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1 Introduction

Some classical methods used to solve certain differential equations can be
unified by associating to the equation a group of transformations leaving
it invariant. This idea, due to Sophus Lie, is at the origin of differential
Galois theory. The group associated to the differential equation gives then
information on the properties of the solutions. However, most differential
equations do not admit a nontrivial group of transformations. In the case of
ordinary homogeneous linear differential equations, there exists a satisfactory
Galois theory introduced by Emile Picard and Ernest Vessiot. The group
associated to the differential equation is in this case a linear algebraic group
and a characterization of equations solvable by quadratures is given in terms
of the Galois group. In the middle of the 20th century, Picard-Vessiot theory
was clarified by Ellis Kolchin, who also built the foundations of the theory of
linear algebraic groups. Kolchin used the differential algebra developed by
Joseph F. Ritt and established the Fundamental Theorem of Picard-Vessiot
theory, which is the counterpart of its homonymous theorem in polynomial
Galois theory.

Our lecture notes develop Picard-Vessiot theory from an elementary point
of view, based on the modern theory of algebraic groups. They are mainly
aimed at graduate students with a basic knowledge of abstract algebra and
differential equations. The necessary topics of algebraic geometry and linear
algebraic groups are included in the appendices.

In chapter 2, we introduce differential rings and differential extensions
and consider differential equations defined over an arbitrary differential field.
In chapter 3, we prove that we can associate to an ordinary linear differ-
ential equation defined over a differential field K, of characteristic 0 with
algebraically closed field of constants, a uniquely determined minimal ex-
tension L of K containing the solutions of the equation, the Picard-Vessiot
extension. In chapter 4, we introduce the differential Galois group of an
ordinary linear differential equation defined over the field K as the group
of differential K-automorphisms of its Picard-Vessiot extension L and prove
that it is a linear algebraic group. In chapter 5, we prove the fundamen-
tal theorem of Picard-Vessiot theory, which gives a bijective correspondence
between intermediate fields of a Picard-Vessiot extension and Zariski closed



subgroups of its Galois group. In chapter 6, we give the characterization of
homogeneous linear differential equations solvable by quadratures in terms
of their differential Galois group.

These lecture notes are based on the courses on Differential Galois The-
ory given by the authors at the University of Barcelona and the Cracow
University of Technology. Some parts of them were presented at the Differ-
ential Galois Theory Seminar at the Mathematical Institute of the Cracow
University of Technology during the academic year 2006-2007. The authors
would like to thank the members of the DGT Seminar, especially Dr. Marcin
Skrzyniski and Dr. Artur Pigkosz for his useful remarks on the previous ver-
sion of these notes.

During the work on this monograph both authors were supported by
the Polish Grant N20103831/3261 and the Spanish Grant MTM2006-04895.
During her stay at the Cracow University of Technology, Teresa Crespo was
supported by the Spanish fellowship PR2006-0528.



2 Differential rings

2.1 Derivations

Definition 2.1 A derivation of a ring A is a map d : A — A such that
dla+b) =da+db , d(ab)=d(a)b+ ad(b).

We write as usual @’ = d(a) and a”,d”, ..., a™ for successive derivations.
) ) )
By induction, one can prove Leibniz’s rule

(ab)® =a™p4 ... 4 (7;) am=0p® 14 g pm

If a’ commutes with a, we have (a™) = na™'a’. If A has an identity ele-
ment 1, then necessarily d(1) = 0, since d(1) = d(1.1) = d(1).1 + 1.d(1) =
d(1) = 0. If a € A is invertible with inverse a™!, we have a.a™! =1 =
dal+a(a™) =0= (a!) = —a"'d'a”!. Hence, if @’ commutes with a,
we get (a™') = —d’/a?.

Proposition 2.1 If A is an integral domain, a deriwation d of A extends to
the quotient field Qt(A) in a unique way.

/b _ b/
Proof. For % € Qt(A), we must have (%)’ = %, so there is uniqueness.
/b _ b/
We extend the derivation to Qt(A) by defining (%)’ = %. If c €

A\ {0}, we have

ac\’ (ac)'bc—ac(bc)  (dc+ad)bc—ac(t/c+bd) a'b—al
Ge) =2 - P 7

- _ _
so the definition is independent of the choice of the representative. Now we
have

(g N E)’ ad+bc\"  (ad+ be)'bd — (ad + be)(bd)'
b d) bd N b2d? N

(’d+ ad +b'c+bd)bd — (ad + be)(b'd 4+ bd')  a'b— abf N dd—cd

b2d? b? az




b2d2 N b2d2

(g E)’_(a_c>/ (ac)’bd — ac(bd)  (d'c + ac’)bd — ac(b'd + bd')
b d/  \bd
(a'b—ab)c N (dd—cd)a a'b—al

a cdd—cd

C
b2d 2D 2 dy T @

O

Remark 2.1 If A is a commutative ring with a derivation and S a multi-
plicative system of A, following the same steps as in the proof of proposition
2.1, we can prove that the derivation of A extends to the ring S™'A in a
unique way.

2.2 Differential rings

Definition 2.2 A differential ring is a commutative ring with identity en-
dowed with a derivation. A differential field is a differential ring which is a
field.

Examples.

1.

Every commutative ring A with identity can be made into a differential
ring with the trivial derivation defined by d(a) = 0,Va € A.

Over Z and over Q, the trivial derivation is the only possible one, since
d(1) = 0, and by induction, d(n) = d((n—1)+1) = 0 and so d(n/m) = 0.

. The ring of all infinitely differentiable functions on the real line with the

usual derivative is a differential ring.

. The ring of analytic functions in the complex plane with the usual deriva-

tive is a differential ring. In this case, it is an integral domain and so the
derivation extends to its quotient field which is the field of meromorphic
functions.

. Let A be a differential ring, let A[X] be the polynomial ring in one inde-

terminate over A. A derivation in A[X] extending that of A should satisfy
- a; XY = > (al X+ ai X' X’). We can then extend the derivation of
A to A[X] by assigning to X’ an arbitrary value in A[X]. Analogously,
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if A is a field, we can extend the derivation of A to the field A(X) of
rational functions. By iteration, we can give a differential structure to
A[Xy,...,X,] for a differential ring A and to A(Xj,...,X,) for a differ-
ential field A.

5. Let A be a differential ring. We consider the ring A[X;] of polynomials
in the indeterminates X;,i € NU {0}. By defining X/ = X1, a unique
derivation of A[X;] is determined. We change notation and write X =
X0, X™ = X,,. We call this procedure the adjunction of a differential
indeterminate and we use the notation A{X} for the resulting differential
ring. The elements of A{ X} are called differential polynomials in X (they
are ordinary polynomials in X and its derivatives).

If Ais a differential field, then A{X} is a differential integral domain
and its derivation extends uniquely to the quotient field. We denote this

quotient field by A(X), its elements are differential rational functions
of X.

6. If A is a differential ring, we can define a derivation in the ring M, «,(A)
of square n x n matrices by defining the derivative of a matrix as the
matrix obtained by applying the derivation of A to all its entries. Then
for n > 2, M, «x,(A) is a noncommutative ring with derivation.

In any differential ring A, the elements with derivative 0 form a subring
C, called the ring of constants. If A is a field, so is C'. The field of constants
contains the image of the ring morphism Z — A, 1 +— 1. In the sequel, Cx
will denote the constant field of a differential field K.

Definition 2.3 Let I be an ideal of a differential ring A. We say that [ is
a differential ideal if a € I = o’ € I, that is if d(I) C 1.

If T is a differential ideal of the differential ring A, we can define a deriva-
tion in the quotient ring A/I by d(a) = d(a). It is easy to check that this
definition does not depend on the choice of the representative in the coset

and indeed defines a derivation in A/I.

Definition 2.4 If A and B are differential rings, a map f : A — B is a
differential morphism if it satisfies

L fla+b) = f(a) + f(b), f(ab) = f(a)f(b), Va,b € A; f(1) = 1.



2. fla) = f(d'), Ya € A.

If I is a differential ideal, the natural morphism A — A/ is a differential
morphism. The meaning of differential isomorphism, differential automor-
phism is clear.

Proposition 2.2 If f : A — B is a differential morphism, then Ker f is a
differential ideal and the isomorphism f : A/ Ker f — Im f is a differential
isomorphism.

Proof. For a € Ker f, we have f(a') = f(a)’ =0, so @’ € Ker f, hence Ker f
is a differential ideal. - B B B
For any a € A, we have (F(@))' = (f(a))' = f(a') = (@) = F(@), so F is

a differential isomorphism. a

2.3 Differential extensions

An inclusion A C B of differential rings is an extension of differential rings if
the derivation of B restricts to the derivation of A. If S is a subset of B, we
denote by A{S} the differential A-subalgebra of B generated by S over A,
that is the smallest subring of B containing A, the elements of S and their
derivatives. If K C L is an extension of differential fields, S a subset of L,
we denote by K(S) the differential subfield of L generated by S over K. If
S is a finite set, we say that the extension K C K () is differentially finitely
generated.

Proposition 2.3 If K is a differential field, K C L a separable algebraic
field extension, the derivation of K extends uniquely to L. Moreover, every
K-automorphism of L is a differential one.

Proof. 1If K C L is a finite extension, we have L = K(«), for some «,
by the primitive element theorem. If P(X) is the irreducible polynomial
of a over K, by applying the derivation to P(a) = 0, we obtain P (a) +
P'(a)a’ = 0, where P@ denotes the polynomial obtained from P by deriving
its coefficients and P’ the derived polynomial. So, o/ = —P@(a)/P'(a) and
the derivation extends uniquely.

Let us look now at the existence. We have L ~ K[X]/(P). We can extend
the derivation of K to K[X] by defining X’ := —P@(X)h(X) for h(X) €
K[X] such that h(X)P'(X) =1 (mod P). If h(X)P'(X) = 1+k(X)P(X), we
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have d(P(X)) = P9(X)4+P'(X)d(X) = PD(X)+ P (X)(=P9Y(X)h(X)) =
PO(X)(1 - P(X)W(X)) = —P9(X)k(X)P(X). Therefore (P) is a differ-
ential ideal and the quotient field K[X]/(P) is a differential ring.

The general case K C L algebraic is obtained from the finite case by
applying Zorn lemma.

Now, if ¢ is a K-automorphism of L, o~ 'do is also a derivation of L
extending that of K and by uniqueness, we obtain 0~ 'do = d, and so do =
od, which gives that ¢ is a differential automorphism. a

Remark 2.2 Let K be a differential field with positive characteristic p (for
example F,(T") with derivation given by 7" = 1), let P(X) = X? —a € K[X],
with a € K?, and let a be a root of P. If the element a € K is not a constant,
then it is not possible to extend the derivation of K to L := K(«). If the
element a is a constant, we can extend the derivation of K to L by assigning
to o any value in L.

Definition 2.5 If K C L is a differential field extension, o an element in L,
we say that « is

- a primitive element over K if o/ € K

- an ezponential element over K if o//a € K.

2.4 The ring of differential operators

Let K be a differential field with a nontrivial derivation d. A linear differ-
ential operator L with coefficients in K is a polynomial in d,

L=a,d" +a, 1d" '+ +ajd+ ag, with a; € K.

If a, # 0, we say that £ has degree n. If a, = 1, we say that L is
monic. The ring of linear differential operators with coefficients in K is
the noncommutative ring K|[d] of polynomials in the variable d with coef-
ficients in K where d satisfies the rule da = o’ + ad for a € K. We have
deg(L1Ly) = deg(Ly) + deg(L2) and then the only left or right invertible
elements of K[d] are the elements of K \ {0}. A differential operator acts on
K and on differential extensions of K with the interpretation d(y) = y'. To
the differential operator £ = a,,d" + a,_1d" ' + --- 4+ a;d + ag, we associate
the linear differential equation

11



ﬁ(Y) = anY(n) + CLn—lyv(n_l) + -+ a1Y, + CLQY =0.

As for the polynomial ring in one variable over the field K, we have a
division algorithm on both left and right.

Lemma 2.1 For £y, Ly € K[d] with Ly # 0, there ezist unique differential
operators Q;, Ry (resp. Q,, R, ) in K[d] such that

Li=QLy+ R and degR; < degl,
(resp. L1 =L2Q, + R, and degR, < degLs.)

The proof of this fact follows the same steps as in the polynomial case.

Corollary 2.1 For each left (resp. right) ideal I of K|d|, there exists an
element £ € K|[d], unique up to a factor in K \ {0}, such that I = K[d|L
(resp. I = LK][d]).

Taking into account this corollary, for two linear differential operators
L1, Lo, the left greatest common divisor will be the unique monic generator
of K[d|Ly + K[d]Ly and the left least common multiple will be the unique
monic generator of K|[d|L; N K[d]L,. Analogously, we can define right GCD
and LCM. We can compute left and right GCD with a modified version of
Euclides algorithm.
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3 Picard-Vessiot extensions

3.1 Homogeneous linear differential equations

From now on, K will denote a field of characteristic zero.
We consider homogeneous linear differential equations over a differential
field K, with field of constants C":

L) =Y"™ 4a, ;YO 4 40 Y +apY =0,0; € K.

If K C L is a differential extension, the set of solutions of £(Y) =0 in L is
a Cp-vector space, where Cf, denotes the constant field of L. We want to see
that its dimension is at most equal to the order n of L.

Definition 3.1 Let yq,%s,..., %, be elements in a differential field K. The
determinant

Y1 Y2 Yn
Moo Y% Yn
W:W(yhy%-”?yn> = . : .. :
n—1 n—1 n—1
N e
is the wroriskian (determinant) of y1,vya, ..., Yn-

Proposition 3.1 Let K be a differential field with field of constants C, and
let y1,...,yn € K. Then y1,...,y, are linearly independent over C' if and

Only ZfW(ylv s 7yn) 7é 0.

Proof. Let us assume that yi,...,y, are linearly dependent over C, let
vy = 0,¢ € C not all zero. By differentiating n— 1 times this equality,
we obtain ., ciygk) =0,k=0,...,n—1. So the columns of the wronskian
are linearly dependent, hence W (yi,...,y,) = 0.

Reciprocally, let us assume W (yi,...,y,) = 0. We then have n equalities
Z:-L:l ciy§k) =0,k=0,...,n—1, with ¢; € K not all zero. We can assume
cg = 1 and W(ys,...,yn) # 0. By differentiating equality k, we obtain
Yo eyt 4 Yo dy® = 0 and subtracting equality (k + 1), we get
Yoy c;yl(k) =0,k=0,...,n— 2. We then obtain a system of homogeneous
linear equations in ¢, ..., ¢, with determinant W (ys,...,y,) # 0, so ¢y =
.- = ¢, =0, that is, the ¢; are constants. O

13



Taking this proposition into account, we can say ”linearly (in)dependent”
over constants without ambiguity, since the condition of (non)cancellation of
the wronskian is independent of the field.

Proposition 3.2 Let L(Y) = 0 be a homogeneous linear differential equa-
tion of order m over a differential field K. If yi,...,yns1 are solutions of
L(Y) =0 in a differential extension L of K, then W(yi,...,Yn+1) = 0.

Proof. The last row in the wronskian is (yi"), . ,yq(gl), which is a linear
combination of the preceding ones. a

Corollary 3.1 L(Y) =0 has at most n solutions in L linearly independent
over the field of constants. a

If £L(Y') =0 is a homogeneous linear differential equation of order n over
a differential field K, y;,...,y, are n solutions of £(Y) = 0 in a differential
extension L of K, linearly independent over the field of constants, we say
that {y1,...,yn} is a fundamental set of solutions of L(Y) = 0 in L. Any
other solution of £(Y) = 0 in L is a linear combination of y,...,y, with
constant coefficients. The next proposition can be proved straightforwardly.

Proposition 3.3 Let L(Y) = 0 be a homogeneous linear differential equa-
tion of order n over a differential field K and let {y1,...,yn} be a basis
of the solution space of L(Y) = 0 in a differential extension L of K. Let

Zj =y 0 CiiYi, J=1,...,n, with ¢;; constants, then

W(Zl, Ce ,Zn) = det(cw) . W(yh Ce 7yn)

3.2 Existence and uniqueness of the Picard-Vessiot ex-
tension

We define now the Picard-Vessiot extension of a homogeneous linear differ-
ential equation which is the analogue of the splitting field of a polynomial.

