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Abstract. We prove that for C1-diffeomorfisms semi-hyperbolicity of an in-

variant set implies its hyperbolicity. Moreover, we provide some exact esti-
mations of hyperbolicity constants by semi-hyperbolicity ones, which can be

useful in strict numerical computations.

1. Introduction

As is well-known [7] hyperbolicity is one of the most important notions in the
modern theory of dynamical systems. It follows from the fact that, roughly speak-
ing, a given dynamical system possesses a highly stable behaviour in a neighbour-
hood of a hyperbolic invariant set.

It is thus not surprising that investigation of hyperbolic systems and sets oc-
cupies so many mathematical attention. However, the problem with hyperbolicity
condition lies in the fact that it is very hard to verify by strict numerical computa-
tion (the reason behind it is that the invariance of the splitting, which arises in the
definition, defies numerical verification).

Let us illustrate the above considerations with the example of the Hénon map
(one of the simplest and oldest mapping showing chaotic behaviour)

Ha,b : R2 3 (x, y) 7→ (a− x2 + by, x) ∈ R2.

The first proof of hyperbolicity of the Hénon map was obtained in 1979 by Devaney
and Nitecki [4], who showed that for any fixed b and sufficiently large a the non-
wandering set is hyperbolic and chaotic. However, up till now the Hénon map
rejected the efforts to verify its hyperbolicity with the use of computer assisted
proof. Recently, Arai [3] showed that for a large number of parameters a and b
the Hénon map is quasi-hyperbolic (it is a weaker version of hyperbolicity which
guarantees “real” hyperbolicity only on the non-wandering set).

Our aim is to provide some possible tools which (we hope) will enable to deal with
the hyperbolicity of an invariant set. Instead of the notion of quasi-hyperbolicity,
we investigate the notion of semi-hyperbolicity (see the next section for details),
which is also well-adapted to numerical verifiction. However, the greatest advan-
tage of semi-hyperbolicity over quasi-hyperbolicity is that it guarantees classical
hyperbolicity condition.
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2. Hyperbolic and semi-hyperbolic mappings

For the convenience of the reader and to establish notation we recall some known
definitions and theorems. The concept of semi-hyperbolicity for linear operators
was introduced in [1] and for maps (even for only locally Lipschitz maps) in [5].
However, we would like to stress that we slightly modify notation to be suitable for
our setting.

Let (E, ‖ · ‖) be a Banach space.

Definition 2.1. We say that a linear operator A : E → E is (λs, λu)-hyperbolic (for
λs < 1 < λu) if

σ(A) ∩ {λ ∈ C | λs < |λ| < λu} = ∅.

Obviously, A is hyperbolic if it is (λs, λu)-hyperbolic with some λs < 1 < λu.
It is well-known that if an operator is hyperblic then there exists a uniquely

determined A-invariant splitting of E into Es ⊕ Eu such that

σ(As) = {λ ∈ σ(A) | |λ| < 1}, σ(Au) = {λ ∈ σ(A) | |λ| > 1},
where As = A|Es and Au = A|Eu .

We say that a hyperbolic operator A is (λs, λu;C)-hyperbolic if

‖(As)k‖ ≤ Cλk
s , ‖(Au)−k‖ ≤ Cλ−k

u for k ∈ N.

It is well-known that A is (λs, λu)-hyperbolic if and only if for every sufficiently
small ε > 0 there exist C ≥ 1 such that A is (λs + ε, λu − ε;C)-hyperbolic.

Let us notice that, contrary to the hyperbolicity of the operator which depends
only on the spectrum of A, the constant C from the above definition is dependent
on chose of the particular norm on E (for example one can always change the norm
on E into an equivalent one so that A is (λs + ε, λu − ε; 1)-hyperbolic in this new
norm).

