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Abstract. Friedland’s characterization of bounded normal operators is shown
to hold for infinitesimal generators of C0-semigroups. New criteria for normal-

ity of bounded operators are furnished in terms of Hamburger moment prob-

lem. All this is achieved with the help of the celebrated Ando’s theorem on
paranormal operators.

1. Introduction

Throughout what follows, H stands for a complex Hilbert space. By an operator
in H we mean a linear mapping A : D(A) → H defined on a linear subspace D(A)
of H, called the domain of A. Set D∞(A) =

⋂∞
n=1 D(An), and denote by N(A) and

A∗ the kernel and the adjoint of A respectively. A densely defined operator A in
H is said to be normal if A is closed and A∗A = AA∗. We refer the reader to the
monographs [5] and [19] for the theory of unbounded normal operators. The C∗-
algebra of all bounded linear operators in H with domain H is denoted by B(H).
An operator A ∈ B(H) is said to be paranormal if

‖Ah‖2 6 ‖A2h‖‖h‖, h ∈ H.

The notion of a paranormal operator first appeared in [11] under the name of class
(N). Its present name was introduced in [8]. It is known that bounded normal
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operators are always paranormal but not conversely (cf. [9]). Nevertheless, the
celebrated theorem of Ando enables us to verify normality with the help of para-
normality as follows: an operator A ∈ B(H) is normal if and only if N(A) = N(A∗)
and both the operators A and A∗ are paranormal (cf. [1, Theorem 5]).

Friedland characterized in [7] a bounded normal operator with the help of
convexity properties of the associated exponential group. More precisely, he proved
that an operator A ∈ B(H) is normal if and only if the functions t 7→ log ‖ etAh‖
and t 7→ log ‖ etA∗h‖ are convex on the real line R for every nonzero vector h ∈ H.
In the present paper we generalize Friedland’s theorem to the case of (unbounded)
infinitesimal generators of C0-semigroups (cf. Theorem 3). We propose a completely
new proof based upon Ando’s theorem on paranormal operators. It is worth noticing
that in the bounded operator case our proof becomes essentially shorter than that of
Friedland. We conclude the paper with some other criteria for normality of bounded
operators written in terms of Hamburger moment problem (cf. Proposition 7). As
shown in Propositions 6 and 8 both continuous and discrete cases can be essentially
simplified in the context of compact operators.

2. Preliminaries

Before formulating the main result of the paper it will be convenient to prove,
for easy reference, some indispensable facts concerning convex functions. For our
purpose, we extend in a natural way the notion of convexity to real variable func-
tions which take values in R ∪ {−∞}; it has to be accompanied by the convention
that 0 · (−∞) = 0. It is then clear that if f is a convex function defined on an open
interval J ⊆ R, then either f(J) ⊆ R or f ≡ −∞.

Lemma 1. Let a, b ∈ R be such that a < b and let f : [a, b) → R.

(i) If f is differentiable and for every t ∈ [a, b) there exists ηt ∈ (t, b) such
that f is convex on [t, ηt), then f is a convex function of class C1.

(ii) If f is convex, then the limit lim
t→b−

f(t) exists in (−∞,∞].

Proof. (i) The proof of the following fact is left to the reader (the case γ = α
does not require the assumptions on the behaviour of g to the left of γ).

Let α, β, γ be real numbers such that α 6 γ < β and let g : [α, β) → R
be a function which has the Darboux property on the segments [α′, γ]
and [γ, β′] for all α′ ∈ [α, γ) and β′ ∈ (γ, β). If the limits lim

t→γ−
g(t)

and lim
t→γ+

g(t) exist (finite or not), then g is continuous at γ.

(∗)

Set M
def= {c ∈ (a, b] : f ′ is monotonically increasing on [a, c)}. Owing to a well

known characterization of convexity, the derivative f ′ is monotonically increasing
on [t, ηt) for every t ∈ [a, b). Hence M is nonempty. We show that

ηc ∈ M for every c ∈ M ∩ (a, b).(1)

Take c ∈ M∩(a, b). Since the derivative f ′ has the Darboux property on each closed
segment contained in [a, b), we deduce from (∗) that f ′ is continuous at c. Hence
f ′ is monotonically increasing on [a, ηc), which proves (1). Since supM = maxM,
we infer from (1) that max M = b. Thus f ′ is monotonically increasing on [a, b),
and so f is convex. Using (∗) again, we conclude that f ′ is continuous.
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(ii) Suppose that, on the contrary, α
def= lim inf

t→b−
f(t) < β

def= lim sup
t→b−

f(t). Choose

γ ∈ (α, β). Then there exist t1, t2, t3 ∈ (a, b) such that t1 < t2 < t3 and

max{f(t1), f(t3)} 6 γ < f(t2).(2)