Definition 3.2 Given a homogeneous linear differential equation £(Y) =0
of order n over a differential field K, a differential extension K C L is a
Picard-Vessiot extension for L if

14



1. L=K(yi,...,yn), where yy,...,y, is a fundamental set of solutions of
L(Y)=0in L.

2. Every constant of L lies in K, i.e. Cx = Cf.

Remark 3.1 Let k be a differential field, K = k(z), with 2/ = z, and con-
sider the differential equation Y/ —Y = 0. As z is a solution to this equation,
if we are looking for an analogue of the splitting field, it would be natural to
expect that the Picard-Vessiot extension for this equation would be the triv-
ial extension of K. Now, if we adjoin a second differential indeterminate and
consider L = K(y), with ¢y = y, the extension K C L satisfies condition 1
in definition 3.2. Now, we have (y/z)" = 0, so the extension K C L adds the
new constant y/z. Hence condition 2 in the definition of the Picard-Vessiot
extension guarantees its minimality.

In the case when K is a differential field with algebraically closed field of
constants C', we shall prove that there exists a Picard-Vessiot extension L of
K for a given homogeneous linear differential equation £ defined over K and
that it is unique up to differential K-isomorphism.

The idea for the existence proof is to construct a differential K-algebra
containing a full set of solutions of the differential equation

LY)=Y"™ 4a, YO U 4 40V +aY =0

and then to make the quotient by a maximal differential ideal to obtain an
extension not adding constants.
We consider the polynomial ring in n? indeterminates

and extend the derivation of K to K[Y;;] by defining

/ ,
Y=Y 0<i<n-—2

/
3n_1,j = —p-1Yn-1; — - — a1Y1j — agYp;.

(1)

Note that this definition is correct, as we can obtain the preceding ring by
defining the ring K{Xj, ..., X,,} in n differential indeterminates and making
the quotient by the differential ideal generated by the elements

X" a1 X 4 X+ aoX;, 1< <,
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that is the ideal generated by these elements and their derivatives. Let
R := K[Y;;][W~1] be the localization of K[Y;;] in the multiplicative system
of the powers of W = det(Y;;). The derivation of KY;;| extends to R in a
unique way. The algebra R is called the full universal solution algebra for L.

From the next two propositions we shall obtain that a maximal differential
ideal P of the full universal solution algebra R is a prime ideal, hence R/P
is an integral domain and that the quotient field of R/P has the same field
of constants as K.

Proposition 3.4 Let K be a differential field and K C R be an extension of
differential rings. Let I be a mazimal element in the set of proper differential
tdeals of R. Then I is a prime ideal.

Proof. By passing to the quotient R/I, we can assume that R has no proper
differential ideals. Then we have to prove that R is an integral domain. Let
us assume that a,b are nonzero elements in R with ab = 0. We claim that
d*(a)b**t = 0,Vk € N. Indeed ab = 0 = 0 = d(ab) = ad(b) + d(a)b and,
multiplying this equality by b, we obtain d(a)b* = 0. Now, if it is true for k,
0 = d(d*(a)b**) = d* 1 (a)b** + (k + 1)d*(a)b*d(b) and, multiplying by b,
we obtain d**1(a)bk+? = 0.

Let J now be the differential ideal generated by a, that is, the ideal
generated by a and its derivatives. Let us assume that no power of b is zero.
By the claim, all elements in J are then zero divisors. In particular J # R
and, as J contains the nonzero element a, J is a proper differential ideal of
R, which contradicts the hypothesis. Therefore, some power of b must be
ZEro.

As b was an arbitrary zero divisor, we have that every zero divisor in R
is nilpotent, in particular ™ = 0, for some n. We choose n to be minimal.
Then 0 = d(a”) = na"'d(a). As K C R, we have na"~! # 0 and so d(a)
is a zero divisor. We have then proved that the derivative of a zero divisor
is also a zero divisor and so a and all its derivatives are zero divisors and
hence nilpotent. In particular, J # R, so J would be proper and we obtain
a contradiction, proving that R is an integral domain. a

Proposition 3.5 Let K be a differential field, with field of constants C', and
let K C R be an extension of differential rings, such that R is an integral
domain, finitely generated as a K-algebra. Let L be the quotient field of R.
We assume that C' is algebraically closed and that R has no proper differential
tdeals. Then, L does not contain new constants, i.e. C, = C.

16



Proof. 1. First we prove that the elements in Cf, \ C' cannot be algebraic
over K. If « € K\ K, from the proof of proposition 2.3, we have o/ =
—P9D(a)/P'(a), for P(X) = X*+ a1 X* '+ +a;X + ag the irreducible
polynomial of a over K. Then o/ = 0= PY(X) =a}  X* 1+ +a, X +
ay =0,s0 P(X) € C[X] and a € C.

2. Next we have C, C R. Indeed for any b € Cp, we have b = f/g, with
f,9 € R. We consider the ideal of denominators of b, J = {h € R: hb € R}.
We have h € J = hb € R = (hb) = 'b € R = K € J. Then J is
a differential ideal. By hypothesis, R does not contain proper differential
ideals, so J = R, hence b =1.b € R.

3. Here we show that for any b € C, there exists an element ¢ € C' such
that b— c is not invertible in R. Then the ideal (b—¢)R is a differential ideal
different from R, and is therefore zero. Thus b =c € C.

We now use some results from algebraic geometry. Let K be the algebraic
closure of K, R = R®k K. If the element b®@ 1 —c® 1 = (b—c) ® 1 is
not a unit in R, then the element b — ¢ will be nonunit in R. So we can
assume that K is algebraically closed. Let V' be the affine algebraic variety
with coordinate ring R. Then b defines a K-valued function f over V. By
Chevalley’s theorem (theorem 7.2), its image f(V') is a constructible set in
the affine line A! and hence either a finite set of points or the complement of
a finite set of points. In the second case, as C' is infinite, there exists ¢ € C
such that f(v) = ¢, for some v € V so that f — ¢ vanishes at v and so b — ¢
belongs to the maximal ideal of v. Hence, b — ¢ is a nonunit. If f(V) is
finite, it consists of a single point, since R is a domain and therefore V' is
irreducible. So, f is constant and b lies in K, hence in C. a

Theorem 3.1 Let K be a differential field with algebraically closed constant
field C. Let L(Y) = 0 be a homogeneous linear differential equation defined
over K. Let R be the full universal solution algebra for L and let P be a
mazimal differential ideal of R. Then P is a prime ideal and the quotient
field L of the integral domain R/ P is a Picard-Vessiot extension of K for L.

Proof. R is differentially generated over K by the solutions of L(Y) = 0
and by the inverse of the wroniskian, so R/P as well. By proposition 3.4, P
is prime. As P is a maximal differential ideal, R/P does not have proper
differential ideals, so by proposition 3.5, C;, = C. Moreover, the wronskian
is invertible in R/P and so in particular is nonzero in L. We have then that
L contains a fundamental set of solutions of £ and is differentially generated
by it over K. Hence L is a Picard-Vessiot extension of K for L. a
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In order to obtain uniqueness of the Picard-Vessiot extension, we first
prove a normality property.

Proposition 3.6 Let L, Ly be Picard-Vessiot extensions of K for a homo-
geneous linear differential equation L(Y) = 0 of order n and let K C L be a
differential field extension with C;, = Cx. We assume that o; : Ly — L are
differential K-morphisms, i = 1,2. Then o1(Ly) = 09(Ls).

Proof. Let V; :=={y € L;: L(y) =0},i =1,2, V:={y e L: L(y) =0}.
Then Vj; is a Cg-vector space of dimension n and V is a C'x-vector space of
dimension at most n. Since o; is a differential morphism, we have o;(V;) C
Vi = 1,2 and so, 01(V}) = 09(Va) = V. From L; = K(V;),i = 1,2, we get
O'1<L1) = O'Q(LQ). O

Corollary 3.2 Let K C L C M be differential fields. Assume that L is a
Picard-Vessiot extension of K and that M has the same constant field as K.
Then any differential K-automorphism of M sends L onto itself. a

Corollary 3.3 An algebraic Picard-Vessiot extension is a normal algebraic
extension. O

In the next theorem we establish uniqueness up to K-isomorphism of the
Picard-Vessiot extension.

Theorem 3.2 Let K be a differential field with algebraically closed field of
constants C. Let L(Y) = 0 be a homogeneous linear differential equation
defined over K. Let Ly, Ly be two Picard-Vessiot extensions of K for L(Y') =
0. Then there exists a differential K-isomorphism from Ly to Ls.

Proof. We can assume that L, is the Picard-Vessiot extension constructed
in theorem 3.1. The idea of proof is to construct a differential extension
K C E with Cg = C and differential K-morphisms L; — E, Ly — E and
apply proposition 3.6. We consider the ring A := (R/P) ®g Lo, which is a
differential ring finitely generated as a Ls-algebra, with the derivation defined
by d(z ®y) = dx @ y + x ® dy. Let () be a maximal proper differential ideal
of A. Its preimage in R/P by the map R/P — A defined by a — a ® 1
is zero, as R/P does not contain proper differential ideal, and it cannot be
equal to R/P, as, in this case, @ would be equal to A. So R/P injects in
A/Q by a — a®1, and the map Ly — A/Q given by b — 1®b is also
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injective. Now by proposition 3.4, @) is prime and so A/Q is an integral
domain. Let E be its quotient field. Now we can apply proposition 3.5 to
the Lo-algebra A/Q and obtain Cgy = Cp, = Ck. By applying proposition
3.6 to the maps L1 — A/Q — E and Ly — A/Q) — E we obtain that there
exists a differential K-isomorphism L; — Lo. O

We now state together the results obtained in Theorems 3.1 and 3.2.

Theorem 3.3 Let K be a differential field with algebraically closed field of
constants C, let L(Y) = YO 4q, YOO 4 0 Y 4+ a0 =0 be defined
over K. Then there exists a Picard-Vessiot extension L of K for L and it is
unique up to differential K-isomorphism.

We end this section with a proposition which will be used to obtain the
Fundamental Theorem of Picard-Vessiot Theory. The reader can compare
this result with the analogue property of Galois extensions in classical Galois
Theory.

Proposition 3.7 a) If K C L is a Picard-Vessiot extension for L(Y) = 0
and v € L\ K, then there exists a differential K-automorphism o of L
such that o(x) # .

b) Let K C L C M be extensions of differential fields, where K C L and
K C M are Picard-Vessiot. Then any o € G(L|K) can be extended to a
differential automorphism of M.

Proof. a) We can assume that L is the quotient field of R/P with R the full
universal solution algebra for £ and P a maximal differential ideal of R. Let
x = a/b, with a,b € R/P. Then z € A := (R/P)[b~'] C K. We consider the
differential K-algebra T = AQx AC L Qg L. Let z=2®1—-1x € T.
Since x € K, we have z # 0, 2/ # 0 (if z was a constant, it would be in K)
and z is no nilpotent (2™ = 0, for a minimal n would imply nz""'z’ = 0). We
localize T at z and pass to the quotient T'[1/z]/Q by a maximal differential
ideal @ of T'[1/z]. Since z is a unit, its image Z in T'[1/z]/Q is nonzero. We
have maps 7; : A — T[1/2]/Q,i = 1,2, induced by w — w® 1,w — 1 ® w.
The maximality of P implies that R/P has no nontrivial differential ideals,
so neither has A, hence the 7; are injective. Therefore they both extend
to differential K-embeddings of L into the quotient field E of T[1/z]/Q. By
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proposition 3.5, F is a no new constants extension of K, so by proposition 3.6,
71(L) = 12(L). On the other hand, 7 (z) — m(z) = Z # 0, so 7 (x) # Ta(z).
Thus 7 = 7; ' is a K-differential automorphism of L with 7(z) # z.

b) As L C M is Picard-Vessiot (for the same differential equation L as
K C M, seen as defined over L), we can assume that M is the quotient field
of Ry/P, where Ry = L®g R with R the full universal solution algebra for £
and P a maximal differential ideal of R;. Then the extension of 0 € G(L|K)
to M is induced by o ® Idpg. O

Corollary 3.4 If K C L is a Picard-Vessiot extension with differential Ga-
lois group G(L|K), we have LCWK) = K j.e. the subfield of L which is fived
by the action of G(L|K) is equal to K.

Proof. The inclusion K C LEFK) is clear, the inclusion L¢HX) C K is given
by Proposition 3.7 a). a
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4 Differential (Galois group

Definition 4.1 If K C L is a differential field extension, the group G(L|K)
of differential K-automorphisms of L is called differential Galois group of
the extension K C L. In the case when K C L is a Picard-Vessiot extension
for L(Y) = 0, the group G(L|K) of differential K-automorphisms of L is
also referred to as the Galois group of L(Y) = 0 over K. We shall use the
notation Galg (L) or Gal(L) if the base field is clear from the context.

We want to see now that the differential Galois group of a Picard-Vessiot
extension is a linear algebraic group. First we see that the Galois group of a
homogeneous linear differential equation of order n defined over the differen-
tial field K is isomorphic to a subgroup of the general linear group GL(n, C')
over the constant field C of K. Indeed, if y1, 9o, . . ., y, is a fundamental set of
solutions of L(Y') = 0, for each o € Gal(£) and for each j € {1,...,n}, o(y;)
is again a solution of £L(Y) = 0, and so o(y;) = > ¢y, for some ¢;; € Ck.
Thus we can associate to each o € Gal(£) the matrix (¢;;) € GL(n,C).
Moreover, as L = K(y1,...,yn), a differential K-automorphism of L is de-
termined by the images of the y;. Hence, we obtain an injective morphism
Gal(£) — GL(n,C) given by o — (c;;). We shall see in proposition 4.1
below that Gal(L) is closed in GL(n, C') with respect to the Zariski topology
(which is defined in section 7). First, we look at some examples.

4.1 Examples

Example 4.1 We consider the differential extension L = K(«), with o/ =
a € K such that a is not a derivative in K. We say that L is obtained from
K by adjunction of an integral. We shall prove that « is transcendent over
K, K C K{«) is a Picard-Vessiot extension and G(K («)|K) is isomorphic
to the additive group of C' = Ck.

Let us assume that « is algebraic over K and write P(X) = X" +
Sor b X" its irreducible polynomial over K. Then 0 = P(a) = a" +
Yo bia" =0 =na""ta+ bja" ! + terms of degree < n — 1= na+ b, =
0 = a = (—by/n)" which gives a contradiction.

We prove now that K(a) does not contain new constants. Let us assume
that the polynomial 7 b;a™ ™", with b; € K, is constant. Differentiating, we
obtain 0 = bya™+(nboa+b; )a™ ' +terms of degree < n—1 = b, = nbpa+b; =
0= a= —b\/nby = (—by/nby)’, contradicting the hypothesis. Let us assume
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that the rational function f(a)/g(«) is constant, with g monic, of degree

fla)g(@)a— fla)g(a)a

> 1, minimal. Differentiating, we obtain 0 = =

g(a)?
fla)  fla)

ﬂ = (@)’ with g(«)” a nonzero polynomial of lower degree that g, since
gl glo
g(@) is not a constant and g is monic. This is a contradiction.

/

We observe that 1 and a are solutions of Y” — Ly’ = 0, linearly inde-

a
pendent over the constants, so K C K(a) is a Picard-Vessiot extension.

A differential K-automorphism of K (a) maps « to o+ ¢, with ¢ € C' and
a mapping « — « + ¢ induces a differential K-automorphism of K (), for

cach ¢ € C. So G(K()|K) ~ C ~ {( - )} C GL(2,0).

Example 4.2 We consider the differential extension L = K («), with o/ /oo =
a € K\ {0}. We say that L is obtained from K by adjunction of the expo-
nential of an integral. It is clear that K(a) = K(«) and « is a fundamental
set of solutions of the differential equation Y’ — aY = 0. We assume that
Cr = Ck. We shall prove that if « is algebraic over K, then o € K for
some n € N. The Galois group G(L|K) is isomorphic to the multiplicative
group of C' = Ck if « is transcendent over K and to a finite cyclic group if
« is algebraic over K.