Now we proceed to the analogues of the above definition for C1-diffeomorphisms.
Let M be a compact Riemannian manifold (with Riemanian norm ‖ · ‖ on TM)
and let f : M → M be a C1-diffeomorphism. An f -invariant subset K of M is said
to be (λs, λu)-hyperbolic (λs < 1 < λu) if there exists a Riemannian norm ||| · |||
on TM such that for each x ∈ K there exists a splitting TxM = Es

x ⊕ Eu
x with

corresponding projections P s
x and Pu

x = I − P s
x satisfying the following properties

H0. P s : K 3 x → P s
x is continuous (continuity of the splitting);

H1. DxfEs,u
x = Es,u

f(x) for x ∈ K (the invariance of the splitting);
H2. |||Dxf |Es

x
||| ≤ λs and |||(Dxf |Eu

x
)−1||| ≤ λ−1

u for x ∈ K.
Obviously, K is hyperbolic if there exist constants λs, λu such that K is (λs, λu)-

hyperbolic. As is known [9], condition H0 in the above definition is implied by
boundedness of P s and Pu.

One can also prove that K is hyperbolic if and only if conditions H0, H1 hold
and there exists C > 0 such that

H2’. ‖Dfk−1(x) ◦ · · · ◦Dxf |Es
x
‖ ≤ Cλk

s and ‖(Dfk−1(x) ◦ · · · ◦Dxf |Eu
x
)−1‖ ≤ Cλ−k

u

for x ∈ K.
(Here we use the original Riemannian norm on TM .) In this case we say that K is
(λs, λu;C)-hyperbolic.

Roughly speaking, an operator is semi-hyperbolic if it is nearly hyperbolic in some
equivalent norm – in fact, we do not assume the exact invariance of the splitting.
We proceed to formal definitions.
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Definition 2.2. We say that a linear operator A : E → E is (λs, λu, µs, µu;h)-semi-
hyperbolic if there exists a splitting E = Es ⊕ Eu with corresponding projections
P s and Pu = I − P s satisfying the following properties

SH0. λs < 1 < λu and (1− λs)(λu − 1) > µsµu;
SH1. max{‖P s‖, ‖Pu‖} ≤ h;
SH2. PuA|Eu is invertible and ‖P sA|Es‖ ≤ λs, ‖(PuA|Eu)−1‖ ≤ (λu)−1, ‖P sA|Eu‖ ≤

µs and ‖PuA|Es‖ ≤ µu.

We say that A is just (λs, λu, µs, µu)-semi-hyperbolic, if it is (λs, λu, µs, µu;h)-
semi-hyperbolic with some h.

In the above notation an f -invariant subset K is said to be (λs, λu, µs, µu;h)-
semi-hyperbolic if SH0 holds and for all x ∈ K there exists a splitting TxM =
Es

x⊕Eu
x with corresponding projections P s

x and Pu
x = I−P s

x satisfying the following
properties

S1. supx∈K{‖P s
x‖, ‖Pu

x ‖} ≤ h;
S2. Pu

f(x)Dxf |Eu
x

is invertible and ‖P s
f(x)Dxf |Es

x
‖ ≤ λs, ‖(Pu

f(x)Dxf |Eu
x
)−1‖ ≤

(λu)−1, ‖P s
f(x)Dxf |Eu

x
‖ ≤ µs and ‖Pu

f(x)Dxf |Es
x
‖ ≤ µu for all x ∈ K.

Note that neither the continuity nor the invariance of the splitting are not as-
sumed in the definition of semi-hyperbolicity condition.

The following theorem is a direct consequence of the main result of this paper
(Theorem 5.1).

Theorem. Let M be a Riemannian manifold, let f : M → M be a C1-diffeomorphism
and let K be an invariant subset of M .

Assume that K is (λs, λu, µs, µu;h)-semi-hyperbolic. Let γ∗s , γ∗u be arbitrary reals
such that

λs+λu

2 −
√

(λu−λs)2−4µsµu

2 < γ∗s < 1 < γ∗u < λs+λu

2 +
√

(λu−λs)2−4µsµu

2 .

Let
C∗ = max{ (λu−λs+µs+µu)h

(γ∗s−λs)(λu−γ∗s )−µsµu
, (λu−λs+µs+µu)h

(γ∗u−λs)(λu−γ∗u)−µsµu
}.

Then the set K is (γ∗s , γ∗u;C∗)-hyperbolic.

Before proceeding further, we would like to comment that the fact that semi-
hyperbolicity implies hyperbolicity is essentially known. However, it is not easy to
give a printed reference and up to our knowledge this result is a “mathematical
folklore” (for the idea of the general proof see [6], for the linear case see [8]).

