%ej if (=i
Bij(e) =1{ %e;, if 1= (2.1)
0 if 1#iQ, 1#7,

for [ € N. It is easy to show that for any z € M, B, is a bounded operator. Now
we prove a general formula for projections belonging to P(K(H),Y) (Th 2.11).
We need some preliminary results.

For any A = {a;;} jyenxny € K(H) and i € N define

CrA) = 3 fuA)B, 2.2)

where f;;(A) = a;; — a;;.

Theorem 2.1 Foreachx € H and A € K(H) we have that lim {C7'(A)(x)},2,
exists.

PROOF. [t is enough to show that for fixed A € K(H), x € H, i € N

{Cr(A)(z)}e2, is a Cauchy sequence in H. Let us define z = ) (z, e) e
=1
Note that



ez - era) > fo()By()
j=n+1
2
m —€; €;
j%lfz’j(/l) ((% ei) 5 (z, €;) 2)‘
2
(7, €;) Z | fi; (A Z fij(A) (z, €;)
] =n+1 j=n+1
2 00 2 [e'e]
HQJH S [f(A HﬂCH S 1f(A
j=n+1 j=n+1
2 0o
‘”“"” > (A (23)
Jj=n+1

By Lemma 1.1 the sequence {CP"(A)(x)}2, is a Cauchy sequence, which
completes the proof. O

Denote for A€ K(H), x € H and i € N

Ci(A)(z) = lim > fi;(A)By(x) = > fi;(A)By(x). (2.4)
j=it1 j=i+1
By Theorem 1.3 we get that C;(A) is a bounded operator on H.
Let us define for any A = {a;;} ¢ j)enxny € K(H) and n € N

Su(A) = > Ci(A). (2.5)

Theorem 2.2 For each v € H, A € K(H) we have that lim {S™(A)(z)}>2

n—o0 n=1

exists.

e}

PROOF. Define z = Z(m, e;)e; € H. Analogously, as in the proof for
=1
Theorem 2.1, we will show that S™(A)(x) is a Cauchy sequence on H. Note

that

2

150 (A)(2) = S (A)(2)]|* = _i Ci(A)(x)
= »_leci(A) (li_o: (x, el>el>

Let us calculate



2 2
> Ci(A) <Z (x, €) > =1 Y. D (z,e)Ci(A)(e)
i=n-+1 =1 i=n+11=1
2
> D (wa) Ci(A)(e)
i=n+1 =i
Hence
2
Z ((x e;) Ci(A)(e;) + Z x,ep) (el))
i=n+1 l=i+1
2
= > (Z _fi;(j4)<$,ei>€j+ > (z,e) fil;A)ei)
i=n+1 \j=i+1 l=i+1
2
=Y <Z > _f’;( ) (x,e;)e; + Z > (x fZl( )ei, ek>
k=1 i=n+1 j=1+1 i=n+1[=i+1
Therefore
2
Sy s T e e+ 3 e B o0
k=1 | i=n+1j=1+1 i=n+1[l=i+1
2
— Z Z Z fz;( )<$ ez 6]7€k + Z Z z, l le( )<€i;6k>
k=n+1 |i=n+1j=i+1 t=n+11l=i+1
2
= > |2 s e+ 25 e 1 (o
k=n+1 |i=n+1j=1+1 i=n+1l=i+1
2
+ Z Z fz]( )<ZL‘ eZ e],ek + Z Z leéA) <€i7€k>
k=m+1 |i=n+1j=i+1 i=n-+11l=i+1
Hence
S ) < )|
Z Z 2) <x7€i>+ Z <x>€l> 9
k=n+1 |i=n+1 I=k+1
2
k=m+1 | i=n+1 2
2
= > 1> <x,ez>M + Z Z (z,e;) —ful4) (2.6)
k=n+1 |l=n+1 k=m+1 |i=n+1 2

Now we will show that



U 0 2 _ AT o0 2
S Y (ze) fkléA) < 4 2A (Z <x,el>el> and  (2.7)
k=n+1 | l=n+1 I=n+1
2 2
- - —fin(A A—AT [
Y| X (we) f;( ) < 5 (Z (z,€:) ez‘) (2.8)
k=m+1 |i=n+1 i=n-+1

Let us calculate

Consequently
S 1S ey A 5 S g A 29
k=1 |l=n+1 k=n+1 |l=n+1

which proves (2.7).
Analogously

ST

i=n-+1 k=1

(45 (z <>) )