Let us assume that « is algebraic over K and let P(X) = X" +a,_; X" '+
-+« + ag its irreducible polynomial. Differentiating, we get 0 = P(«a) =
P@(a)+ P'(a)d) = P9 (a) + P'(a)ac = ana™ + 31— (af + akag)a®. Then
P divides this last polynomial and so aj + aka, = ana;, = a), = a(n —
k)ar,0 < k < n —1. Hence (" */a;) = 0. In particular, a® = caq for
some ¢ € Cf, = Ck, hence ™ = b € K. Then P(X) divides X™ — b and so
P(X) = X" —b.

For o € G(L|K), we have o(a)’ = (/) = o(aa) = ac(a) = (o(a)/a) =
0 = o(«a) = ca for some ¢ € Cp = Ck. If a is transcendent over K, for each
¢ € Cg, we can define a differential K-automorphism of L by a +— ca. If
a™ =b e K, then o(a)” = o(a™) = 0(b) = b= ¢" =1 = ¢ must be an nth
root of unity and Gal(L|K) is a finite cyclic group.

Example 4.3 We consider a differential field K, an irreducible polynomial
P(X) € K[X] of degree n and a splitting field L of P(X) over K. We shall
see that K C L is a Picard-Vessiot extension. We know by proposition 2.3
that we can extend the derivation in K to L in a unique way by defining for

22



each root x of P(X) in L, 2/ = —PY(x)h(x) for h(X) € K[X] such that
h(X)P'(X) = 1(mod P). Moreover by reducing modulo P, we can obtain an
expression of 2" as a polynomial in x of degree smaller than n. By deriving the
expression obtained for z’, we obtain an expression for z” as a polynomial
in x which again by reducing modulo P will have degree smaller than n.
[terating the process, we obtain expressions for the successive derivatives of
x as polynomials in = of degree smaller than n. Therefore x,2/,..., z" Y
are linearly dependent over K. If we write down this dependence relation,
we obtain a homogeneous linear differential equation with coefficients in K
satisfied by all the roots of the polynomial P. Now, let us assume that, while
computing the successive derivatives of a root x of P, the first dependence
relation found gives the differential equation

(2) Y 4 YED 44 Y +aY =0,a; € K,k <n.

Then, there exist k roots z1,...,x, of P with W(xy,...,zx) # 0 since oth-
erwise we would have found a differential equation of order smaller than &
satisfied by all the roots of P. Hence, L is a Picard-Vessiot extension of K
for the equation (2) and by proposition 2.3 the differential Galois group of
K C L coincides with its algebraic Galois group.

4.2 The differential Galois group as a linear algebraic
group

Proposition 4.1 Let K be a differential field with field of constants C,
L = K(y1,...,yn) a Picard-Vessiot extension of K. There ezists a set S
of polynomials F(X;;),1 <i,j <n, with coefficients in C' such that

1) If o is a differential K-automorphism of L and o(y;) = Y ., ¢ijyi, then
F(Cij) = O,VF eSs.

2) Gwen a matriz (¢;j) € GL(n,C) with F(c¢;;) = 0,VE € S, there ezists a
differential K -automorphism o of L such that o(y;) = > i CijYs-

Proof. Let K{Z,,...,Z,} be the ring of differential polynomials in n indeter-
minates over K. We define a differential K-morphism from K{Z,...,Z,}
in L by Z; — y;. The kernel I is a prime differential ideal of K{Z,...,Z,}.
Let L[X;;],1 <i,j < n be the ring of polynomials in the indeterminates X;;
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with the derivation defined by Xj; = 0. We define a differential K-morphism
from K{Z,...,Z,} to L[X;;] such that Z; — > "  X;;u;. Let A be the
image of I' in this mapping. Let {wy} be a basis of the C-vector space L.
We write each polynomial in A as a linear combination of the w, with co-
efficients polynomials in C[X;;]. We take S to be the collection of all these
coefficients.

1. Let o be a differential K-automorphism of L and o(y;) = > i, ¢;;y;. We
consider the diagram

Z; =Y
Zj K{Zh,Zn} — L
| |
|

|
|
! ! !

| o
Xij = Cij

It is clearly commutative. The image of I' by the upper horizontal arrow
followed by o is 0. Its image by the left vertical arrow followed by the lower
horizontal one is A evaluated in X;; = ¢;;. Therefore all polynomials of A
vanish at ¢;;. Writing this down in the basis {wy }, we see that all polynomials
of S vanish at c;;.

2. Let us now be given a matrix (¢;;) € GL(n,C) such that F(c;;) = 0 for
every F'in S. We define a differential morphism

K{Z],...,Zn} — K{ylaayn}
Zj = DG
This morphism is the composition of the left vertical arrow and the lower
horizontal one in the diagram above. By the hypothesis on (¢;;), and the
definition of the set S, we see that the kernel of this morphism contains I’
and so, we have a K-morphism

og: K{y1>7yn} - K{ylaayn}
Yj = > i CigYi ‘
It remains to prove that it is bijective. If u is a nonzero element in the kernel
I, then u cannot be algebraic over K, since in this case, the constant term
of the irreducible polynomial of u over K would be in I and then I would be
the whole ring. But, if u is transcendent, we have
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trdeg[K{y1,...,yn} : K| > trdeg[K{oy1,...,ou.} : K].
On the other hand,

trdeg[K{y;, oy, } : K| = trdeg[K{y;,c;;} - K] = trdeg[K{y,} : K]

and analogously we obtain trdeg[K{y;,oy;} : K| = trdeg[K{oy;} : K],
which gives a contradiction. Since the matrix (¢;;) is invertible, the image
contains ¥, ...,y, and so o is surjective.

Therefore we have that o is bijective and can be extended to an auto-
morphism

oKy, ...;yn) — K1, Yn)-
O

This proposition gives that G(L|K) is a closed (in the Zariski topology)
subgroup of GL(n,C') and then a linear algebraic group (see section 8.1).

Remark 4.1 The proper closed subgroups of GL(1, (') ~ C* are finite and
hence cyclic groups. So for a homogeneous linear differential equation of
order 1 the only possible Galois groups are C* or a finite cyclic group, as we
saw directly in Example 4.2 above.

Remark 4.2 In Example 4.1 above, the element « is a solution of the non-

homogeneous linear equation Y’ —a = 0 and we saw that K C K{(«a) is a
/

a
Picard-Vessiot extension for the equation Y — —Y” = 0. More generally, we
a
can associate to the equation £(Y) = Y™ +a, Y V... ra, Y +aoY = b,
/
the homogeneous equation £(Y) = 0, where £ = (d — z)ﬁ It is easy to

check that if yy,...,y, is a fundamental set of solutions of £(Y) = 0 and
is a particular solution of L(Y) = b, then yo,y1,...,y, is a fundamental set
of solutions of L(Y) = 0.

Remark 4.3 The full universal solution algebra K[Y;;][W~!] constructed

before proposition 3.4 is clearly isomorphic, as a K-algebra, to
K ®¢ C[GL(n,C)], where C[GL(n,C)] = C[Xi1,...,Xun, 1/ det] denotes
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the coordinate ring of the algebraic group GL(n,C) (see section 8.1). If we
let GL(n,C) act on itself by right translations, i.e.

GL(n,C) x GL(n,C) — GL(n,C)
(9,h) = hg™h

the corresponding action of GL(n,C') on C|GL(n,C)] is

GL(n,C) x C[GL(n,C)] —  C[GL(n,C)]
(9, f) = pg(f) :h— f(hg)

(see section 8.4). If we take f to be the function X;; sending a matrix
in GL(n,C) to its entry ij, we have p,(X;;)(h) = Xi(hg) = (hg)i; =
2 k=1 hirGrj-

Now to an element 0 € G = G(L|K) such that o(Y;;) = > g Yk, we
associate the matrix (g;;) € GL(n,C). So the isomorphism

K[Y;][W™' — K ®cC[GL(n,C)]
Yi; = Xi—l—l,j

is also an isomorphism of G-modules.

Moreover, via the K-algebra isomorphism between K[Y;;][W~!] and
K ®¢ C[GL(n,C)] we can make GL(n,C) act on the full universal solu-
tion algebra R = K[Y;;][W™!]. Then, if P is the maximal differential ideal
of R considered in theorem 3.1, the Galois group G(L|K) can be defined as
{o € GL(n,C) : o(P) = P}. So the Galois group G(L|K) is the stabi-
lizer of the C-vector subspace P of R. Using C-bases of P and Ann(P) C
Hom(R,(C), we can write down equations for G(L|K) in GL(n,C). This
gives a second proof that G(L|K) is a closed subgroup of the algebraic group
GL(n, C).

Proposition 4.2 Let K be a differential field with field of constants C'. Let
K C L be a Picard-Vessiot extension with differential Galois group G. Let T’
be the K -algebra R/ P considered in theorem 3.1. We have an isomorphism of
K[G]-modules K @ T ~ K ®@¢ C|G], where K denotes the algebraic closure
of the field K.

Proof. We shall use two lemmas. For any field F', we denote by F[Y;;, 1/ det]

the polynomial ring in the indeterminates Yj;,1 < 4,7 < n localized with
respect to the determinant of the matrix (Y;;).
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Lemma 4.1 Let L be a differential field with field of constants C'. We con-
sider A := L[Y;;,1/det] and extend the derivation on L to A by setting
Y. =0. We consider B := C[Yj;,1/det] as a subring of L[Y;,1/det]. The
map I — TA from the set of ideals of B to the set of differential ideals of A
is a bijection. The inverse map is given by J — J N B.

Proof. Choose a basis {vs}ses, of L over C, including 1. Then {vs}ses, is
also a free basis of the B-module A. The differential ideal I A consists of the
finite sums ) Asvs with all A\, € I. Hence JAN B = 1.

We prove now that any differential ideal J of A is generated by [ = JNB.
Let {us}ses, be a basis of B over C. Any element b € J can be written
uniquely as a finite sum ) psus, with g € L. By the length [(b) we will
mean the number of subindices s with us # 0. By induction on the length of
b, we shall show that b € IA. When [(b) = 0, 1, the result is clear. Assume
[(b) > 1. We may suppose that us, = 1 for some s; € Sy and ps, € L\ C
for some sy € Sy. Then b’ = > plu, has a length smaller than {(b) and so
V' e TA. Similarly (p;'b) € TA. Therefore (p;')'b = (u;,'b) — p;'t' € TA.
Since C'is the field of constants of L, one has (y!)’ # 0 and so b € TA. O

Lemma 4.2 Let K be a differential field with field of constants C'. Let K C
L be a Picard-Vessiot extension with differential Galois group G(L|K). We
consider A := L[Y;;,1/det], B := K[Y;;,1/det]. The map I — IA from the

set of ideals of B to the set of G(L|K)-stable ideals of A is a bijection. The

inverse map s given by J — J N B.

Proof. The proof is similar to that of lemma 4.1. We have to verify that any
G(L|K)-stable ideal J of A is generated by I = J N B. Let {us}scs be a
basis of B over K. Any element b € J can be written uniquely as a finite
sum »  psus, with 1o € L. By the length [(b) we will mean the number of
subindices s with ps # 0. By induction on the length of b, we shall show
that b € TA. When [(b) = 0,1, the result is clear. Assume [(b) > 1. We
may suppose that us, = 1 for some s; € S. If all u, € K, then b € TA. If
not, there exists some sy € S with ps, € L'\ K. For any o € G, the length
of b — b is less that [(b). Thus b — b € I A. By proposition 3.7 a), there
exists a o with o, # i5,. As above, one finds o(u,'b) — p'b € TA. Then
(opgt —pg, )b = o(p'b) —ptb—o(ug,' ) (ob—b) € TA. As opy —p ! € L*,
it follows that b € IA. O
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Proof of Proposition 4.2.
We consider the K-algebra R = KY;;,1/ det] with derivation defined by

/ .
Yi=Yi1;,0<i<n-2

/
Yo 1, =~ Yn1; — - — ar1Y1; — aoYy;.

as in section 3.2. We consider as well the L-algebra L[Y;;, 1/ det] with deriva-
tion defined by the derivation in L and the preceding formulae. We consider
now the C-algebra C[X, 1/ det] where X, 1 < s,t < n are indeterminates,
det denotes the determinant of the matrix (Xj;) and recall that C[ X, 1/ det]
is the coordinate algebra C[GL(n,C)] of the algebraic group GL(n,C). We
consider the action of the group G on GL(n,C) by translation on the left,
ie.

G x GL(n,C) — GL(n,C)
(9, h) —  gh
which gives the following action of G on C[GL(n,C)]

G x C[GL(n,C)] — C[GL(n,C)]
(9. f) = A(f) s ho= flg7'h)

If we take f to be X, the action of an element ¢ of G on X; is multiplication
on the left by the inverse of the matrix of o as an element in GL(n,C). We
consider C[X, 1/ det] with this G-action and the inclusion C[Xg, 1/ det] C
L[Xg,1/det]. Now we define the relation between the indeterminates Y;;
and X to be given by (Y;;) = (7a)(Xst), where 74, are the images of the Yy,
in the quotient R/P of the ring R by the maximal differential ideal P. We
observe that the G-action we have defined on the Xj; is compatible with the
G-action on L if we take the Y;; to be G-invariant. Now, the definition of the
derivation for the Y;; and the 74 gives X!, = 0. We have then the following
rings
1 1 1 1

iy 7 . L}/i'a_:Lst_ CXsa_
j’det]C [Jdet] [ tdet]D [ tdet]

each of them endowed with a derivation and a G-action which are com-
patible with each other. Combining lemmas 4.1 and 4.2, we obtain a bi-
jection between the set of differential ideals of K[Y;;,1/det] and the set of
G(L|K)-stable ideals of C[Xg,1/det]. A maximal differential ideal of the
first ring corresponds to a maximal G(L|K)-stable ideal of the second. So,

K1Y,
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Q) = PL[Y;;,1/det] N C[Xy, 1/ det] is a maximal G(L|K)-stable ideal of the
ring C[Xg, 1/ det]. By its maximality, @ is a radical ideal and defines a sub-
variety W of GL(n, C'), which is minimal with respect to G(L|K)-invariance.
Thus W is a left coset in GL(n,C) for the group G(L|K) seen as a sub-
group of GL(n,C). Now, by going to the algebraic closure K of K, we
have an isomorphism from G to W5 and, correspondingly, an isomorphism
K ®¢ C[G] ~ K ®c C[W] between the coordinate rings.
On the other hand, we have ring isomorphisms

1

LeoxgT = Lok (K[, —]/P)
] det

7 det

and so L @x T ~ L ®@c C[W].

We then have L ®x T ~ L ®c C[W], for L the algebraic closure of L.
This corresponds to an isomorphism of affine varieties V; ~ Wy, where we
denote by V the affine subvariety of GL(n, K) corresponding to the ideal P of
K[Y;;,1/ det]. But both W and V' are defined over K and so, by proposition
7.4, we obtain V% ~ W, Coming back to the corresponding coordinate
rings, we obtain K ®x T ~ K ®¢ C[W]. Composing with the isomorphism
obtained above, we have K @ T ~ K ®¢ C[G], as desired. O

12

LY |/(PL[Yy;, ~ L®c (C[Xst,é]/@

sl

Corollary 4.1 Let K C L be a Picard-Vessiot extension with differential
Galois group G(L|K). We have

dim G(L|K) = trdeg[L : K].

Proof. The dimension of the algebraic variety G is equal to the Krull di-
mension of its coordinate ring C[G] (see section 7). It can be checked that
the Krull dimension of a C-algebra remains unchanged when tensoring by a
field extension of C'. Then proposition 4.2 gives that the Krull dimension of
C[G] is equal to the Krull dimension of the algebra T' (where T' denotes as
in proposition 4.2 the K-algebra R/P considered in theorem 3.1), which by
Noether’s normalization Lemma (proposition 7.8) is equal to the transcen-
dence degree of L over K. O
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5 Fundamental theorem

The aim of this section is to establish the fundamental theorem of Picard-
Vessiot theory, which is analogous to the fundamental theorem in classical
Galois theory.