What is crucial from our point of view is strictly numerical character of the
main result (the calculation of constants λ∗s, λ

∗
u, C∗). We hope that this estimations

will help us in our future work on strict numerical verification of the hyperbolicity
condition via the semi-hyperbolicity approach.

3. Linear case

Let E be a Banach space and let A : E → E be a bounded linear operator. The
aim of this section is to generalize some results showing that semi-hyperbolicity
implies hyperbolicity [2, 8]. Let us quote the following

Theorem [2, Th. 2]. If A is a (λs, λu, µs, µu)-semi-hyperbolic operator with the
splitting E = Es ⊕ Eu, then A is (1− γ, 1 + γ)-hyperbolic with

γ = min
{

1,
1
2
(λu − λs −

√
(λu − λs)2 − 4(1− λs)(λu − 1) + 4µsµu)

}
.
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To obtain our results we will need the following proposition

Proposition 3.1. If A is (λs, λu, µs, µu)-semi-hyperbolic operator then A is
(λ∗s, λ

∗
u)-hyperbolic, with

(1)
λ∗s =

λs + λu

2
−

√
(λu − λs)2 − 4µsµu

2
,

λ∗u =
λs + λu

2
+

√
(λu − λs)2 − 4µsµu

2
.

Before proceeding to the proof let us remark, that Proposition 3.1 shows some
improvement over the previous theorem, as it may be directly verified that λ∗s < 1−γ
and 1 + γ < λ∗u.

Proof of Proposition 3.1. Take a semi-hyperbolic splitting E = Es ⊕ Eu, corre-
sponding projections P s and Pu. Put

Aλ =
1
λ

A for any λ ∈ C \ {0}.

Obviously, if λ ∈ σ(A) then Aλ is not hyperbolic. Since

‖P sAλ|Es‖ =
‖P sA|Es‖

|λ|
≤ λs

|λ|
and, analogously,

‖P sAλ|Eu‖ ≤ µs

|λ|
, ‖PuAλ|Es‖ ≤ µu

|λ|
and ‖(PuAλ|Eu)−1‖ ≤ |λ|

λu
,

we conclude that the operator Aλ is semi-hyperbolic if the following inequalities
hold

λs < |λ| < λu and µsµu < (|λ| − λs)(λu − |λ|).
Solving the above system we obtain

|λ| ∈ (λ∗s, λ
∗
u).

The proof is completed by the following sequence of implications

|λ| ∈ (λ∗s, λ
∗
u) ⇒ Aλ is semi-hyperbolic ⇒ Aλ is hyperbolic ⇒ λ /∈ σ(A).

�

At the end of this section we would like to fix our attention on the inverse
problem. Thus we would like to ask the following question

Problem 3.1. Suppose that the operator A is (λ∗s, λ
∗
u)-hyperbolic.

Does there exist an equivalent norm on E such that for arbitrary λs ∈ [0, λ∗s]
the operator A is (λs, λu, µs, µu)-semi-hyperbolic, for some λu, µs, µu for which (1)
holds?

Roughly speaking we ask if we can “decrease” the value of λ∗s by “putting” it
into the not invariant splitting (according to the semi-hyperbolicity condition). Of
course, one can also ask the dual question for λu ∈ [λ∗u,∞) but since this is an
analogue, we consider only the case of λs.

Let us first show that under no additional assumptions the answer for the above
question is negative.
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Example 3.1. Consider the mapping

A : R 3 x → x/2 ∈ R.

Then A is (1/2,∞)-hyperbolic (the space Eu is the zero space). However, one can
easily notice that there does not exist λs < 1/2 and λu, µs, µu such that (1) holds
and that A is (λs, λu, µs, µu)-semi-hyperbolic.

We show that in some cases, the inverse holds.

Example 3.2. Let λ∗s ∈ [0, 1), λ∗u ∈ (1,∞). Consider the mapping A : R2 → R2

given in the matrix form by

A :=
[

λ∗s 0
0 λ∗u

]
.

Then A is (λ∗s, λ
∗
u)-hyperbolic with the splitting R2 = (R× {0})⊕ ({0} × R).