Hence

0 m A AT 2 o0 m f (A) 2

Z Z <x7€i> <2ei7€k> :Z Z <x7ei> k22

k=1 |i=n+1 k=1 | i=n+1

2
> Y | S ey AT (29
k=m+1 | i=n-+1 2

Note that



2

2 o)

Y (z,e)e

l=n+1

AT 00 2 AT
4 (8 [ <[22

I=n+1

2

S [ {ze) (2.11)

l=n+1

2

2 2

A— AT
<
- 2
A— AT
2

B ‘A—AT

2
m

> (z, e e

1=n-+1

Ag—14T m
5 ( Zl (x,e;) ei>

i=n+

2 m

S [z . (2.12)

i=n+1

By (2.11), and (2.12) S,(A)(x) is a Cauchy sequence in H. Thus for any
A € K(H) we have S(A) € K(H), where

o0

i=1 j=i+1

By Theorem 1.3 S(A) is bounded on H. O

In order to conclude the proof, it is sufficient to show that the limit of this
sequence in SOT topology is a compact operator.

Theorem 2.3 For each operator A € K(H) the sequence {S™(A)}>°, is con-
A—AT
2

vergent to the operator in the strong operator topology.

PROOF. By Theorem 2.2 for each operator A € K(H), x € H there exists

S(A)() = lm 3 CiA) @) = 3. GA)) =

i=1

S5 fi(A)By(). (214)

i=1 j=i+1

By Theorem 1.3 S(A) is a bounded operator on H. In order to finish the
proof it is sufficient to show that

A- AT) . (2.15)

L(S(A)) = L ( 5

But for any [, k

(S ) e = S FulA) (Byle), ex). (2.16)

i=1j=i+1



Also

~L g (i) = (I k)
if (I,k) = (j.4) (2.17)

1
2
0  for the remaining (I, k).

DO

(Bij(er), ex) =

Hence
—adE qf [ <k
(S(A)(er),ex) = { @z §f [ >k (2.18)
0 it =k,

which gives

(S(A) (er) ex) = <A — A, > | (2.19)

We have shown that the sequence of operators {S™(A)}22, is convergent to
A=AT in th 1 ill show that thi i

5— In the strong operator topology. We will show that this sequence is
weakly convergent in K (H). First we will present a few well known results.
Let S(V') denote the unit sphere in a Banach space V', and let extS(V') denote
the set of extreme points of S(V).

Theorem 2.4 (see e. g. [11]) Let S(K(H)*) be the unit sphere in (K(H))".
Then

extS(K(H)*) = extS(H) ® extS(H), (2.20)
where (x @ y)(L) = (Lz,y).

Let B(X™*) denote the unit ball in X*.

Theorem 2.5 (see e. g. [29]) Let X be a separable Banach space. Then the
unit ball B(X™*) is metrizable and w*-compact.

In particular if H is a separable Hilbert space, then K (H) is separable.
The following result will be the main tool in our investigations.

Theorem 2.6 (Choquet)(see e.g. [28]) Let K be a convex and compact subset
of a linear topological space X, such that there exists a sequence {f,} € X*,
which is a total set for K. Then the set of extreme points of K is a Borel
set and for each a € K there is a probabilistic measure v, defined on Borel’s
subsets of K, such that

10



v(extK) =1,
a= /de(v) = /mK:z:d(U). (2.21)

Recall that a set F' C X* is total for K if for any x € K \ {0} there exists
f € F such that f(z) # 0.

In particular from Theorem 2.5 and 2.6 one can deduce

Theorem 2.7 (see e.g [29]) Let H be a real separable Hilbert space. Then for
each f € B(K(H)*) there exists a probabilistic and Borel measure v deter-
mined on Borel’s subsets of B(K(H)*) such that

z(-)d(v). (2.22)

In the sequel we need

Theorem 2.8 Let H be a real and separable Hilbert space. Then the sequence
L,, converges weakly to L in K(H) if and only if for any f € extS(K(H)*)
f(Ly) is convergent to f(L).