If K C L is a Picard-Vessiot extension and F' an intermediate differential
field, i.e. K C F C L, it is clear that F' C L is a Picard-Vessiot extension
(for the same differential equation as K C L, viewed as defined over F') with
differential Galois group G(L|F) = {0 € G(L|K) : op = Idp}. If H is a
subgroup of G(L|K), we denote by L¥ the subfield of L fixed by the action
of H,ie. L ={z € L:0o(z)=x,Vo € H}. Note that L” is stable under
the derivation of L.

Proposition 5.1 Let K C L be a Picard-Vessiot extension, G(L|K) its dif-
ferential Galois group. The correspondences

Hw— L7 | Fw— G(LIF)

define inclusion inverting mutually inverse bijective maps between the set of
Zariski closed subgroups H of G(L|K) and the set of differential fields F' with
KCFCL.

Proof. Tt is clear that for Hy, Hy subgroups of G(L|K), we have H; C Hy =
L 5 LH2 and that for Fy, F, intermediate differential fields, Fy C F =
G(L|Fy) D G(L|Fy).

It is also straightforward to see that, for a subgroup H of G, we have

the equality LEEL™) = LH and, for an intermediate field F, we have
G(L|LEHR)Y = G(LIF).
We have to prove that LEUF) = F for each intermediate differential

field F of K C L and H = G(L|L") for each Zariski closed subgroup H of
G(L|K). The first equality follows from the fact observed above that F' C L
is a Picard-Vessiot extension and corollary 3.4. For the second equality, it
is clear that if H is a subgroup of G(L|K), the elements in H fix L7 el-
ementwise. We shall prove now that, if H is a subgroup (not necessarily
closed) of G = G(L|K), then H' := G(L|L") is the Zariski closure of H in
G. Assume the contrary, i.e. that there exists a polynomial f on GL(n,C')
(where C' = Ck and L|K is a Picard-Vessiot extension for an order n dif-
ferential equation) such that fijz = 0 and figr # 0. If L = K(y1,...,Yn),
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we consider the matrices A = (y](i))ogign,l’lgjgn,B = (ugi))oggn,l,lggn,
where uq,...,u, are differential indeterminates. We let the Galois group
act on the right, i.e we define the matrix M, of 0 € G(L|K) such that
(e(y1),...,0(Un)) = (y1,...,yn)M,. We note that, as W(y1,...,y,) # 0,
the matrix A is invertible and we define the polynomial F'(uq,...,u,) =
f(A7'B) € L{uy,...,u,}. It has the property that F(c(y1),...,0(y,)) =0,
for all ¢ € H but not all ¢ € H'. Assume we are taking F' among all poly-
nomials with the preceding property having the smallest number of nonzero
monomials. We can assume that some coefficient of F'is 1. For 7 € H, let
TF be the polynomial obtained by applying 7 to the coefficients of F'. Then
(TF)(o(y1),...,0(yn) = T(F((t7 o (y1), ..., 7 ro(yn))) =0, for all 0 € H.
So, F'—7F is shorter than I and vanishes for (o(y;),...,0(y,)) forallo € H.
By the minimality assumption, it must vanish for (o(y1),...,0(yy,)), for all
o € H'. If F— 7F is not identically zero, we can find an element a € L
such that F'— a(F — 7F) is shorter than F' and has the same property as F'.
So F'— 7F =0, for all 7 € H, which means that the coefficients of F' are
H-invariant. Therefore, F' has coefficients in L# = L¥'. Now, for ¢ € H',

F<O-(y1)7 s ,U(yn)) = (O-F)<O-(y1)7 s ,U(yn)) = U(F<y17 s ,yn)) = 0. This
contradiction completes the proof. O

Proposition 5.2 Let K C L be a differential field extension with differential
Galois group G = G(L|K).
a) If H is a normal subgroup of G, then L¥ is G-stable.

b) If F is an intermediate differential field of the extension, which is G-
stable, then G(L|F) is a normal subgroup of G. Moreover the restriction
morphism

G(LIK) — G(F|K)

o — oF

induces an isomorphism from the quotient G/G(L|F) into the group of all
differential K-automorphisms of F' which can be extended to L.

Proof. a) For 0 € G, a € L¥, we want to see that ca € LY. If 7 € H, we
have 70a = 0a < o '70a = a and this last equality is true as a € L and
o~ 'ro € H, by the normality of H.
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b) To see that G(L|F') is normal in G, we must see that for 0 € G, 7 €
G(L|F), o7 70 belongs to G(L|F), i.e. it fixes every element a € F. Now
o~ l70a = a & Toa = oa and this last equality is true since ca € F because
F'is G-stable. Now as F'is G-stable, we can define a morphism ¢ : G(L|K) —
G(F|K) by 0 — ojp. The kernel of ¢ is G(L|F') and its image consists of
those differential K-automorphisms of I which can be extended to L. O

Definition 5.1 We shall call an extension of differential fields X' C L normal
if for each = € F'\ K, there exists an element 0 € G(L|K) such that o(z) # x.

Proposition 5.3 Let K C L be a Picard-Vessiot extension, G := G(L|K)
its differential Galois group.

a) Let H be a closed subgroup of G. If H is normal in G, then the differential
field extension K C F := L¥ is normal.

b) Let F be a differential field with K C F C L. If K C F is a Picard-
Vessiot extension, then the subgroup H = G(L|F) is normal in G(L|K).
In this case, the restriction morphism

G(LIK) — G(F|K)

o = o
induces an isomorphism G(L|K)/G(L|F) ~ G(F|K).

Proof. a) By proposition 3.7, for x € F'\ K, there exists o € G such that
ox # x. By proposition 5.2 a), we know that F' is G-stable, hence o|p is an
automorphism of F.
b) By corollary 3.2, F' is G-stable. Then by proposition 5.2 b), H = G(L|F)
is a normal subgroup of G = G(L|K).

For the last part, taking into account proposition 5.2 b), it only remains to
prove that the image of the restriction morphism is the whole group G(F|K)
which comes from proposition 3.7 b). O

The next proposition establishes the more difficult part of the Fundamen-
tal Theorem, namely that the intermediate field F' corresponding to a normal
subgroup of GG is a Picard-Vessiot extension of K. This result is not proved
in Kaplansky’s book [K], which refers to a paper by Kolchin [Kol]. In fact,
Kolchin establishes the fundamental theorem for strongly normal extensions
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and characterizes Picard-Vessiot extensions as strongly normal extensions
with a linear algebraic group. Our proof is inspired in [P-S] and [Z] but not
all details of it can be found there. The proof given in [M] uses a different

algebra T'.

Proposition 5.4 Let K C L be a Picard-Vessiot extension, G(L|K) its dif-
ferential Galois group. If H is a normal closed subgroup of G(L|K), then the
extension K C L* is a Picard-Vessiot extension.

Proof. Let us explain first the idea of the proof. Assume that we have a
finitely generated K-subalgebra T' of L satisfying the following conditions.

a) T is G-stable and its quotient field Qt(T") is equal to L,

b) for each t € T, the C-vector space generated by {ot : 0 € G} is finite
dimensional,

c) the subalgebra TH = {t € T : ot = t, Vo € H} is a finitely generated
K-algebra,

d) F:= L is the quotient field Qt(T#) of T*.

With all these assumptions, let us prove that 77 is generated over K
by the space of solutions of a homogeneous linear differential equation with
coefficients in K. First let us observe that, as H < G, TH is G-stable, i.e.
7(TH) = TH for all 7 € G. Indeed, let t € T 7 € G. We want to see that
7t € TH. For 0 € H, we have o7t = 7t & (77 'o7)t = t and the last equality
is true as the normality of H implies 7-'o7 € H. Thus T" is a G-stable
subalgebra of T and the restriction of the action of G to T gives an action
of the quotient group G/H on TH.

We now take a finite-dimensional subspace V; C T# over C which gen-
erates T as a K-algebra and which is G-stable. Note that such a V exists

by conditions b) and ¢). Let z1, ..., z, be a basis of V}, then the wronskian
W(z1,...,2m) is not zero. The differential equation in Z
W(Z,z,....2m) 0
Wz, 2m)

is satisfied by any z € V;. Now, by expanding the determinant in the nu-
merator with respect to the first column, we see that each coefficient of the

34



equation is a quotient of two determinants and that all these determinants
are multiplied by the same factor det oy, under the action of the element
o € G. So these coefficients are fixed by the action of G and so, by using
corollary 3.4, we see that they belong to K. Thus T# = K(V}), where V}
is a space of solutions of a linear differential equation with solutions in K.
Therefore F = L7 = Qt(TH) is a Picard-Vessiot extension of K.

Let T now be the K-algebra R/P considered in the construction of the
Picard-Vessiot extension (see theorem 3.1). We shall prove that T satisfies
the conditions stated above.

a) By construction G acts on T" and the quotient field Qt(T") of T is equal
to L.

b) Taking into account remark 4.3, we can apply lemma 8.3a) and obtain
that the orbit of an element ¢ € T' by the action of G generates a finite
dimensional C-vector space.

¢) We consider the isomorphism of G-modules given by proposition 4.2 and
restrict the action to the subgroup H. The group H acts on both K @ T
and K ®¢ C [G] by acting on the second factor. We then have K @ TH ~
K ®¢ C[G]H. By proposition 8.10, C[G]# ~ C[G/H] as C-algebras. Now
C[G/H] is a finitely generated C-algebra and so K ®x T is a finitely
generated K-algebra. Now we apply the following two lemmas to obtain
that T is a finitely generated K-algebra.

Lemma 5.1 Let K be a field, K an algebraic closure of K, A a K-
algebra. If K ®@x A is a finitely generated K -algebra, then there exists a
finite extension K of K such that K®k A is a finitely generated K- algebra.

Proof. Let {v,}scs be a K-basis of K and let {\; ® a;}=1.., generate
K ®k A as a K-algebra. If we write down the elements ); in the K-basis
of K, only the v/s with s in some finite subset S’ of S are involved. We
take K = K({vs}sesr). Then the elements {vs ® a;}sesri=1,...n generate
K ®Kr Aasa [?—algebra. O

Lemma 5.2 Let K be a field, A a finitely generated K -algebra and let U
be a finite group of automorphisms of A. Then the subalgebra AV = {a €
A:oa=a,Vo € U} of A is a finitely generated K-algebra.
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Proof. For each element a € A, let us define

1
S(a) = NZO'(I, where N = |U],

oceU

and let us consider the polynomial

P(T) = [[(T = 0a) =T" + Z(—l)iaiTN_i.

oceU

The coefficients a; are the symmetric functions in the roots of P,(7")
and by the Newton formulae can be expressed in terms of the S(a'),i =
1,...,N. Let uy,...,u, now generate A as a K-algebra. We consider the
subalgebra B of AV generated by the elements S(ui),z =1,...,m,j =
1,...,N. We have P, (u;) = 0 and so ul can be written as a linear
combination of 1,... ,uZN ~1 with coefficients in B. Hence each monomial
ui' ... u%m can be written in terms of monomials ui* ... u%" with a; < N
and coefficients in B. Therefore each element a € A can be written in the

form

a= Z CayamUl - up™ with a4, € B.

a; <N
Now, if a € AY, we have
a=5(0) = Y Paran S . uip).
a; <IN

Thus AY can be generated over K by the finite set

{S(ullll N 'ume)}ai<N U {S(UiN)}i:I,..A,m~
O

Now by applying lemma 5.1 to K ®x T, we obtain that K @k T is a
finitely generated K-algebra for some finite extension K C K and then
also a finitely generated K-algebra. Now we can assume that the extension
K C K is normal and consider the Galois group U = Gal(K|K) acting
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on K ® x A on the left factor. By applying lemma 5.2, we can conclude
that TH ~ K@ TH ~ KY @ T? ~ (K @k TH)Y is a finitely generated
K-algebra.

We prove now that L is the quotient field of TH.

Let a € L# \ {0}. We want to write a as a quotient of elements in
TH. We consider the ideal J = {t € T : ta € T} of denominators of
a. Since a is H-invariant, J is H-stable, i.e. HJ = J. Let s € J \ {0}.
Taking into account remark 4.3, we can apply lemma 8.3a) and obtain
that the elements 7s,7 € H generate a finite dimensional vector space
E over C. Let sq,...,5, be a basis of £ and w = W(sy,...,s,) be the
wronskian. By expanding the determinant with respect to the first row,
we see that w € J. We have 7w = det(r)g) - w, for all 7 € H. We note
that 7 +— det(7z) defines a character x of H, i.e. an algebraic group
morphism y : H — G,,(C), where G,, denotes the multiplicative group.
We say that w is a semi-invariant with weight x (see section 8.8). Let
t = wa. It belongs to T', because w € J, and is a semi-invariant with the
same weight as w, because a is H-invariant. So a can be written as t/w the
quotient of two semi-invariants. If we find a semi-invariant u with weight
1/x, then we would have a = (tu)/(wu) the quotient of two invariants as
desired. We consider the subalgebra of T" consisting of the semi-invariants
of weight 1/x, that is Ty, = {t € T : 7t =t/x(7), V7 € H}. We want to
prove T3/, # 0.

To this end, we first consider the action of H on the coordinate ring C|[G]
of the algebraic group G and prove C[G], # 0, for each character 7 of
H. Let us denote X (H) the character group of the group H. Let H,
be the intersection of the kernels of all characters of H. It is a normal
subgroup of H and contains the commutator subgroup of H, so H/Hy is
commutative. By theorem 8.2, H/H, is isomorphic to the direct prod-
uct of its closed subgroups (H/Hy)s = {h € H/Hy : h is semisimple}
and (H/Hy), = {h € H/Hy : his unipotent}. We recall that an ele-
ment x € GL(n,C) is called nilpotent if ¥ = 0 for some k € N, unipo-
tent if it is the sum of the identity element and a nilpotent element,
semisimple if it is diagonalizable over C'. By lemma 8.8, (H/Hy),, is con-
jugate to a subgroup of the upper triangular unipotent group U(n,C).
Hence a nontrivial character of (H/Hy), would give a nontrivial char-
acter of the additive group G,(C), but G,(C) does not have nontrivial
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characters (see section 8.8), so (H/Hy), does not have nontrivial char-
acters either. We then have X(H) = X(H/Hy) = X((H/Hy)s). We
write H' for (H/Hy)s. If n is a character of H', we have n € C[H'|
and moreover, for each x,y € H', we have (z.n)(y) = n(zy) = n(x)n(y)
which gives x.n = n(x)n, so n is a semi-invariant of weight n and we get
C[H'], # 0. Now the inclusion H' — G/H, corresponds to an epimor-
phism between the coordinate rings 7 : C|G/Hy| — C[H']. We want to
see that mcia/m), © ClG/Hol, — C[H'], is also an epimorphism. Let a be
a nonzero element in C[H'],. Let a € C[G/Hy| such that m(a) = a. By
lemma 8.3a), there exists a finite dimensional H’-stable subspace E; of
C|G/Hy| containing o. As H' is semisimple and commutative, it is diag-
onalizable, i.e. conjugate in the general linear group to a subgroup of the
group of diagonal matrices (cf. lemma 8.8). Therefore the representation
of H on E; diagonalizes in a certain basis aq,- -, a,. We can choose it
such that aq,---,qq, with [ < p are a basis of E; N Kerw. We have a =

> gioy = (a) = 370 em(T)ay, then w(r(a)) = >0, eymy(T)m(ay)
and, on the other hand, 7(7(a)) = 7(7(a)) = 7(a) = n(7) 3_7_, ¢jm ().
We have ¢; # 0 for some j > [ and so n;(7) = n(7) which gives that «; is
a semi-invariant with weight 7. We then obtain 0 # C[G/H,),, C C[G],.