To show that in this case the answer to Problem 3.1 is positive, let us fix b1, b2 ∈ R
such that

b1 · b2 ∈ [0, λ∗s/λ∗u].
Consider the operator B : R2 → R2, defined, in the matrix form, by

B =
[

0 b1

b2 0

]
.

Put
Es = (Id−B)(R× {0}) and Eu = (Id−B)({0} × R),

where Id denotes the identity operator. It is easy to see that the projections corre-
sponding to the splitting Es ⊕ Eu are given by

P s =
1

1− b1b2

[
1 b1

−b2 −b1b2

]
and Pu =

1
1− b1b2

[
−b1b2 −b1

b2 1

]
.

Then, choosing a norm ‖·‖ on R2 such that ‖es‖ = ‖eu‖ = 1, where es = [1,−b2]T ∈
Es and eu = [−b1, 1]T ∈ Eu, we obtain

‖P sAes‖ =
∣∣∣∣λ∗s − λ∗ub1b2

1− b1b2

∣∣∣∣ ‖es‖ =
λ∗s − λ∗ub1b2

1− b1b2
=

1− λ∗u
λ∗s

b1b2

1− b1b2
λ∗s ≤ λ∗s < 1,

‖PuAes‖ =
∣∣∣∣λ∗sb2 − λ∗ub2

1− b1b2

∣∣∣∣ ‖eu‖ =
λ∗u − λ∗s
1− b1b2

|b2|,

‖P sAeu‖ =
∣∣∣∣λ∗ub1 − λ∗sb1

1− b1b2

∣∣∣∣ ‖es‖ =
λ∗u − λ∗s
1− b1b2

|b1|,

‖PuAeu‖ =
∣∣∣∣λ∗u − λ∗sb1b2

1− b1b2

∣∣∣∣ ‖eu‖ =
λ∗u − λ∗sb1b2

1− b1b2
=

1− λ∗s
λ∗u

b1b2

1− b1b2
λ∗u ≥ λ∗u > 1.

Thus, putting

λs =
λ∗s − λ∗ub1b2

1− b1b2
, λu =

λ∗u − λ∗sb1b2

1− b1b2
, µs =

λ∗u − λ∗s
1− b1b2

|b1| and µu =
λ∗u − λ∗s
1− b1b2

|b2|,

one can easily check, by direct computations, that (1) holds and that

λs ∈ [0, λ∗s], µsµu < (1− λs)(λu − 1).

We have obtained even more then we wanted – by modifying the values of b1 and
b2 we can not only realize any value λs ∈ [0, λ∗s], but we control also one of the
constants µs, µu.
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The above example leads us to the following

Conjecture 3.1. Let A be a hyperbolic operator such that the spaces Es and Eu

are isomorphic. Then the answer to Problem 3.1 is positive.

4. Functional calculus and its consequences

Since we obtain our results with the use of functional calculus, we recall here some
of its consequences which are important for us. We also establish some notation
which is valid from now on.

By Sr = {λ ∈ C | |λ| = r} we denote the positively oriented circle. Let A be
(λ∗s, λ

∗
u)-hyperbolic operator. We put

(2) P s
∗ =

1
2πi

∫
Sr

(λI −A)−1 dλ and Pu
∗ = I − P s

∗ for r ∈ (λ∗s, λ
∗
u).

Then P s
∗ and Pu

∗ does not depend on the choice of r ∈ (λ∗s, λ
∗
u). Moreover, P s

∗ and
Pu
∗ are the projections corresponding to the unique splitting from the definition of

hyperbolicity (we have E = Es
∗ ⊕ Eu

∗ for Es,u
∗ = P s,u

∗ (E)).

Lemma 4.1. Let A be (λs, λu, µs, µu;h)-semi-hyperbolic operator (hence hyper-
bolic). Then

‖(λId−A)−1‖ ≤ λu − λs + µs + µu

(|λ| − λs)(λu − |λ|)− µsµu
h for λ ∈ C, |λ| ∈ (λ∗s, λ

∗
u),

where λ∗s and λ∗u are given by (1).

Proof. Take x, y ∈ E, λ ∈ C such that

|λ| ∈ (λ∗s, λ
∗
u) and (λId−A)x = y.

Then λx = y + Ax and hence

λP sx = P sy + P sAP sx + P sAPux,

λPux = Puy + PuAP sx + PuAPux.