Since t2 = δt1 + (1 − δ)t3 for some δ ∈ (0, 1), condition (2) contradicts the con-
vexity of f . Hence the limit lim

t→b−
f(t) exists in [−∞,∞]. In turn, the hypothesis

lim
t→b−

f(t) = −∞ and the automatic continuity of f on (a, b) lead to

f
(1

2
(a + b)

)
= lim

t→b−
f
(1

2
(a + t)

)
6

1
2
(
f(a) + lim

t→b−
f(t)

)
= −∞,

which contradicts f( 1
2 (a + b)) ∈ R. This completes the proof. �

Remark 2. It is worth noting that part (i) of Lemma 1 is no longer true
if differentiability of f is replaced by absolute continuity. Indeed, the function
f : [−1, 1) → R defined by

f(t) = 1− |t|, t ∈ [−1, 1),

is not convex, though it is absolutely continuous and for every t ∈ [−1, 1) there
exists ηt ∈ (t, 1) such that f is convex on [t, ηt). On the other hand, the proof
of part (i) of Lemma 1 simplifies essentially for functions f of class C1. Finally,
if f has the second derivative, then the proof of (i) simplifies drastically because
by a well known characterization of convexity we have f ′′(c) = f ′′+(c) > 0 for
all c ∈ [a, b), which implies the desired convexity of f (here f ′′+(c) stands for the
right-hand second derivative of f at c).

3. Generalized Friedland’s theorem

The main result of this section, Theorem 3, is a generalization of Friedland’s
theorem (cf. [7, Theorem 2]) to the case of infinitesimal generators of C0-semigroups.
For fundamentals concerning C0-semigroups we recommend the monographs [10],
[6] and [14]. Below we adhere to the convention that log 0 = −∞.

Theorem 3. Suppose that A is the infinitesimal generator of a C0-semigroup
{S(t)}t∈[0,∞) ⊆ B(H). Then the following conditions are equivalent:

(i) A is normal,
(ii) for every h ∈ H the functions t 7→ log ‖S(t)h‖ and t 7→ log ‖S(t)∗h‖ are

convex on [0,∞),
(iii) for every h ∈ H there exists εh ∈ (0,∞) such that the functions t 7→

log ‖S(t)h‖ and t 7→ log ‖S(t)∗h‖ are convex on [0, εh).

Moreover, if A is normal, then N(S(t)) = N(S(t)∗) = {0} for all t ∈ [0,∞).

Proof. (iii)⇒(ii) For h ∈ H, we define the function ϕh : [0,∞) → R∪{−∞} by

ϕh(t) = log ‖S(t)h‖, t ∈ [0,∞).(3)

Take h ∈ D(A). We claim that ϕh is convex. There are two cases to consider:

1◦ S(t0)h = 0 for some t0 ∈ [0,∞),
2◦ S(t)h 6= 0 for all t ∈ [0,∞).
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Suppose 1◦ holds. Without loss of generality we may assume that

t0 = min{t ∈ [0,∞) : S(t)h = 0}.(4)

Consider first the case t0 > 0. As h ∈ D(A), we infer from (4) and part c) of [14,
Theorem 1.2.4] that ϕh ∈ C1([0, t0)). Since ϕh(t+s) = ϕS(t)h(s) for all s, t ∈ [0,∞)
and ϕS(t)h is convex on [0, εS(t)h) for all t ∈ [0, t0), we deduce from part (i) of Lemma
1 that ϕh is a real-valued convex function on [0, t0) such that lim

s→t0−
ϕh(s) = −∞,

the latter being a consequence of continuity of S(·)h. This contradicts part (ii) of
Lemma 1. Hence t0 = 0, which implies ϕh ≡ −∞. Repeating the above argument,
we see that 2◦ implies the convexity of ϕh as well.

By [14, Corollary 1.2.5], the space D(A) is dense in H. Hence, for every h ∈ H
there exists a sequence {hn}∞n=0 ⊆ D(A) which converges to h. This and the
previous paragraph imply that ϕh is the pointwise limit of the sequence {ϕhn

}∞n=0

of convex functions. Hence ϕh is convex itself.
Since {S(t)∗}t∈[0,∞) is a C0-semigroup (cf. [14, Corollary 1.10.6]), we can es-

tablish the convexity of the functions t 7→ log ‖S(t)∗h‖, h ∈ H, on the interval
[0,∞) applying the above reasoning to {S(t)∗}t∈[0,∞) instead of {S(t)}t∈[0,∞).

(ii)⇒(i) First, notice that N(S(t)) = {0} for all t ∈ [0,∞). Indeed, otherwise
there exists h ∈ H \ {0} and t0 ∈ [0,∞) such that S(t0)h = 0. Without loss of
generality we can assume that (4) holds. Clearly t0 > 0 and ϕh is a real-valued
convex function on [0, t0) such that lim

s→t0−
ϕh(s) = −∞, which by part (ii) of Lemma

1 leads to a contradiction. Applying this to the adjoint C0-semigroup, we obtain
N(S(t)∗) = {0} for all t ∈ [0,∞). Hence the “moreover” part of the conclusion is
proved.