PROQOF. It is enough to show that if the sequence L,, converges weakly on
the set extS(K (H)*), then it is weakly convergent. Fix f € B(K*(H)). Then
by Choquet’s theorem

r®yd(v). (2.23)

zd(v) = /
extS(K (H)*) ext(S(H)@extS(H)

Note that

P = [ momasin @ © D) (2.24)

We will show that for each x € H {L,(x)} is weakly convergent in H. If
y € H= H*, then

lim y(L,(z)) = lim (L,(z),y) =

n—oo n—oo

s el (2 ()t ) = el {2 (55 ) i) - 229

Therefore for each © € H {L,(x)} is weakly convergent, and consequently
bounded. By the Banach-Steinhaus Theorem the sequence {||L,||} is bounded.
By the Lebesgue Theorem we obtain

11



lim /(L) = [ st AT © D) (L) () =

S H) n—oo
1' Ln 9 d —
‘/eXt(S(H)®extS(H) nggo < ({L‘) y> (U)
g d(v) = f(L). 2.26
/ext(S(H)®extS(H) nllgo < (I)> y) (U) f( ) ( )

From Theorem 2.8 we get the following

Theorem 2.9 For any operator A € K(H) the sequence {S™(A)}52, is weakly
convergent to the operator #.

PROOF. We know that the sequence S,,(A) is SOT-convergent. Therefore,
it follows from the Banach-Steinhaus Theorem, that this sequence is bounded.
In order to show the weak convergence S, (A), based on Theorem 2.8, it is
enough to show that

(2.27)

n—oo

2

lim F(S,(4)) = f (A - AT) ,

for any f € extS(K(H)*).
Fix f € extS(K(H)*). By Theorem 2.4 we know that f =z ®y for z, y €
extS(H). Therefore

lim f(S,(4)) = lim (z ® y)(S.(A)) = lim (S,(A)(z),y) . (2.28)

n—oo n—oo n—oo

Because S,,(A) is SOT-convergent, it is in particular WOT convergent. Hence

n—oo <7’L—>OO

lim (S, (A)(x).9) = { lim Sn<A><x>,y>=<A‘2A <x>,y>, (2.20)

which concludes our proof. O

Remark. By the Mazur Theorem Th.* 2.9 is not valid for A € B(H).
Let us state another simple lemma.

Lemma 2.10 For each z = (I, k) € M and for each A € K(H) we have

[:(5(A)) = [.(A). (2.30)
PROOF. Note that

12



£(S(A) = f. (i 3 ﬁﬂA)BH) — S fu(A)(By) =

i=1 j=i+1 i=1 j=i+1
L), (231)

Now let P € P(K(H), Y). Then applying Lemma 1.1 and Lemma 1.2 we
obtain that for each A € K(H)

A-S(A)eY. (2.32)

Therefore P(A — S(A)) = A— S(A). Hence

P(A)=A+ P(S(4)) —S(A) =
A+>7 > fiy(A)(P(By) — By). (2.33)

i=1 j=i+1
Obviously for each z, w € M

f(P(By) = By) = fo(By) = (2.34)
Hence we have proved the following

Theorem 2.11 For any projection P € P(K(H), Y) there ezists a family of
operators {F.},en C K(H), which fulfill the following conditions

a) A sequence > > [fi;(A)Fy; is weakly convergent for each A € K(H).
i=1 j=it1

b) For each w, z € M we get f,(Fy) = 0.-
¢) P(A)=A-=> > fij(A)Fy, for any A€ K(H).

i=1 j=i+1
Theorem 2.12 The averaging projection P, has the form

P =1d-Y Y Jy()By. (2.35)

i=1 j=i+1

PROOF. By Theorem 2.11 there exists a sequence {F};} satisfying a), b),
¢) such that

Po(-)=1d=3% > fi()F;. (2.36)
i=1 j=it1
Let F, = {f} }amenxn. Since P,(A) = P,(AT) we obtain for fixed z = (i, j) €
M

13



0= Pu(Fy) = Pu(F) =

F =5 S fulEDEy. (237

=1 k=l+1

Since for A € K(H) fix(AT) = — fi.(A), therefore

Fj+F;=0. (2.38)
Hence
Jie +Ja=0, (2.39)
for each [, k € N.
Since fz(Fw) = (Szwa
Jie + 10 =0,
fie—Jfa=0, (2.40)
for (I, k) # (i, 7). Hence
fi =0, (2.41)
for (1, k) £ (i, j).
Additionally for ¢, j we have
it 15 =0,
L= fh=1. (2.42)
Consequently, f5 = %, f7 = —3, therefore F, = B,. O

We now return to the proof of unique minimality of our averaging projection.
For the purpose of the proof, let us denote by

sinfle; —cosfe; if [ =1

cosfe; +sinfle; if [=j

Ay(6)(er) = o o em)
€] if le{La]}\{Zaj}

0 i A4, 4]

for fixed (i, j) € M, 8 € R.