Since
U = PuA|Eu : Eu → Eu

is an invertible operator with ‖U−1‖ ≤ (λu)−1, we obtain

Pux = U−1(λPux− Puy − PuAP sx).

It follows that
|λ|‖P sx‖ ≤ h‖y‖+ λs‖P sx‖+ µs‖Pux‖,
λu‖Pux‖ ≤ h‖y‖+ |λ|‖Pux‖+ µu‖P sx‖

and, in consequence,

(|λ| − λs)‖P sx‖ − µs‖Pux‖ ≤ h‖y‖,

(λu − |λ|)‖Pux‖ − µu‖P sx‖ ≤ h‖y‖.
Then

µu(|λ| − λs)‖P sx‖ − µsµu‖Pux‖ ≤ µuh‖y‖,
(|λ| − λs)(λu − |λ|)‖Pux‖ − µu(|λ| − λs)‖P sx‖ ≤ (|λ| − λs)h‖y‖,

and hence

‖Pux‖ ≤ µu + |λ| − λs

(|λ| − λs)(λu − |λ|)− µsµu
h‖y‖.
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Analogously,

‖P sx‖ ≤ µs + λu − |λ|
(|λ| − λs)(λu − |λ|)− µsµu

h‖y‖.

Let us note that the above calculations are based on the following estimates

λs < |λ| < λu and µsµu < (|λ| − λs)(λu − |λ|),
which can be easily verified as in the proof of Proposition 3.1. Thus we have

‖(λId−A)−1y‖ = ‖x‖ ≤ ‖P sx‖+ ‖Pux‖ ≤ λu − λs + µs + µu

(|λ| − λs)(λu − |λ|)− µsµu
h‖y‖.

�

As a direct consequence of Lemma 4.1 and (2) we obtain the following

Corollary 4.2. Let A be (λs, λu, µs, µu;h)-semi-hyperbolic operator and let

L :=
λu − λs + µs + µu

(1− λs)(λu − 1)− µsµu
h.

Then
‖P s
∗ ‖ ≤ L, ‖Pu

∗ ‖ ≤ L + 1.

Let, as before, A be (λ∗s, λ
∗
u)-hyperbolic operator and let r ∈ (λ∗s, λ

∗
u). Our next

theorem deals with the estimation of iterates of A on spaces Es
∗ and Eu

∗ . We will
use the following consequences of functional calculus

Akxs =
∫

Sr

λk(λId−A)−1xsdλ for xs ∈ Es
∗, k ∈ N,

(A|Eu
∗
)−k(xu) = −

∫
Sr

λ−k(λId−A)−1xudλ for xu ∈ Es
∗, k ∈ N, k ≥ 1.

The main result of this section, which gives exact estimations of iterates of A on
subspaces Es

∗, E
u
∗ , is a trivial corollary of the above equalities and Lemma 4.1.

Theorem 4.3. Let A be (λs, λu, µs, µu;h)-semi-hyperbolic operator, let λ∗s, λ
∗
u be

given by (1) and let r ∈ (λ∗s, λ
∗
u) be arbitrary.

We put

Cr :=
λu − λs + µs + µu

(r − λs)(λu − r)− µsµu
h

Then

‖(A|Es
∗
)k‖ ≤ Cr · rk, ‖(A|Eu

)−k‖ ≤ Cr · r−k for k ∈ N, k ≥ 1.

Clearly, if we are interested in the estimation of ‖(A|Es
∗
)k‖ we should take r ∈

(λ∗s, 1), and if want to estimate ‖(A|Eu
)−k‖ we should take r ∈ (1, λ∗u).

5. General case

Let M be a compact Riemannian manifold and let f : M → M be a C1-diffeomorphism.
For x ∈ M consider the Banach space

Ex = {v = (vn) ∈
∏
n∈Z

Tfn(x)M | sup
n∈Z

‖vn‖x,n < ∞},

endowed with the supremum norm

‖v‖∞x = sup
n∈Z

‖vn‖x,n.
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Here and subsequently ‖ · ‖x,n denotes, for each n ∈ Z, an underlying Riemannian
norm on Tfn(x)M .