Now we consider again the isomorphism of G-modules given by proposi-
tion 4.2 with action restricted to the subgroup H. As the group H acts
on both K @ T and K ®¢ C[G] by acting on the second factor, we have
ClGlix # 0= (K ®c ClGyy # 0 = (K @k Ty # 0= Ty # 0.
To obtain the last implication, we use the fact that if t € K @ T, we
have t € K @k T, for some finite extension K of K. We can assume
that K C K is a normal extension and take U = G(K|K). Then, if
t e (K @k T)h /v, the element ot is a semi-invariant with weight
1/x (as H acts in K®rT by acting on the right factor and U by acting
on the left factor, both actions commute) and belongs to K @y T~ T.

O

Now, propositions 5.1, 5.3 and 5.4 together establish the fundamental
theorem of Picard-Vessiot theory.

Theorem 5.1 (Fundamental Theorem) Let K C L be a Picard-Vessiot
extension, G(L|K) its differential Galois group.
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1. The correspondences

Hw— L" | Fw— G(LIF)

define inclusion inverting mutually inverse bijective maps between the
set of Zariski closed subgroups H of G(L|K) and the set of differential
fields F with K C F' C L.

2. The intermediate differential field F' is a Picard-Vessiot extension of K
if and only if the subgroup H = G(L|F) is normal in G(L|K). In this
case, the restriction morphism

GLK) — G(FIK)

o — O|F

induces an isomorphism G(L|K)/G(L|F) ~ G(F|K).

39



40



6 Liouville extensions

The aim of this section is to characterize linear differential equations solv-
able by quadratures. This is the analogue of characterization of algebraic
equations solvable by radicals.

6.1 Liouville extensions

Definition 6.1 A differential field extension K C L is called a Liouville
extension if there exists a chain of intermediate differential fields K = F; C
F, C --- C F, = L such that F;;; = F;(oy;), where each «; is either a
primitive element over Fj, i.e. o) € F;, or an exponential element over Fj,
ie. of/a; € F;.

Proposition 6.1 Let L be a Liouville extension of the differential field K,
having the same field of constants as K. Then the differential Galois group
G(L|K) of L over K is solvable.

Proof. We assume that the extension K C L has a chain of intermediate
differential fields as in definition 6.1. From examples 4.1 and 4.2, we obtain
that K C Fy is a Picard-Vessiot extension with commutative differential
Galois group. By corollary 3.2, every K-differential automorphism of L sends
F; onto itself. By proposition 5.2 b), G(L|F») is a normal subgroup of G(L|K)
and G(L|K)/G(L|Fy) is a subgroup of G(F,|K), hence commutative. By
iteration, we obtain that G(L|K) is solvable. O

The next proposition is the first step for a converse of proposition 6.1. In
fact we shall consider generalized Liouville extensions, admitting also alge-
braic extensions as constructing blocks.

Proposition 6.2 Let K C L be a normal extension of differential fields. As-
sume that there exist elements uq,...,u, € L such that for every differential
automorphism o of L we have

(3) Ouj = @y AU aguy, g =10,

with a;; constants in L (depending on o). Then K(us, ..., u,) is a Liouville
extension of K.
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Proof. The first of the equations (3) is ou; = aj;u;. Differentiating, we obtain
ouy = apu) and so u)/u; is invariant under each o (we can assume u; # 0
for otherwise it could simply be suppressed). By the normality of K C L,
we obtain u}/u; € K. Hence the adjunction of u; to K is the adjunction
of an exponential. Next we divide each of the next n — 1 equations by the
equation ou; = ajju; and differentiate. The result is

/ / / /
J Jj j—1,7 J Jj J
U(—)——(—)+-~~+— —_ + === .
U a1 \U1 a11 Uy ail U

This is a set of equations of the same form as (3) in the elements (u;/u;)’,
with j = 2,...,n. By induction on n, the adjunction of (u;/u;) to K yields
a Liouville extension. Then adjoining u;/u; themselves means adjoining
integrals. a

6.2 Generalized Liouville extensions

Definition 6.2 A differential field extension K C L is called a generalized
Liouwville extension if there exists a chain of intermediate differential fields
K=F CF,C--CF,= Lsuch that F;;; = F;{«;), where each «; es
either a primitive element over F;, or an exponential element over F;, or is
algebraic over Fj.

Theorem 6.1 Let K be a differential field with algebraically closed field of
constants C. Let L be a Picard-Vessiot extension of K. Assume that the
identity component Gy of G = G(L|K) is solvable. Then L can be obtained
from K by a finite normal extension, followed by a Liouville extension.

Proof. Let F = L%. We know by proposition 8.1 that Gy is a normal
subgroup of G of finite index. Then K C F' is a finite normal extension
and G(L|F) ~ Gy. Then by theorem 8.3, we can apply proposition 6.2 and
obtain that F' C L is a Liouville extension. a

To prove an inverse to this theorem we shall use the following lemma.

Lemma 6.1 Let K be a differential field with algebraically closed field of
constants C. Let L be a Picard-Vessiot extension of K. Let L1 = L(z) be an
extension of L with no new constants. Write K1 = K(z). Then Ky C Ly is
a Picard-Vessiot extension and its differential Galois group is isomorphic to

G(L|ILN Ky).
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Proof. 1t is clear that K; C L; is a Picard-Vessiot extension as both fields
have the same field of constants and the extension is generated by the solu-
tions of the differential equation associated to the Picard-Vessiot extension
K C L. By corollary 3.2, any K-differential automorphism of L; sends L
onto itself. Thus restriction to L gives a morphism ¢ : G(L1|K,) — G(L|K).
An automorphism of L; in Kery fixes both K; and L and so is the iden-
tity. Hence ¢ is injective and G(L1|K;) is isomorphic to a closed subgroup
of G(L|K). The corresponding intermediate field of the extension K C L is
LN K, and by the fundamental theorem 5.1 we get G(L,|K;) ~ G(L|LNK;).
O

Theorem 6.2 Let K be a differential field with algebraically closed field of
constants C'. Let L be a Picard-Vessiot extension of K. Assume that L
can be embedded in a differential field M which is a generalized Liouville
extension of K with no new constants. Then the identity component Go of
G = G(L|K) is solvable (whence by theorem 6.1, L can be obtained from K
by a finite normal extension, followed by a Liouville extension).

Proof. ~ We make an induction on the number of steps in the chain from
K to M. Let K(z) be the first step. Then, by induction, the differential
Galois group of L(z) over K (z) has a solvable component of the identity. By
lemma 6.1, this group is isomorphic to the subgroup H of G corresponding
to LN K(z). Assume that z is algebraic over K. Then, H has finite index in
G. In this case, by proposition 8.1, GY = H, hence solvable. If z is either an
integral or an exponential, by examples 4.1 and 4.2, K (z) is a Picard-Vessiot
extension of K with commutative Galois group. Thus all differential fields
between K and K(z) are normal over K. In particular, L N K(z) is normal
over K with a commutative differential Galois group. Thus H is normal in
G with G/H commutative. So by lemma 8.10, the identity component G° of
G is solvable. a
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7 Appendix on algebraic varieties

In this appendix, we gather some topics on algebraic varieties which are
used in the Picard-Vessiot theory, and develop them as far as possible using
an elementary approach. For the proofs of the results and more details on
algebraic geometry we refer the reader to [Hul, [Kl] and [Sp].

In this section C' will denote an algebraically closed field.

7.1 Affine varieties

The set C" = C' x --- x C' will be called affine n-space and denoted by A™.
We define an affine variety as the set of common zeros in A" of a finite
collection of polynomials. To each ideal I of C[Xjy, ..., X,] we associate the
set V(1) of its common zeros in A". By Hilbert’s basis theorem, the C-algebra
C[X3,...,X,] is Noetherian, hence each ideal of C[Xjy, ..., X,] has a finite
set of generators. Therefore the set V(I) is an affine variety. To each subset
S C A" we associate the collection Z(S) of all polynomials vanishing on S.
It is clear that Z(S) is an ideal and that we have inclusions S C V(Z(95)),
I € Z(V(I), which are not equalities in general. We define the radical v/T of
an ideal I by

VI = {f(X)€eC[Xy,...,Xn]: f(X)" €1 for some r > 1}.

It is an ideal containing I. A radical ideal is an ideal equal to its radical.
We can easily see the inclusion vI € T (V(I)). Equality is given by the next
theorem.

Theorem 7.1 (Hilbert’s Nullstellensatz) If I is any ideal in C[ X1, ..., X,],
then

VI=TIW(I)).

As a consequence, we have that V and Z set a bijective correspondence
between the collection of all radical ideals of C'[X7, ..., X,,| and the collection
of all affine varieties of A™.

The following proposition is easy to prove.

Proposition 7.1 The correspondence V satisfies the following equalities:

a) A" =V(0),0 =V(C[Xy,...,X,]),
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b) If I and J are two ideals of C[X1,..., X,], V(I)UV(J)=V(INJ),

c) If 1, is an arbitrary collection of ideals of C[X1,..., X,], NaV (1) =
V(O o, la)-

We have then that affine varieties in A" satisfy the axioms of closed sets
in a topology. This is called Zariski topology. Hilbert’s basis theorem implies
the descending chain condition on closed sets and therefore the ascending
chain condition on open sets. Hence A" is a Noetherian topological space.
This implies that it is quasicompact. However the Hausdorff condition fails.

Recall that a topological space X is said to be irreducible if it cannot
be written as the union of two proper, nonempty, closed subsets. Recall as
well that a Noetherian topological space X can be written as a union of its
irreducible components, i.e. its finitely many maximal irreducible subspaces.

Proposition 7.2 A closed set V in A" is irreducible if and only if its ideal
Z(V) is prime. In particular, A™ itself is irreducible.

Proof.  Write I = Z(V). Suppose that V is irreducible and let fi, fo €
C[X1,...,X,] such that fifs € I. Then each z € V is a zero of f; or fs,
hence V' C V(I;) UV(I3), for I; the ideal generated by f;,i = 1,2. Since V is
irreducible, it must be contained within one of these two sets, i.e. f; € I or
fo €I, and [ is prime.

Reciprocally, assume that [ is prime but V = V; U V5, with Vi, V5 closed
in V. If none of the V;’s covers V', we can find f; € Z(V;) but f; & I, i =1,2.
But fifs vanish on V| so fifs € I, contradicting that [ is prime. a

A principal open set of A™ is the set of nonzeros of a single polynomial.
We note that principal open sets are a basis of the Zariski topology. We
recall that a subspace of a topological space is irreducible if and only if its
closure is. The closure in the Zariski topology of a principal open set is the
whole affine space. Hence, as A" is irreducible, we obtain that principal open
sets are irreducible.

If V is closed in A™, each polynomial f(X) € C[Xy,...,X,] defines a
C-valued function on V. But different polynomials may define the same
function. It is clear that we have a 1-1 correspondence between the distinct
polynomial functions on V' and the residue class ring C[Xy,..., X,]/Z(V).

46



We denote this ring by C[V] and call it the coordinate ring of V. Tt is
a finitely generated algebra over C' and is reduced (i.e. without nonzero
nilpotent elements) because Z(V) is a radical ideal. If V' is an affine variety,
f € C[V], we define V; := {P € V : f(P) # 0} which is clearly an open
subset of V.

If V is irreducible, equivalently if Z(V) is a prime ideal, C[V] is an integral
domain. We can then consider its field of fractions C'(V'), which is called
function field of V. Elements f € C(V) are called rational functions on V.
Any rational function can be written f = g/h, with g, h € C[V]. In general,
this representation is not unique. We can only give f a well defined value at
a point P if there is a representation f = g/h, with h(P) # 0. In this case
we say that the rational function f is reqular at P. The domain of definition
of f is defined to be the set

dom(f)={P €V :f isregular at P}.

Proposition 7.3 Let V be an irreducible variety. For a rational function
f e C(V), the following hold

a) dom(f) is open and dense in V.
b) dom(f) =V & feC[V].

c) If h € C[V] and V}, :== {P € V : h(P) # 0}, then dom(f) DV, < f €
CIV][1/h].

Part b) of the above proposition says that the polynomial functions are
precisely the rational functions that are ”everywhere regular”.

The local ring of V at a point P € V is the ring

{feC(V): fisregular at P}.

It is isomorphic to the ring C[V]sn, obtained by localizing the ring C[V] at
the maximal ideal Mp = {f € C[V]: f(P) = 0}. This is indeed a local ring,
i.e. it has a unique maximal ideal, namely 9 pC[V]on, .

We shall see now that a principal open set can be seen as an affine variety.
If Vi = {& € A" : f(z) # 0}, for some f € C[Xy,...,X,], the points

of V} are in 1-1 correspondence with the points of the closed set of A™!:
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{(1,...,zn, xns1) = f(z1,...,20) Tppr — 1 = 0}, hence V; has an affine
variety structure and its coordinate ring is C[Vy] = C[Xy,..., X, 1/f], i.e.
the ring C[Xj, ..., X,] localized in the multiplicative system of the powers
of f(X).

More generally, for V' an affine variety, f € C[V], the algebra of regular
functions on the principal open set Vy :={z € V : f(x) # 0} is the algebra
C[V]y, i.e. the algebra C[V] localized in the multiplicative system {f"/n >

0}.

Now let V. C A™ W C A™ be arbitrary affine varieties. A morphism

¢V — W is a mapping of the form ¢(z1,...,2,) = (v1(x),...,om(x)),
where ¢; € C[V]. A morphism ¢ : V' — W is continuous for the Zariski
topologies involved. Indeed if Z C W is the set of zeros of polynomial
functions f; on W, then ¢~1(Z) is the set of zeros of the functions f; o ¢ on
V. With a morphism ¢ : V' — W, an algebra morphism ¢* : C[W] — C[V]is
associated, defined by ¢*(f) = fop. If ¢ : V — W is a morphism for which
©(V) is dense in W, then ¢* is injective. The morphism ¢ : V' — W is an
isomorphism if there exists a morphism ¢ : W — V such that ¢ o p = Idy
and ¢ o 1) = Idy, or equivalently ¢* : C[W] — C[V] is an isomorphism
of C-algebras (with its inverse being 1*). We say that the varieties V, W
defined over the same field C' are isomorphic if there exists an isomorphism
p:V-=W.
If V is an algebraic variety defined over C' and L is a field containing C, we
shall denote by V7, the variety obtained from V' by extending scalars to L.
The coordinate ring of V7, is L[V] = L&C[V]. It is clear that if V, W are affine
varieties defined over C, we have V ~ W = V; ~ W;. The next proposition
gives the converse of this implication for algebraically closed fields.

Proposition 7.4 Let K, L be algebraically closed fields, K C L. Let V,W be
affine algebraic varieties defined over K. Let Vi, W, be the varieties obtained
from V. W by extending scalars to L. If Vi, and W, are isomorphic, then V
and W are isomorphic.

Proof. As the statement "V and W are isomorphic” can be written in the
first order language of the theory of fields, the proposition follows from the
fact that the theory of algebraically closed field is model complete (see [F-J]
Corollary 8.5). O
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We will often need to consider maps on an affine variety V' which are not
everywhere defined, so we introduce the following concept.

Definition 7.1 a) A rational map ¢ : V. — A™ is an n-tuple (¢1, ..., ¢n) of
rational functions ¢, ..., @, € C(V). The map ¢ is called regular at a point
P of V if all ¢; are regular at P. The domain of definition dom(yp) is the set
of all regular points of ¢, i.e. dom(yp) = N, dom(y;).

b) For an affine variety W € A" a rational map ¢ : V. — W is a rational
map ¢ : V — A" such that ¢(P) € W for all regular points P € dom(y).

Proposition 7.5 Let ¢ : V. — W a morphism of varieties. Then (V)
contains a nonempty open subset of its closure (V).

Given a rational map ¢ : V. — W, it is not always possible to define a
morphism ¢* : C(W) — C(V) given by ¢*(f) = foe. In order to determine
when this is possible, we introduce the following concept.

Definition 7.2 A rational map ¢ : V' — W is called dominant if p(dom(p))
is a Zariski dense subset of W.

Proposition 7.6 For irreducible affine varieties V- and W, the following
hold.

a) Every dominant rational map ¢ : V. — W induces a C-linear morphism

" C(W) — C(V).

b) If f . C(W) — C(V) is a C-linear morphism, then there exists a unique
dominant rational map ¢ : V. — W with f = ¢*.

c) If o: V—W and ¢ : W — X are dominant, then oy :V — X is also
dominant and (1 o p)* = @* o *.