It is easy to show that each operator A;;(#) is a compact and bounded on the
space H.

Now we will state and prove the principal result of this paper:

Theorem 2.13 In separable real Hilbert space the averaging projection P, is
the only norm-one projection in K(H).

14



PROOF. Fix Q € P(K(H),Y) and ||Q|| = 1. By Theorem 2.11 we obtain

Q) =1d=%" 3" F4()Fs, (2.44)

i=1j=i+1

where f,(F,) = 0y, for w, z € M.
By Theorem 2.12 it is enough to show that the matrix of the operator F, =
{fi} @ wen has the form

Jir = it (1, k)= (j, 1) (2.45)

S = =

To do this, fix z = (i, j) € M. For each § € R

Q(A(6)) = 1d(Ay;(0)) - ii fi(Ay (60)) Fry =
= A;;(0) — 2cos(8) F, jy.- (2.46)

Since () is a norm-one projection

[ Ai;(0) = 2cos(0) Fi, |l = sup [[(Ai(0) —2cos(0)Fii, )zl <1, (2.47)

[[=]l2=1

for each 6 € R.
Let us fix [ € {1,..., j} \ {7, j}. We will show that fj = 0.
By equation ( 2.47) we get
(A3 (0) = 2cos(60) F, )er]| < 1. (2.43)
for each 6 € R. In particular,

11 —2cos(0)f7] <1, (2.49)

for any 6 € R. Hence fj =0 and

fi. =0, (2.50)
fa=0, (2.51)
for any k € N.

We will show that | > 7 fj = 0.

15



Let us define

sin fe; — cosfe; if k=1
cosfe; +sinfe; if k=7
Ay (0)(ex) = ’
€k if k € {1,
0 for remaining k.
Then

QAL (8)) = Td(AL(B) " S ful AL (6)) Fy =

=1 k=l+1

= Aij(ﬁ) —2cos(0)F, j) -

Hence
1(A;(0) — 2cos(0) Fii, jy)ell2 < 1,

for each 6 € R.
Therefore

11— 2cos(0) 3] < 1,
for each 6 € R. Hence f;; = 0 and

fﬁc:O7
f,jl:(),

for each k£ € N.
Now we show that f7 = f7 = 0.
By ( 2.47),

[(A;(8) — 2 cos(6) Fy, ) sin(0)e | < 1.
Hence
—1<sin?f — 2sinf cosb <1,

for each 6 € R.
After simple calculations we get

) .9
sin“0 — 1 sin“ 0 + 1 T
G LA i —— 0 >
sin20 — 7= Tgnog " E<’2 )
) )
sin“ 0 +1 sin“ 0 — 1 T
R A G — —,0).
sn2g SJis g O E( 2

Hence

16

> I AN AE g}

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)



sin?6 — 1

li z
ei%l* sin20 — %
2
f—1
fi< lim m (2.60)

T 9—-1t sin 20

Therefore f = 0. Proceeding analogously, we obtain thatf7; = 0.

In order to end the proof, it is necessary to show that f7 = Loz —

1
20 Jji 2°
Seta:=1-—2 Z We will show that

sin@ + | cos0||al, (2.61)
is an eigenvalue of the operator A;;(#) — 2 cos(6)F(;, ;.
Set

0 = sgn(acosf). (2.62)
Note that

(Aij(0) — 2cos(0) Fis, j))(ei + de;) =
A (0)(e; + dej) — 2cos(0)F, jy)(e; + dej) =
A;j(0)e; +0A;;(8)e; — 2cos(0)Fje; — 26 cos(8) Fije; =
(sin(f)e; — cos(f)e;) + o(sin(f)e; + cos(f)e;)
—2cos(0) Gej — 20 cos(0) e =
(sin(0) + d cos(0) — 28 cos(0) f7;)ei
+(—cos(f) + dsin(f) — 2cos(0)(f; — 1))e;
(sin(0) + d cos(f)a)e; + (dsin(f) + cos(f)a)e; =
(sin(@) + | cos(f)al)e; + (sin(f) + | cos(8)al)de; =
(sin(@) + | cos(8)al)(e; + de;) . (2.63)

In particular for each # € R

sinf + | cosf||a| < 1. (2.64)
Hence | sing
sin
< 2.65
o] < cosf '’ (2:65)
for 0 € {O, g), which gives
1 —sinf
o < lim — 7 = (2.66)

6—z~ cosf

Therefore |a| = 0, consequently f7 = % The proof is complete. O

17
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