We define the bounded operator Ax on Ex by the following formula

(Axv)n+1 = Dfn(x)fvn for v ∈ Ex.

From the above definition it directly follows that we can identify the operator Ax

with Ay in the case of x and y lying on the same trajectory of f .
Now we are ready to present the main result of the paper.

Theorem 5.1. Assume that K is a compact invariant subset of M .
(i) If the set K is (λs, λu, µs, µu;h)-semi-hyperbolic for f then for every x ∈ K

the operator Ax is (λs, λu, µs, µu, h)-semi-hyperbolic according to the norm
‖ · ‖∞x .

(ii) Assume that for every x ∈ K the operator Ax is (λs, λu, µs, µu;h)-semi-
hyperbolic according to the norm ‖ · ‖∞x . Let λ∗s, λ

∗
u be given by (1) and let

γ∗s , γ∗u be arbitrary reals such that

λ∗s < γ∗s < 1 < γ∗u < λ∗u.

Let

C∗ = max{ (λu − λs + µs + µu)h
(γ∗s − λs)(λu − γ∗s )− µsµu

,
(λu − λs + µs + µu)h

(γ∗u − λs)(λu − γ∗u)− µsµu
}.

Then the set K is (γ∗s , γ∗u;C∗)-hyperbolic.

Proof. (i) Take x ∈ K and, for each n ∈ Z, projections P s
x,n and Pu

x,n corresponding
to a given semi-hyperbolic splitting Tfn(x)M = Es

x,n ⊕ Eu
x,n. Then it is easy to see

that the operators Ps
x and Pu

x , defined by

Ps
x =

∏
n∈Z

P s
x,n and Pu

x =
∏
n∈Z

Pu
x,n,

are bounded projections inducing a (λs, λu, µs, µu;h)-semi-hyperbolic splitting of
the space Ex for the operator Ax.

(ii) Fix γ∗s ∈ (λ∗s, 1), γ∗u ∈ (1, λ∗u) and take x ∈ K. Then we obtain a hyperbolic
splitting Ex = Es

x⊕Eu
x , corresponding projections Ps

x and Pu
x . By Corollary 4.2 and

Theorem 4.3 we obtain that

‖(Ax|Es
x
)k‖∞x ≤ C∗(γ∗s )k, ‖(Ax|Eu

x
)−k‖∞x ≤ C∗(γ∗u)−k for all k > 0,

max{‖Ps
x‖∞x , ‖Pu

x ‖∞x } ≤ L + 1.

where
L =

λu − λs + µs + µu

(1− λs)(λu − 1)− µsµu
h,

C∗ = max{ (λu − λs + µs + µu)h
(γ∗s − λs)(λu − γ∗s )− µsµu

,
(λu − λs + µs + µu)h

(γ∗u − λs)(λu − γ∗u)− µsµu
}.

For each n ∈ Z put

Ex,n = Tfn(x)M, Ax,n = Dfn(x)f

and consider the spaces Es
x,n, Eu

x,n ⊂ Ex,n defined as follows

Es
x,n = {v ∈ Ex,n | sup

k≥0
‖Ax,n+k−1 · · ·Ax,nv‖x,n+k < ∞},

Eu
x,n = {v ∈ Ex,n | sup

k≥0
‖A−1

x,n−k · · ·A
−1
x,n−1v‖x,n−k < ∞}.

Obviously, since Ax,n is invertible, Ax,n(Es
x,n) = Es

x,n+1 and Ax,n(Eu
x,n) = Eu

x,n+1.
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Firstly note that Pn
x (Es

x) ⊂ Es
x,n and Pn

x (Eu
x ) ⊂ Eu

x,n, where Pn
x denotes the

canonical projection on the n-th coordinate in
∏

n∈Z Ex,n. Indeed, taking sequences
vs ∈ Es

x and vu ∈ Eu
x it is easily seen that for k ∈ N, k ≥ 1

‖Ax,n+k−1 · · ·Ax,nvs
n‖x,n+k ≤ ‖Ak

xvs‖∞x ≤ C∗(γ∗s )k‖vs‖∞x ≤ C∗‖vs‖∞x ,

‖A−1
x,n−k · · ·A

−1
x,n−1v

u
n‖x,n−k ≤ ‖A−k

x vu‖∞x ≤ C∗(γ∗u)−k‖vu‖∞x ≤ C∗‖vu‖∞x .