Take real t > 0. Employing the definition of convexity, we get

log ‖S(t)h‖ 6
1
2
(
log ‖S(0)h‖+ log ‖S(2t)h‖

)
, h ∈ H,

which implies that the operator S(t) is paranormal. The convexity of log ‖S(·)∗h‖
gives the paranormality of S(t)∗. Since the kernels of S(t) and S(t)∗ coincide, the
Ando theorem (cf. [1, Theorem 5]) guarantees the normality of S(t). By the Stone
theorem (cf. [15, Theorem 13.37]), the operator A is normal.

(i)⇒(ii) It follows from the spectral theorem that

(5) S(t) =
∫

C
etλE(dλ), t ∈ [0,∞),

where E is the spectral measure of A. Applying the Hölder inequality, we obtain

‖S(αt1 + (1− α)t2)h‖2 =
∫

C
| eαt1λ|2 · | e(1−α)t2λ|2 µh(dλ)

6
( ∫

C
(| eαt1λ|2) 1

α µh(dλ)
)α( ∫

C
(| e(1−α)t2λ|2)

1
1−α µh(dλ)

)1−α

= ‖S(t1)h‖2α‖S(t2)h‖2(1−α), h ∈ H, α ∈ (0, 1), t1, t2 ∈ [0,∞),

where µh(·) = 〈E(·)h, h〉. This and ‖S(·)h‖ = ‖S(·)∗h‖ yield the convexity of
log ‖S(·)h‖ and log ‖S(·)∗h‖ for all h ∈ H.

Since (ii) manifestly implies (iii), the equivalence of (i), (ii) and (iii) is estab-
lished. This completes the proof. �
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Remark 4. A close inspection of the proof of Theorem 3 reveals that condition
(iii) is equivalent to

(iii∗) for any two vectors h ∈ X and g ∈ X∗, there exists real ε > 0 such that
the functions t 7→ log ‖S(t)h‖ and t 7→ log ‖S(t)∗g‖ are convex on [0, ε),

where X and X∗ are fixed dense subsets of D∞(A) and D∞(A∗) respectively. The
only thing which needs an explanation is the density of X and X∗ in H. This,
however, is a consequence of the density1 of D∞(A) and D∞(A∗) in H (cf. [14,
Theorem 1.2.7 and Corollary 1.10.6]). Notice that if h ∈ D∞(A) \ {0}, then the
case 1◦ is excluded and consequently the function ϕh defined by (3) is of class C∞.

Let us mention that in the case of a C0-semigroup {S(t)}t∈[0,∞) of normal
operators the convexity of functions log ‖S(·)h‖ and log ‖S(·)∗h‖ can be proved
without recourse to the spectral theorem. To see this, notice first that each S(t)
being normal is paranormal and then apply the following lemma.

Lemma 5. Let {S(t)}t∈[0,∞) ⊆ B(H) be a C0-semigroup. Then log ‖S(·)h‖ is
convex on [0,∞) for all h ∈ H if and only if all the operators S(t), t ∈ [0,∞), are
paranormal. Moreover, if this is the case, then N(S(t)) = {0} for all t ∈ [0,∞).

Proof. Suppose that all the operator S(t), t ∈ [0,∞), are paranormal. Then

ϕh(t) 6
1
2
(ϕh(0) + ϕh(2t)), h ∈ H, t ∈ [0,∞),

where ϕh(t) def= log ‖S(t)h‖. Replacing h by S(u)h we get

ϕh(t + u) 6
1
2
(ϕh(u) + ϕh(2t + u)), u, t ∈ [0,∞).

Letting u, t ∈ [0,∞) vary, we see that

ϕh

(1
2
(s + t)

)
6

1
2
(ϕh(s) + ϕh(t)), s, t ∈ [0,∞).(6)

If ϕh([0,∞)) ⊆ R, then the continuity of ϕh and (6) imply the convexity of ϕh. If
ϕh([0,∞)) * R, then we deduce from (6) that ϕh(t) = −∞ for all t ∈ (0,∞). By
reversing the steps above, we get the paranormality of the operators S(t).

The “moreover” part of the conclusion is established in the proof of implication
(ii)⇒(i) of Theorem 3. �

In [7, Lemma 1] the convexity of log ‖S(·)h‖ on R has been established for C0-
groups with bounded hyponormal infinitesimal generators. Recall that hyponormal
operators are always paranormal but not conversely (cf. [8, Theorem 2]). Notice
that for C0-semigroups of injective operators having dense range (e.g. for C0-groups)
the proof of Theorem 3 becomes essentially shorter because the case 1◦ disappears.
It is worth noting that there are plenty of C0-semigroups of normal operators which
do not extend to C0-groups.