Definition 7.3 Let V,W be irreducible affine varieties. A rational map
¢ V. — W is called birational (or a birational equivalence) if there is a
rational map ¢ : W — V with p oty = Idy and ¢ o ¢ = Idy.

Definition 7.4 Two irreducible varieties V' and W are said to be birationally
equivalent if there is a birational equivalence ¢ : V' — W.

Proposition 7.7 Let V,W be irreducible affine varieties. For a rational
map @ : V. — W, the following statements are equivalent.
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a) ¢ is birational.
b) ¢ is dominant and ¢* : C(W) — C(V) is an isomorphism.

c) There are open sets Vo C V' and Wy C W such that the restriction O
Vo — Wy is an isomorphism.

7.2 Abstract affine varieties

We have considered so far affine varieties as closed subsets of affine spaces.
We shall see now that they can be defined in an intrinsic way (i.e. not
depending on an embedding in an ambient space) as topological spaces with
a sheaf of functions satisfying adequate conditions.

Definition 7.5 A sheaf of functions on a topological space X is a function
F which assigns to every nonempty open subset U C X a C-algebra F(U)
of C-valued functions on U such that the following two conditions hold:

a) If U C U’ are two nonempty open subsets of X and f € F(U’), then the
restriction fiy belongs to F(U).

b) Given a family of open sets U, i € I, covering U and functions f; € F(U;)
for each ¢ € I, such that f; and f; agree on U;NUj, for each pair of indices
i,7, there exists a function f € F(U) whose restriction to each U; equals

fi-

Definition 7.6 A topological space X together with a sheaf of functions
Ox is called a geometric space. We refer to Ox as the structure sheaf of the
geometric space X.

Definition 7.7 Let (X, Ox) and (Y, Oy) be geometric spaces. A morphism

¢ (X,0x) — (Y,0)

is a continuous map ¢ : X — Y such that for every open subset U of Y and
every f € Oy (U), the function ¢*(f) = f o ¢ belongs to Ox (o 1 (U)).

Remark 7.1 We shall often denote the morphism ¢ : (X,0x) — (Y, Oy)
by ¢ : X =Y.
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Example 7.1 Let X be an affine variety. To each nonempty open set U C X
we assign the ring Ox(U) of regular functions on U. Then (X,0Ox) is a
geometric space. Moreover the two notions of morphism agree.

Let (X, Ox) be a geometric space and Z be a subset of X with induced
topology. We can make Z into a geometric space by defining Oz(V') for an
open set V' C Z as follows: a function f : V — C is in Og(V) if and only
if there exists an open covering V' = U;V; in Z such that for each i we have
fivi = gipy, for some g; € Ox(U;) where U; is an open subset of X containing
V.. It is not difficult to check that Oy is a sheaf of functions on Z. We will
refer to it as the induced structure sheaf and denote it by Ox|z. Note that
if Z is open in X then a subset V' C Z is open in Z if and only if it is open
in X, and Ox (V) = Oz(V).

Let X be a topological space and X = U;U; be an open cover. Given
sheaves of functions Oy, on U; for each ¢, which agree on each U; N U;, we
can define a natural sheaf of functions Ox on X by gluing the Oy, . Let U
be an open subset in X. Then Ox(U) consists of all functions on U, whose
restriction to each U N U; belongs to Oy, (U NU;).

Let (X,Ox) be a geometric space. If x € X we denote by v, the map
from functions on X to C' obtained by evaluation at x:

Definition 7.8 A geometric space (X, Ox) is called an abstract affine va-
riety if the following three conditions hold.

a) Ox(X) is a finitely generated C-algebra, and the map from X to the
set Home(Ox(X),C) of C-algebra morphisms defined by z — v, is a
bijection.

b) For each f € Ox(X), f # 0, the set

Xp={reX: f(x)#0}
is open, and every nonempty open set in X is a union of some Xy’s .

c) Ox(Xy) = Ox(X)y, where Ox(X); denotes the C-algebra Ox(X) local-
ized at f.
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Remark 7.2 It can be checked that affine varieties with sheaves of regular
functions are abstract affine varieties. We claim that, conversely, every ab-
stract affine variety is isomorphic (as a geometric space) to an affine variety
with the sheaf of regular functions. Indeed, let (X, Ox) be an abstract affine
variety. Since Ox(X) is a finitely generated algebra of functions, we can
write Ox(X) = C[X}, ..., X,]/I for some radical ideal I. By the property
a) of abstract affine varieties and the Nullstellensatz (theorem 7.1), we can
identify X with V(1) as a set, and Ox(X) with the ring of regular functions
on V(I). The Zariski topology on V(I) has the principal open sets as its base,
so it now follows from b) that the identification of X and V(I) is a homeo-
morphism. Finally, by ¢), Ox(Xy) and the ring of regular functions on the
principal open set X are also identified. This is enough to identify Ox(U)
with the ring of regular functions on U for any open set U, as regularity is a
local condition.

The preceding argument shows that the affine variety can be recovered
completely from its algebra Ox(X) of regular functions, and conversely.

Example 7.2 In view of remark 7.2, a closed subset of an abstract affine
variety is an abstract affine variety (as usual, with the induced sheaf).

7.3 Auxiliary results

We shall now define the product of two affine varieties. If VC A" W C A™
are closed subsets, then V' x W C A" x A™ = A" is clearly a closed set,
hence the cartesian product of two affine varieties is an affine variety. We

have an isomorphism C[V x W] ~ C[V] & C[W].

We shall introduce now the notion of dimension of an affine variety. If X
is a topological space, we define the dimension of X to be the supremum of
all integers n such that there exists a chain Zy C Z; C --- C Z, of distinct
irreducible closed subsets of X. We define the dimension of an affine variety
to be its dimension as a topological space. For example dim A" = n. Clearly
the dimension of an affine variety is the maximum of the dimensions of its
irreducible components. For a ring A, we define the Krull dimension of A to
be the supremum of all integers n such that there exists a chain Py C P, C
--+ C P, of distinct prime ideals of A. If V' C A™ is an affine variety, by
proposition 7.2, irreducible closed subsets of V' correspond to prime ideals
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of C[Xy,...,X,] containing Z(V) and these in turn correspond to prime
ideals of C[V]. Hence the dimension of V' is equal to the Krull dimension
of its coordinate ring C[V]. Now by Noether’s normalization lemma below
(proposition 7.8), if V' is irreducible, the Krull dimension of C[V] is equal
to the transcendence degree trdeg[C(V) : C] of the function field C(V') of V'
over C.

Proposition 7.8 (Noether’s normalization Lemma) Let C' be an arbi-
trary field, R a finitely generated integral domain over C' with quotient field
F, d = trdeg[F : C]. Then there exist elements y1,...,yqs € R, algebraically
independent over C' such that R is integral over Clyy,. .., Yal.

A subset of a topological space X is called locally closed if it is the inter-
section of an open set with a closed set. A finite union of locally closed sets
is called a constructible set.

Theorem 7.2 (Chevalley’s theorem) Let ¢ : V — W be a morphism of
varieties. Then ¢ maps constructible sets to constructible sets. In particular,
©(V') is constructible in W.

We now define the tangent space of an affine variety at a point. If
V' is an affine variety in A" defined by polynomials f(Xy,...,X,), = =
(x1,...,x,) a point in V, we define the tangent space to V at the point
x as the linear variety Tan(V'), C A" defined by the vanishing of all d,f =
Yo (0f)0X)(x)(X;—ay), for f € Z(V). If M, is the maximal ideal of C[V]
consisting of the functions vanishing at z, we have C[V]/9M, ~ C, hence
M, /M2 is a C-vector space. It can be proved that Tan(V), ~ (9M,/9M2)*,
where * denotes the dual vector space, i.e. (9,/9M2)* = Hom (M, /M2, C).
Note that the definition of the tangent space as (9,/92)* is intrinsic, i.e.
does not depend on an embedding of the affine variety in an ambient space.

For any point z in an affine variety V' we have dim Tan(V'), > dim V. We
say that x is a simple point if we have equality. It can be proved that the
subset of simple points of V' is dense in V. A variety is called nonsingular if
all its points are simple.

We now state a version of Zariski’s main theorem. For its proof, we refer
the reader to [Sp].
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Theorem 7.3 Let ¢ : X — Y be a morphism of irreducible varieties that is
bijective and birational. Assume Y to be nonsingular. Then ¢ is an isomor-
phism.

We end this appendix with a proposition which will be used in the con-
struction of the quotient of an algebraic group by a subgroup.

Proposition 7.9 Let X and Y be irreducible varieties and let p : X — 'Y
be a dominant morphism. Let r := dim X — dimY. There is a nonempty
open subset U of X with the following properties.

a) The restriction of ¢ to U is an open morphism U — Y ;

b) If Y’ is an irreducible closed subvariety of Y and X' an irreducible com-
ponent of o~ (Y') that intersects U, then dim X' = dim Y’ +r. In partic-
ular, if y € Y, any irreducible component of o~y that intersects U has
dimension r;

c) If C(X) is algebraic over C(Y'), then for all x € U the number of points
of the fiber ¢~ (px) equals [C(X) : C(Y)).

Remark 7.3 In proposition 7.9, a) can be replaced by the following stronger

property:
a’) For any variety Z, the restriction of ¢ to U defines an open morphism
UxZ—-Y xZ.
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8 Appendix on algebraic groups

In this appendix, we introduce the notion of algebraic group and develop
some important points in this theory, such as the concept of solvable algebraic
group, the existence of quotients and Lie-Kolchin theorem. Throughout the
appendix, C will denote an algebraically closed field of characteristic 0.

8.1 The notion of algebraic group

Definition 8.1 An algebraic group over C'is an algebraic variety G defined
over (', endowed with a structure of group and such that the two maps
p: G x G — G, where p(x,y) = xy and ¢ : G — G, where «(z) = 271, are

morphisms of varieties.

Translation by an element y € G, i.e. x — xy is clearly a variety auto-
morphism of GG, and therefore all geometric properties at one point of G can
be transferred to any other point, by suitable choice of y. For example, since
G has simple points (see section 7), all points must be simple, hence G is
nonsingular.

Examples.
The additive group G, is the affine line A! with group law u(x,y) = x+v,
so t(z) = —x and e = 0. The multiplicative group G,, is the principal open

set C* C A! with group law u(z,y) = xy, so «(z) = 27! and e = 1. Each
of these two groups is irreducible, as a variety, and has dimension 1. It can
be proven that they are the only algebraic groups (up to isomorphism) with
these two properties.

The general linear group GL(n,C) is the group of all invertible n x n
matrices with entries in C' with matrix multiplication. The set M (n, C') of all
n x n matrices over C' may be identified with the affine space of dimension n?
and GL(n,C) with the principal open subset defined by the nonvanishing of
the determinant. Viewed thus as an affine variety, GL(n, C) has a coordinate
ring generated by the restriction of the n? coordinate functions X;;, together
with 1/ det(X;;). The formulas for matrix multiplication and inversion make
it clear that GL(n, (') is an algebraic group. Notice that GL(1,C) = G,,.

Taking into account that a closed subgroup of an algebraic group is
again an algebraic group, we can construct further examples. We con-
sider the following subgroups of GL(n,C): the special linear group SL(n,C')
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= {A € GL(n,C) : det A = 1}; the upper triangular group T(n,C) :=
{(ai;) € GL(n,C) : a;; = 0,i > j}; the upper triangular unipotent group
U(n,C) = {(a;;) € GL(n,C) : a;; = 1,a;; = 0,i > j}; the diagonal group
D(n,C) :={(a;j) € GL(n,C) : a;; = 0,1 # j}.

The direct product of two or more algebraic groups, i.e. the usual direct
product of groups endowed with the Zariski topology, is again an algebraic
group. For example D(n,C') may be viewed as the direct product of n copies

of G,,, while affine n-space may be viewed as the direct product of n copies
of G,.

8.2 Connected algebraic groups

Let G be an algebraic group. We assert that only one irreducible component
of G contains the unit element e. Indeed, let Xi,...,X,, be the distinct
irreducible components containing e. The image of the irreducible variety
X1 x--+-xX,, under the product morphism is an irreducible subset X; - - - X,
of G which again contains e. So X;---X,, lies in some X;. On the other
hand, each of the components X1, ..., X,, clearly lies in X; ---X,,. Then m
must be 1.

Denote by G° this unique irreducible component of e and call it the
identity component of G.

Proposition 8.1 Let G be an algebraic group.

a) G° is a normal subgroup of finite index in G, whose cosets are the con-
nected as well as irreducible components of G.

b) Each closed subgroup of finite index in G contains G°.

c) Every finite conjugacy class of G has alt most as many elements as

G : GY.

Proof. a) For each z € G°, 71GY is an irreducible component of G contain-
ing e, so t71G% = G°. Therefore G = (G°)~!, and further G°G® = G, i.e.
GV is a (closed) subgroup of G. For any z € G, zG%z~! is also an irreducible
component of G containing e, so tG%z~! = GY and G° is normal. Its (left or
right) cosets are translates of G, and so must also be irreducible components
of G; as G is a Noetherian space there can only be finitely many of them.
Since they are disjoint, they are also the connected components of G.
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b) If H is a closed subgroup of finite index in G, then each of its finitely
many cosets is also closed. The union of those cosets distinct from H is also
closed and then, H is open. Therefore the left cosets of H give a partition of
G into a finite union of open sets. Since G° is connected and meets H, we
get GO C H.

c¢) Write n = [G : G°] and assume that there exists an element z € G with a
finite conjugacy class having a number of elements exceeding n. The mapping
from G to G defined by a — axa™! is continuous. The inverse image of each
conjugate of x is closed and, as there are finitely many of them, also open.
This yields a decomposition of G into more than n open and closed sets, a
contradiction. a

We shall call an algebraic group G connected when G = G°. As is usual in
the theory of linear algebraic groups, we shall reserve the word ”irreducible”
for group representations.

The additive group G,(C') and the multiplicative group G,,(C) are con-
nected groups. The group GL(n, () is connected as it is a principal open set
in the affine space of dimension n?. The next proposition will allow us to
deduce the connectedness of some other algebraic groups. We first establish
the following lemma.

Lemma 8.1 Let U,V be two dense open subsets of an algebraic group G.
Then G=U-V.

Proof. Since inversion is a homeomorphism, V! is again a dense open set.
So is its translate V!, for any given x € G. Therefore, U must meet 2V 1,
forcingz € U - V. O

For an arbitrary subset M of an algebraic group G, we define the group
closure GC(M) of M as the intersection of all closed subgroups of G con-
taining M.

Proposition 8.2 Let G be an algebraic group, f; : X; — G, 1 € I, a family
of morphisms from irreducible varieties X; to G, such that e € Y; = f;(X;)
for each v € I. Set M = U;e1Y;. Then

a) GC(M) is a connected subgroup of G.

b) For some finite sequence a = (ai,...,a,) in I, GC(M) = Y ... Y,
€; = +1.
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Proof. We can if necessary enlarge I to include the morphisms z — f;(z)™*

from X; to G. For each finite sequence a = (ay,...,a,) in I, set Y, =
Y., ... Y, . The set Y, is constructible, as it is the image of the irreducible
variety X, x---x X, under the morphism f,, x---x f, composed with mul-

tiplication in G and moreover Y, is an irreducible _variety passing through
e. Given two finite sequences b, ¢ in I, we have Y,Y . C Y(bc where (b, ¢)
is the sequence obtained from b and ¢ by juxtaposition. Indeed, for x € Y,
the map y — yz sends Y}, into Y(; ), hence by continuity Y, into Y(b o) L€
Y,.Y. C Y(b - In turn, x € Y, send Y. into Y(b ¢), hence Y. as well. Let us
now take a sequence a for which Y, is maximal. For each finite sequence b,
we have Y, C Y,Y, C Y(a by = Y,. Setting b = a, we have Y, stable under
multiplication. Choosing b such that ¥; = Y,~!, we also have Y, stable under

. a
inversion. We have then that Y, is a closed subgroup of G containing all Y;

s0 Y, = GC(M), proving a). B
Since Y, is constructible, lemma 8.1 shows that Y, =Y, - Y, = Y{44), s0
the sequence (a, a) satisfies b). O

Corollary 8.1 Let G be an algebraic group, Y;,© € I, a family of closed
connected subgroups of G which generate G as an abstract group. Then G is
connected. a

Corollary 8.2 The algebraic groups SL(n,C),U(n,C),D(n,C), T(n,C)
(see section 8.1) are connected.