Now we show that, for each n ∈ Z, the spaces Es
x,n and Eu

x,n form splitting of
the space En.

Indeed, if v ∈ Es
x,n ∩ Eu

x,n then

v = (. . . , A−1
x,n−2A

−1
x,n−1v,A−1

x,n−1v, vn = v,Ax,nv,Ax,n+1Ax,nv, . . .) ∈ Ex

and since Ax is hyperbolic and Axv = v we obtain v = 0. The equality Ex,n =
Es

x,n + Eu
x,n follows immediately from the following observation

v = vn = (Ps
xv + Pu

x v)n = (Ps
xv)n + (Pu

x v)n ∈ Pn
x (Es

x) + Pn
x (Eu

x ) ⊂ Es
x,n + Eu

x,n

for any v ∈ Ex with vn = v ∈ Ex,n, e.g., v = (. . . , 0, vn = v, 0, . . .).
It finishes the proof that Ex,n = Es

x,n ⊕ Eu
x,n.

Finally, we also obtain that

Ps
x =

∏
n∈Z

P s
x,n, and Pu

x =
∏
n∈Z

Pu
x,n,

as the consequence of the earlier remarks and the following sequence of implications
that hold for each n ∈ Z

v ∈ Ex ⇒ vn = (Ps
xv)n + (Pu

x v)n ∈ Es
x,n + Eu

x,n

⇒ P s
n,xvn = (Ps

xv)n and Pu
n,xvn = (Pu

x v)n.

In particular, if v = (. . . , 0, vn = v, 0, . . .) then

Ps
xv = (. . . , 0, P s

x,nv, 0, . . .) and Pu
x v = (. . . , 0, Pu

x,nv, 0, . . .).

Now we prove the (γ∗s , γ∗u)-hyperbolicity of the splitting Ex,n = Es
x,n ⊕ Eu

x,n.
To do this take vs ∈ Es

x,n, vu ∈ Eu
x,n, corresponding sequences

vs = (. . . , 0, vs
n = vs, 0, . . .) = (. . . , 0, P s

x,nvs, 0, . . .) = Ps
xvs ∈ Es

x,

vu = (. . . , 0, vu
n = vu, 0, . . .) = (. . . , 0, Pu

x,nvu, 0, . . .) = Pu
x vu ∈ Eu

x ,

and note that the following estimates hold for all k > 0

‖Ax,n+k−1 · · ·Ax,nvs‖x,n+k ≤ ‖Ak
xvs‖∞x ≤ C∗(γ∗s )k‖vs‖∞x = C∗(γ∗s )k‖vs‖x,n,

‖A−1
x,n−k · · ·A

−1
x,n−1v

u‖x,n−k ≤ ‖A−k
x vu‖∞x ≤ C∗(γ∗u)−k‖vu‖∞x = C∗(γ∗u)−k‖vu‖x,n.

Since the uniform boundedness of projections guarantees continuity [9], it is
enough to verify that the projections P s

x,n and Pu
x,n, corresponding to the splitting

Ex,n = Es
x,n ⊕ Eu

x,n, are uniformly bounded, i.e.

sup
x∈K,n∈Z

max{‖P s
x,n‖x,n, ‖Pu

x,n‖x,n} < ∞.

Indeed, for v ∈ Ex,n and v = (. . . , 0, vn = v, 0, . . .) we have

Ps
xv = (. . . , 0, P s

x,nv, 0, . . .) and Pu
x v = (. . . , 0, Pu

x,nv, 0, . . .)

and then we obtain the following estimates

‖P s
n,xv‖x,n = ‖Ps

xv‖∞x ≤ ‖Ps
x‖∞x ‖v‖∞x = ‖Ps

x‖∞x ‖v‖x,n ≤ (L + 1)‖v‖x,n,
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‖Pu
n,xv‖x,n = ‖Pu

x v‖∞x ≤ ‖Pu
x ‖∞x ‖v‖∞x = ‖Pu

x ‖∞x ‖v‖x,n ≤ (L + 1)‖v‖x,n.

But L depends neither on x ∈ K nor on n ∈ Z, which makes the proof complete. �
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