We now prove an analogue of Friedland’s theorem for compact C0-semigroups.
In particular, this covers the case of finite dimensional Hilbert spaces (cf. [7, Theo-
rem 1], see also [2, 3]). Recall that a C0-semigroup {S(t)}t∈[0,∞) ⊆ B(H) is said to
be compact (cf. [14, page 48 ]) if the operator S(t) is compact for every t ∈ (0,∞).

1 The desired density can also be deduced from the following much more general fact: if T is

a closed densely defined operator in H with a nonempty resolvent set, then D∞(T ) is dense in H.
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Proposition 6. The infinitesimal generator of a compact C0-semigroup
{S(t)}t∈[0,∞) ⊆ B(H) is normal if and only if the function t 7→ log ‖S(t)h‖ is
convex on [0,∞) for every h ∈ H.

Proof. Apply Lemma 5, the automatic normality of compact paranormals (cf.
[11, Theorem 2]) and the Stone theorem. �

One can show that in separable infinite dimensional Hilbert spaces compact
C0-semigroups of normal operator are exactly those which are unitarily equivalent
to C0-semigroups {S(t)}t∈[0,∞) of bounded operators on `2 given by

S(t) =


eλ1t 0 0

0 eλ2t 0
. . .

0 0 eλ3t . . .
. . . . . . . . .

 , t ∈ [0,∞),

where {λn}∞n=1 is a sequence of complex numbers such that Reλn → −∞ as n →∞.
This can be done with the help of (5).

4. Normality via moment sequences

It was proved in [16, Proposition 6.2] that an algebraic operator A ∈ B(H) is
normal if and only if for some integer j > 1 (equivalently: for all integers j > 1)
the sequence {‖Anh‖2j}∞n=0 is a Hamburger moment sequence for every h ∈ H;
recall that a sequence {an}∞n=0 of real numbers is said to be a Hamburger moment
sequence if there exists a positive Borel measure µ on R such that an =

∫
R tnµ(dt)

for all integers n > 0 (cf. [4, Chapter 6.2]). As shown in [12, 13] (see also [17]),
if A ∈ B(H) is an arbitrary operator, then the requirement that {‖Anh‖2}∞n=0 is
a Hamburger moment sequence for every h ∈ H is equivalent to the subnormality
of A. The question of whether the assumption that {‖Anh‖2j}∞n=0 is a Hamburger
moment sequence for every h ∈ H implies subnormality of A ∈ B(H) is still open
for every integer j > 2 (the reverse implication is always true). The following
criterions for normality in terms of moment sequences are obtained with the help
of paranormality.

Proposition 7. An operator A ∈ B(H) is normal if and only if N(A) =
N(A∗) and for some integers j, k > 1 (equivalently: for all integers j, k > 1) the
sequences {‖Anh‖2j}∞n=0 and {‖A∗nh‖2k}∞n=0 are Hamburger moment sequences for
every h ∈ H.

Proof. We begin with the proof of the “if” part. For every h ∈ H there exists
a positive Borel measure µh on R such that ‖Anh‖2j =

∫
R tnµh(dt) for all integers

n > 0. Then by the Schwarz inequality we have

(‖Ah‖2j)2 =
( ∫

R
tµh(dt)

)2

6
∫

R
t2µh(dt)

∫
R

t0µh(dt) = ‖A2h‖2j‖h‖2j(7)

for all h ∈ H. Hence A is paranormal. Similarly, we show that A∗ is paranormal.
Applying Ando’s theorem (cf. [1, Thorem 5]) we get the normality of A.

To complete the proof notice that the normality of A implies that for ev-
ery h ∈ H, {‖Anh‖2}∞n=0 is a Hamburger moment sequence and consequently (cf.
[4, Chapter 6.1]) all sequences {‖Anh‖2j}∞n=0, j > 1, are Hamburger moment se-
quences. This completes the proof. �
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Repeating argument from the above proof and employing the fact that compact
paranormal operators are normal (cf. [11, Theorem 2]) we get the following.

Proposition 8. A compact operator A ∈ B(H) is normal if and only if for
some integer j > 1 (equivalently: for all integers j > 1) the sequence {‖Anh‖2j}∞n=0

is a Hamburger moment sequence for every h ∈ H.

Remark 9. Propositions 7 remains true if the requirement “the sequences
{‖Anh‖2j}∞n=0 and {‖A∗nh‖2k}∞n=0 are Hamburger moment sequences” is replaced
by “the sequences {‖Anh‖}∞n=0 and {‖A∗nh‖}∞n=0 are logarithmically convex”. Sim-
ilar replacement can be done in the case of Proposition 8. For more details con-
cerning the role played by logarithmic convexity and concavity in operator theory
we refer the reader to [18].
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