Proof. Let U;; be the group of all matrices with 1’s on the diagonal, arbitrary
entry in the (¢, 7) position and 0’s elsewhere, for 1 < ¢,5 < n,i # j. Then
the U;; are isomorphic to G,(C), and so connected, and generate SL(n, C).
Hence by corollary 8.1, SL(n, C') is connected. The U;; with i < j generate
U(n,C), whence U(n, C) is connected.

The group D(n,C') is the direct product of n copies of G,,(C'), whence
connected. Finally, T(n,C) is generated by U(n,C) and D(n,C), whence is
also connected. O

8.3 Subgroups and morphisms

Proposition 8.3 Let H be a subgroup of an algebraic group G, H its closure.

a) H is a subgroup of G.
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b) If H is constructible, then H = H.

Proof. a) Inversion being a homeomorphism, it is clear that H ~' = H-1

H. Similarly, translation by € H is a homeomorphism, so t H = 2H = H,
ie. HH C H. In turn, if x € H, Hxr C H, so Hx = Hx C H. This says
that H is a group.

b) If H is constructible, it contains a dense open subset U of H. Since H is
a group, by part a), lemma 8.1 shows that H =U-U C H-H = H. a

For a subgroup H of a group G we define the normalizer Ng(H) of H in
G as

Neg(H)={r€G:zHr ' = H}.
If a subgroup H' of G is contained in Ng(H ), we say that H' normalizes H.

Proposition 8.4 Let A, B be closed subgroups of an algebraic group G. If
B normalizes A, then AB is a closed subgroup of G.

Proof. Since B C Ng(A), AB is a subgroup of G. Now AB is the image of
A x B under the product morphism G x G — G hence it is constructible,
and therefore closed by proposition 8.3 b). a

By definition a morphism of algebraic groups is a group homomorphism
which is also a morphism of algebraic varieties.

Proposition 8.5 Let ¢ : G — G’ be a morphism of algebraic groups. Then
a) Ker g is a closed subgroup of G.

b) Im is a closed subgroup of G'.

c) ¢(G°) = p(G)°

Proof. a) ¢ is continuous and Ker ¢ is the inverse image of the closed set {e}.
b) p(G) is a subgroup of G'. It is also a constructible subset of G’, by theorem
7.2, so it is closed by proposition 8.3 b).

¢) ¢(G°) is closed by b) and connected; hence it lies in ¢(G)%. As it has
finite index in ¢(G), it must be equal to p(G)°, by proposition 8.1b). O
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8.4 Linearization of affine algebraic groups

We have seen that any closed subgroup of GL(n,C) is an affine algebraic
group. We shall see now that the converse is also true.

Let G be an algebraic group, V an affine variety. We say that V is a
G-variety if the algebraic group G acts on the affine variety V', i.e. we have
a morphism of algebraic varieties

GxV — V
(g;v) = g-v
satisfying ¢1.(g2.v) = (9192).v, for any ¢1,¢9, in G, v in V, and e.v = v, for
any v € V.
Let V, W be G-varieties. A morphism ¢ : V — W is a G-morphism, or is
said to be equivariant if p(g.v) = g.¢(v), for g € G,v € V.
The action of G over V induces an action of G on the coordinate ring

C[V] of V' defined by
GxC[V] — C[V]
(9.f) = gfrvoeflg7hv)’
In particular, we can consider two different actions of GG on its coordinate

ring C[G] associated to the action of G on itself by left or right translations.
To the action of G on itself by left translations defined by

GxG — @G
(g.h) — gh

corresponds the action

GxClG] — C[q]
(9, f) = X(f):h— flg7'h)~

To the action of G on itself by right translations defined by

GxG — @G
(9,h) +— hg'!

corresponds the action

G xClG] — O[G]
(9, 1) = pg(f):h— f(hg) "
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We can use right translations to characterize membership in a closed
subgroup:

Lemma 8.2 Let H be a closed subgroup of an algebraic group G, I the ideal
of C|G] vanishing on H. Then H = {g € G : p,(I) C I}.

Proof. Let ge H. If f € I, p,(f)(h) = f(hg) = 0 for all h € H, hence
pe(f) € I, ie. py(I) C I. Assume now py(I) C I. In particular, if f € I,
then p,(f) vanishes at e € H, then f(g) = f(eg) = py(f)(e) =0, s0 g € H.
O

Lemma 8.3 Let GG be an algebraic group and V' an affine variety both defined
over an algebraically closed field C. Assume that G acts on V' and let F' be
a finite dimensional subspace of the coordinate ring C[V] of V.

a) There exists a finite dimensional subspace E of C[V] including F which
15 stable under the action of G.

b) F itself is stable under the action of G if and only if o*F C C|G| ®c¢ F,
where ¢ : G x V — V is given by ¢(g,x) = g '

Proof. a) If we prove the result in the case in which F" has dimension 1, we
can obtain it for a finite dimensional F' by summing up the subspaces F corre-
sponding to the subspaces of F' generated by one vector of a chosen basis of F'.
So we may assume that F' =< f > for some f € C[V]. Let p : G xV =V
be the morphism giving the action of G on V, ¢* : C[V] — C[G x V]
= C[G] ® C[V] the corresponding morphism between coordinate rings. Let
us write ¢*f = > ¢; ® fi € C[G] ® C[V] (note that this expression is not
unique). For g € G,z € V, we have (g.f)(z) = f(g7 .z) = f(e(g7t,x)) =
(P* (g~ 2) =30 gi(g7") fi(x) and then g.f =3 gi(g7") fi- So every trans-
late g.f of f is contained in the finite dimensional C-vector space of C[V]
generated by the functions f;. So £ = (g.f | g € G) is a finite-dimensional
G-stable vector space containing f.

b) If p*F C C[G] ®¢ F, then the proof of a) shows that the functions f; can
be taken to lie in F', i.e. F' is stable under the action of G. Conversely, let
F be stable under the action of G and extend a vector space basis {f;} of I’
to a basis {fi}U{h;} of C[V]. If *f=>"ri®@ fi+> s;®h;, for g € G, we
have g.f = > ri(g7 ") fi + > sj(g~)h;. Since this element belongs to F, the
functions s; must vanish identically on G, hence must be 0. We then have
©'F C C|G]®c F. O
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Theorem 8.1 Let G be an affine algebraic group. Then G is isomorphic to
a closed subgroup of some GL(n,C).

Proof. Choose generators fi,..., f, for the coordinate algebra C[G]. By
applying lemma 8.3 a), we can assume that the f; are a C-basis of a C-
vector space F' which is G-stable when considering the action of G by right
translations. If ¢ : G x G — G is given by (g,h) — hg, by lemma 8.3 b),
we can write p*fi = > my; ® fj, where my; € C[G]. Then py(fi)(h) =
filhg) = >_;mii(g) ® fi(h), whence py(fi) = >, mi;(g) ® f;. In other words,
the matrix of p,|F in the basis {f;} is (m;;(g)). This shows that the map
Y : G — GL(n,C) defined by g — (m;;(g)) is a morphism of algebraic
groups.

Notice that fi(g) = fi(eg) = X mij(9)fy(e), ie. fi = ¥ f;(e)mi;. This
shows that the m;; also generate C[G]; in particular, v is injective. Moreover
the image group G’ = ¥(G) is closed in GL(n,C) by proposition 8.5 b). To
complete the proof we therefore only need to show that ¢ : G — G’ is an
isomorphism of varieties. But the restriction to G’ of the coordinate functions
Xi; are sent by ¥ to the respective m;;, which were just shown to generate
C[G]. So ¥* is surjective, and thus identifies C[G'] with C[G]. O

8.5 Homogeneous spaces

Let G be an algebraic group. A homogeneous space for G is a G-variety V on
which G acts transitively. An example of homogeneous space for Gis V =G
with the action given by left or right translations introduced in section 8.4.

Lemma 8.4 Let V' be a G-variety.
a) Forv eV, the orbit G.v is open in its closure.

b) There exist closed orbits.

Proof. By applying proposition 7.5 to the morphism G — V', g — g.v, we
obtain that G.v contains a nonempty open subset U of its closure. Since G.v
is the union of the open sets g.U, g € G, assertion a) follows. It implies that
for v € V, the set S, = G.v\ G.v is closed. It is also G-stable, hence a union
of orbits. As the descending chain condition on closed sets is satisfied, there
is a minimal set S,. By a), it must be empty. Hence the orbit G.v is closed,
proving b). O
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Lemma 8.5 Let G be an algebraic group and G° its identity component. Let
V' be a homogeneous space for G.

a) Each irreducible component of V is a homogeneous space for G°.

b) The components of V' are open and closed and V is their disjoint union.

Proof. Let V' be the orbit of G° in V. Since G acts transitively on V, it
follows from proposition 8.1 that V' is the disjoint union of finitely many
translates ¢g.V’. Each of them is a G%orbit and is irreducible. It follows from
lemma 8.4 that all G%orbits are closed. Now a) and b) readily follow. O

Proposition 8.6 Let G be an algebraic group and let ¢ : V. — W be an
equivariant morphism of homogeneous spaces for G. Putr = dimV —dim W.

a) For any variety Z the morphism (p,1d) :V x Z — W X Z is open.

b) If W' is an irreducible closed subvariety of W and V' an irreducible com-
ponent of @ 'W', then dim V' = dim W' + r. In particular, if y € W,
then all irreducible components of o'y have dimension r.

Proof. Using lemma 8.5, we reduce the proof to the case when G is connected
and VW are irreducible. Then ¢ is surjective, hence dominant. Let U € V
be an open subset with the properties of proposition 7.9 and remark 7.3.
Then all translates ¢g.U enjoy the same properties. Since these cover V', we
have a) and b). O

8.6 Decomposition of algebraic groups

Let z € EndV, for V a finite dimensional vector space over C'. Then z is
nilpotent if ™ = 0 for some n (equivalently if 0 is the only eigenvalue of x).
At the other extreme, x is called semisimple if the minimal polynomial of z
has distinct roots (equivalently if x is diagonalizable over C'). If z € End V/,
by Jordan decomposition, we obtain

Lemma 8.6 Let x € End V.

a) There ezist unique xy, x, € EndV such that x, is semisimple, x, is nilpo-
tent and r = x4, + x,,.
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b) There exist polynomials P(T),Q(T) € C[T], without constant term such
that xs = P(x),x, = Q(x). In particular x5 and x, commute with any
endomorphism of V- which commutes with x.

c) If Wy € Wy are subspaces of V', and x maps Wy into Wy, then so do x
and x,,.

d) Lety € EndV. Ifzy = yz, then (x+vy)s = zs+ys and (x+Yy), = Tn+Yn.
O

If x € GL(V), its eigenvalues are nonzero, and so x, is also invertible.
We can write z, = 1 + xs_lxn and then we obtain x = z; + z, = x4(1 +
r;tw,) =z - w,. We call an element in GL(V) unipotent it it is the sum
of the identity and a nilpotent endomorphism or, equivalently, if 1 is its
unique eigenvalue. For z € GL(V), the decomposition = = z - z,, with
xs semisimple, x, unipotent, is unique. Clearly the only element in GL(V)
which is both semisimple and unipotent is identity. From lemma 8.6, we
obtain

Lemma 8.7 Let x € GL(V).

a) There exist unique x4, x,, € GL(V') such that x4 is semisimple, x,, is unipo-
tent, x = xsx, and Ty, = T, Ts.

b) x5 and x, commute with any endomorphism of V' which commutes with x.
c) If W is a subspace of V' stable under z, then W is stable under xs and x,.

d) Lety € GL(V). If xy = yx, then (zy)s = xsys and (2Y)y = TyYu- 0

If G is a linear algebraic group, we consider the subsets
Gi={zxeG:x=2s} and G,={re€G:x=u1a,}.

Let us denote by 7 (n,C) (resp. D(n,()) the ring of all upper triangular
(resp. all diagonal) matrices in M (n,C). A subset M of M(n,C) is said to
be triangularizable (resp. diagonalizable) if there exists x € GL(n,C) such
that Mz~ C T (n,C) (resp. D(n,(C)).
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Lemma 8.8 If M C M(n,C) is a commuting set of matrices, then M is
triangularizable. If M has a subset N consisting of diagonalizable matrices,
N can be diagonalized at the same time.

Proof. Let V = C™ and proceed by induction on n. If x € M, \ € C, the
subspace W = Ker(z — A\I) is evidently stable under the endomorphisms of
V' which commute with x, hence it is stable under M. Unless M consists of
scalar matrices (then we are done), it is possible to choose x and A such that
0 # W # V. By induction, there exists a nonzero v; € W such that Cv; is
M-stable. Applying the induction hypothesis next to the induced action of
M on V/Cvy, we obtain vy, ... v, € V completing the basis for V', such that
M stabilizes each subspace Cvy 4 -+ -+ Cv; (1 < i < n). The transition from
the canonical basis of V' to (vy,...v,) therefore triangularizes M.

Now if N does not already consist of scalar matrices, we can choose x
above to lie in N. Since z is diagonalizable, V' = W & W' where the sum
W' of remaining eigenspaces of x is nonzero. As before, both W and W’ are
M-stable. The induction hypothesis allows us to choose basis of W and W’
which triangularize M while simultaneously diagonalizing N. a

Theorem 8.2 Let G be a commutative linear algebraic group. Then Gy, G,
are closed subgroups, connected if G is connected, and the product map
v : Gs x Gy — G 1s an isomorphism of algebraic groups.

Proof. As G is commutative, by lemma 8.7 d), G and G, are subgroups
of G. The subset GG, is closed since the subset of all unipotent matrices x in
GL(V) can be defined as the zero set of the polynomials implied by (z—1)" =
0. As G is commutative, by lemma 8.7 a), ¢ is a group isomorphism. By
lemma 8.8, we may assume that G C T(n,C) and G5 C D(n,C). This
forces Gy = GND(n,C), so Gy is also closed. Moreover, ¢ is a morphism of
algebraic groups.

It has to be shown that the inverse map is a morphism of algebraic groups.
To this end, it suffices to show that z — z, and x — =z, are morphisms.
Since, x, = z;'z, if the first map is a morphism, the second will also be.
Now, if x € G, x4 is the diagonal part of x, hence x +— x4 is a morphism.
Furthermore, if G is connected, so are GG, and G, since there are morphic
images of G. a
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8.7 Solvable algebraic groups

For a group G, we denote by [z, y] the commutator xyz~'y~! of two elements
x,y € G. If Aand B are two subgroups of G we denote by [A, B] the subgroup
generated by all commutators [a, b] with a € A, b € B. The identity

(4) 2z yle™ = [rae ™ 2y
shows that [A, B] is normal in G if both A and B are normal in G.
We denote by Z(G) the center of a group G, i.e.

Z(G)={x€ G 2y =yx,Vy € G}.
Lemma 8.9 a) If the indezx [G : Z(G)] is finite, then [G,G] is finite.

b) Let A, B be normal subgroups of G, and suppose the set S = {[z,y] : z €
A,y € B} is finite. Then [A, B is finite.

Proof. a) Let n = [G : Z(G)] and let S be the set of all commutators in
G. Then S generates [G,G]. For z,y € G, it is clear that [z,y] depends
only on the cosets of ,y modulo Z(G); in particular, Card S < n% Given a
product of commutators, any two of them can be made adjacent by suitable
conjugation, e.g. [r1,y1][x2, yo][Ts, y3] = [x1, y1][x3, y3][z 7 w2z, 27 ya2], where
z = [x3,y3]. Therefore, it is enough to show that the (n + 1)th power of an
element of S is the product of n elements of S, in order to conclude that
each element of [G,G] is the product of at most n® factors from S. This in
turn will force [G, G| to be finite. Now [z, y|" € Z(G) and so we can write
[z, y|" ™ =y, y|"ylx, y] = y~z, y|" 'z, y?]y, and the last expression can
be written as a product of n commutators by using identity (4).
b) We can assume that G = AB. Taking into account identity (4), we
see that G acts on S by inner automorphisms. If H is the kernel of the
resulting morphism from G in the group Sym(S) of permutations of S, then
clearly, H is a normal subgroup of finite index in G. Moreover, H centralizes
C = [A, B]. It follows that H N C' is central in C' and of finite index. By a),
[C, C] is finite (as well as normal in G, since C' <1 G). So we can replace G
by G/[C,C], i.e. we can assume that C' is abelian.

Now the commutators [z,y],x € A,y € C, lie in S and commute with
each other. As C' is abelian and normal in G, [z,y]*> = (zyz~')*y 2 = [z, y?]

66



is another such commutator. This clearly forces [A, C] to be finite (as well
as normal in G). Replacing G by G/[A, C], we may further assume that A
centralizes C'. This implies that the square of an arbitrary commutator is
again a commutator. It follows that [A, B] is finite. O

Proposition 8.7 Let A, B be closed subgroups of an algebraic group G.

a) If A is connected, then [A, B] is closed and connected. In particular, |G, G]
is connected if G 1is.

b) If A and B are normal in G, then [A, B] is closed (and normal) in G. In

particular, |G, G] is always closed.

Proof. a) For each b € B, we can define the morphism ¢, : A — G,a — [a, b].
Since A is connected and py(e) = e, by proposition 8.2, the group generated
by all ¢,(A),b € B is closed and connected and this is exactly [A, BJ.

b) It follows from part a) that [A°, B] and [A, B] are closed, connected (as
well as normal) subgroups of G, so by proposition 8.4 their product C' is
a closed normal subgroup of G. To show that [A, B] is closed, it therefore
suffices to show that C' has finite index in [A, B], which is a purely group-
theoretic question. In the abstract group G//C, the image of A° (resp. BY)
centralizes the image of B (resp. A). Since the indices [A : A°] and [B : B
are finite, this implies that there are only finitely many commutators in G/C
constructible from the images of A and B. Lemma 8.9 b) then guarantees
that [A, B]/C is finite. O

For an abstract group G, we define the derived series D'G inductively by

D°G =G, D'"'G = [D'G, D'G],i > 0.

We say that G is solvable if its derived series terminates in e.

If G is an algebraic group, D'G = [G, G] is a closed normal subgroup of
(G, connected if G is, by proposition 8.7. By induction the same holds true for
all D'G. If G is a connected solvable algebraic group of positive dimension,
we have dim[G, G] < dim G.

It is easy to see that an algebraic group G is solvable if and only if there
exists a chain of closed subgroups G = Gy D Gy D --- D G,, = e such that
G; < G;_1 and G;_1/G; is abelian, for i = 1,... n.

The following results from group theory are well known.
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Proposition 8.8 a) Subgroups and homomorphic images of a solvable group
are solvable.

b) If N is a normal solvable group of G for which G/N is solvable, then G
itself is solvable.

c) If A and B are normal solvable subgroups of G, so is AB. a

The following lemma is used in the characterization of Liouville exten-
sions.

Lemma 8.10 Let G be an algebraic group, H a closed subgroup of G. Sup-
pose that H is normal in G and G/H is abelian. Suppose further that the
identity component H° of H is solvable. Then the identity component G° of
G 1s solvable.

Proof. We have [G,G] C H, whence [G°,G°] C H. By proposition 8.7,
[GY, G°] is connected. Hence [G°, GY] € H°. By hypothesis H" is solvable,
whence [G% G| is solvable and then GY is solvable. O

Example 8.1 We consider the groups T(n,C) and U(n,C). We know by
corollary 8.2 that they are connected. We shall now see that they are solvable.
Write T' = T(n,C), U = U(n,C). First, since the diagonal entries in the
product of two upper triangular matrices are just the respective products of
diagonal entries it is clear that [T, 7] C U. Now we know that U is generated
by the subgroups U;; with i < j, each of them isomorphic to G, (see the proof
of corollary 8.2). By proposition 8.7, we have that [D, U;;] C U,; is closed and
connected, and clearly this group is nontrivial. Then U;; C [D,U;;] C [T, T).
We have then proved [T,7] = U.

Now we want to prove that U is solvable. This will imply that T is
solvable as well. Let us denote by 7 the full set of upper triangular matrices
viewed as a ring. The subset N of matrices with 0 diagonal is a 2-sided
ideal of 7. So each ideal power A" is again a two-sided ideal. For an
element u € U, such that u = 1 + a, with a € N, we have (1 +a)™! =
l—a+a*—a®+ -+ (=1)"ta" . If we set U, = 1+ N", we obtain
[Up, Uj] C Upyy. In particular, U is solvable.

The next theorem establishes that the connected solvable subgroups of
GL(n, C) are exactly the conjugate subgroups of T(n,C).
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Theorem 8.3 (Lie-Kolchin) Let G be a connected solvable subgroup of
GL(n,C), n > 1. Then G is triangularizable.

Proof. Let V = C". Let us assume first that G is reducible, i.e. that V
admits a nontrivial invariant subspace W. If a basis of W is extended to a
basis of V', the matrices representing GG have the form

(70 i )

The morphism x — ¢(x) is a morphism of algebraic groups. As G is con-
nected, p(G) C GL(W) is also connected as well as solvable (proposition 8.8
a)). By induction on n, ¢(G) can be triangularized. Analogously, we obtain
that ¢ (G) can be triangularized as well. We then obtain the triangularization
for G itself. We may then assume that G is irreducible.

By proposition 8.7, the commutator subgroup [G, G| of G is connected,
so by induction on the length of the derived series, we can assume that [G, G|
is in triangular form.

Let V; be the subspace of V' generated by all common eigenvectors of
|G, G]. We have V; # 0, since the triangular form of [G, G] yields at least
one common eigenvector. Now, for each z € G, y € [G, G], we have 2~ yz €
|G, G|, hence for each v € Vi, (27 yx)(v) = v, for some X € C, equivalently
y(zv) = Azv. So, Vi is G-stable. Since G is irreducible, V; = W, which
means that [G, G| is in diagonal form.

Now, any element in [G, G] is a diagonal matrix. Its conjugates in G are
again in [G, G], hence also diagonal. The only possible conjugates are then
obtained by permuting the eigenvalues. Hence each element in [G, G| has a
finite conjugacy class. By proposition 8.1c¢), [G, G| lies in the center of G.

Assume that there is a matrix y € [G, G] which is not a scalar. Let A be
an eigenvalue of y, and W the corresponding eigenspace. Since y commute
with all elements in G, W is G-invariant, hence W =V, y = \X-1.

Since [G, G] is the commutator subgroup of G, its elements have deter-
minant 1. Hence the diagonal entries must be n-th roots of unity. There
are only a finite number of these, so |G, G] is finite. But by proposition 8.7,
|G, G| is connected, then [G,G]| = 1, which means that G is commutative.
The result then follows from lemma 8.8. O
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8.8 Characters and semi-invariants

Definition 8.2 A character of an algebraic group G is a morphism of alge-
braic groups G — G,,.

For example, the determinant defines a character of GL(n,C). If x1, x2
are characters of an algebraic group G, so is their product defined by (x1x2)(9)
= x1(9)x2(g). This product gives the set X(G) of all characters of G the
structure of a commutative group.

Examples.

1. A morphism x : G, — G,, would be given by a polynomial x(z) satisfying
x(x +y) = x(x)x(y). We obtain then X(G,) = 1.

2. Given a character x of SL(n,C), by composition with the morphism
G, — SL(n,C), © +— I + ze;;, where we denote by e;; the matrix with
entry 1 in the position (7, j) and 0’s elsewhere, we obtain a character of G,.
As the subgroups U;; = {I + ze;; : © € C} generate SL(n,C'), we obtain
X(SL(n,C)) = 1.

3. A character of G,, is defined by = — 2™, for some n € Z, hence X (G,,) ~
Z. As D(n,C) ~ G,, X -+ X Gy, we obtain X(D(n,C)) ~Z x --- x Z.

If G is a closed subgroup of GL(V), for each x € X(G), we define V, =
{veV:guv=x(g)viorall g€ G}. Evidently V, is a G-stable subspace of
V. Any nonzero element of V) is called a semi-invariant of G of weight x.
Conversely if v is any nonzero vector which spans a G-stable line in V', then
it is clear that g.v = x(g)v defines a character y of G.

More generally, if ¢ : G — GL(V) is a rational representation, then the
semi-invariants of G are by definition those of p(G).

Lemma 8.11 Let ¢ : G — GL(V) be a rational representation. Then the
subspaces Vy,, x € X(G), are in direct sum; in particular, only finitely many
of them are nonzero.

Proof. Otherwise, we could choose minimal n > 2 and nonzero vectors
v; € V,,, for distinct x;,1 <4 < n, such that v; +---+ v, = 0. Since the yx;
are distinct, x1(g) # x2(g) for some g € G. But 0 = o(g)(>_v;) = > xi(g9)vs,
so > x1(9)xi(g)v; = 0. The coefficient of v, is different from 1; so we can
subtract this equation from the equation > v; = 0 to obtain a nontrivial
dependence involving < n — 1 characters, contradicting the choice of n. O
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We assume now that H is a closed normal subgroup of G and consider
the spaces V) for x € X(H). We claim that each element of ¢(G) maps V,
in some V,s. To prove this claim, we can assume that G C GL(V). If g €
G,h € H,v € V,, then h.(g.v) = (hg).v = g(g 'hg).v = g.(x(¢g ' hg).v) =
x(g7thg)g.v and the function h — x(g'hg) is clearly a character x’ of H,
so g maps V) into V,,.

8.9 Quotients

The aim of this section is to prove that if GG is an algebraic group and H
a closed normal subgroup of G, then the quotient G/H has the natural
structure of an algebraic group, with coordinate ring C[G/H] ~ C[G]".

If V is a finite dimensional C-vector space, then GL(V') acts on exterior
powers of V by g.(vy A--- Awvg) =gy A+ A g, If M is a d-dimensional
subspace of V, it is especially useful to look at the action on L = A?M, which
is a 1-dimensional subspace of AV .

Lemma 8.12 For g € GL(V), we have (A%g)(L) = L if and only if gM =
M.

Proof. The ”if” part is clear. For the other implication, we can choose a
basis vy, ..., v, in V such that vy, ..., v is a basis of M, and, for some [ > 0,
Vi1, - - -, Vigq is a basis of gM. By hypothesis (A%g) (v A- - Avg) is a multiple
of v1 A --- Awg but, on the other hand, it is a multiple of v 1 A -+ A vy
forcing [ = 0. a

Proposition 8.9 Let G be an algebraic group, H a closed subgroup of G.
Then there is a rational representation ¢ : G — GL(V) and a 1-dimensional
subspace L of V' such that H ={g € G : ¢(g9)L = L}

Proof. Let I be the ideal in C[G] vanishing on H. It is a finitely generated
ideal. By lemma 8.3, there exists a finite dimensional subspace W of C[G],
stable under all p,,g € G, which contains a given finite generating set of
I. Set M = W NI, so M generates I. Notice that M is stable under all
pg,g € H, since by lemma 8.2, H = {g € G : p, = I}. We claim that
H={g€G:p;,M = M}. Assume that we have p,M = M. As M generates
I, we have p,I = I, hence g € H.

Now take V = AW, L = AM, for d = dim M. By lemma 8.12, we have
the desired characterization of H. a
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Theorem 8.4 Let G be an algebraic group, H a closed normal subgroup
of G. Then there is a rational representation 1 : G — GL(W) such that
H = Ker.

Proof. By proposition 8.9, there exists a morphism ¢ : G — GL(V) and
a line L such that H = {g € G : ¢(9)L = L}. Since each element in H
acts on L by scalar multiplication, this action has an associated character
Xo : H — C. Consider the sum in V' of all nonzero V) for all characters x of
H. By lemma 8.11, this sum is direct and of course includes L. Moreover,
we saw in the last paragraph in section 8.8 that ¢(G) permutes the various
V, since H is normal in G. So we can assume that V' itself is the sum of the
7%
Now let W be the subspace of End V' consisting of those endomorphisms
which stabilize each V,, x € X(H). There is a natural isomorphism W =~
@ End V,. Now GL(V) acts on End V' by conjugation. Notice that the sub-
group ¢(G) stabilizes W, since ¢(G) permutes the V, and W stabilizes each
of them. We then obtain a group morphism ¢ : G — GL(W) given by
¥(g)(h) = o(g)w hcp(g)ﬁ,;; so 1 is a rational representation. Let us check
now H = Ker. If g € H, then ¢(g) acts as a scalar on each V,, so conju-
gating by ¢(g) has no effect on W, hence g € Kert. Conversely, let g € G,
Y(g) = I. This means that ¢(g) stabilizes each V) and commutes with
EndV,. But the center of End V) is the set of scalars, so ¢(g) acts on each
V, as a scalar. In particular, ¢(g) stabilizes L C V,,, forcing g € H. O

Corollary 8.3 The quotient G/H can be given a structure of linear algebraic
group endowed with an epimorphism © : G — G/H.

Proof. We consider the representation ¢ : G — GL(W) with kernel H
given by theorem 8.4 and its image ¥ = Im+. By theorem 7.2, Y is a
constructible set and, as it is a subgroup of GL(W), by proposition 8.3, it
is a closed subgroup of GL(W). We have a group isomorphism G/H ~ Y,
hence we can translate the linear algebraic group structure of Y to G/H.
Moreover 1 induces an epimorphism of algebraic groups 7 : G — G/H. O

Definition 8.3 Let G be an algebraic group, H a closed subgroup of G.
A Chevalley quotient of G by H is a variety X together with a surjective
morphism 7 : G — X such that the fibers of 7 are exactly the cosets of H
in G.

72



In corollary 8.3, we have established that there exists a Chevalley quotient
of an algebraic group G by a closed normal subgroup H. However it is not
clear if Chevalley quotients are unique up to isomorphism.

Definition 8.4 Let G be an algebraic group, H a closed subgroup of G.
A categorical quotient of G by H is a variety X together with a morphism
m : G — X that is constant on all cosets of H in G with the following
universal property: given any other variety Y and a morphism ¢ : G — Y
that is constant on all cosets of H in G there is a unique morphismp : X — Y
such that ¢ =po.

It is clear that categorical quotients are unique up to unique isomorphism.
Our aim is to prove that Chevalley quotients are categorical quotients. We
then will have a quotient of G by H defined uniquely up to isomorphism and
satisfying the universal property.

Theorem 8.5 Chevalley quotients are categorical quotients.

Proof. First we construct a categorical quotient in the category of geometric
spaces. Define G/H to be the set of cosets of H in G. Let 7 : G — G/H
be the map defined by x — xH. Give G/H the structure of topological
space by defining U C G/H to be open if and only if 7=}(U) is open in G.
Next define a sheaf O = Og/g of C-valued functions on G/H as follows: if
U C G/H is open, then O(U) is the ring of functions f on U such that forw
is regular on 71(U) (this defines indeed a sheaf of functions). In order to
check the universal property, let ¢ : G — Y be a morphism of geometric
spaces constant on the cosets of H in G. We get the induced map of sets
v G/H — Y, xH s 1(x), satisfying clearly 1) = 1) o 7. We prove that
¢ is a morphism of geometric spaces. To check continuity, take an open
subset V' C Y and note that U := 1) (V) is open in G/H, by the definition
of the topology in G/H and the continuity of . Finally, for f € Oy (U),

Y *(f) € Ogyu, because (¢ *(f)) € Og(v=H(V)).

Now we take (G/H,w) as above and let (X,v) be a Chevalley quo-
tient. Using the universal property established above, we get a unique G-
equivariant morphism ¢ : G/H — X such that ¢ = 1 o 7. We will prove
that 1) is an isomorphism of geometric spaces, which will imply that G/H is
a variety and that X is a categorical quotient.

By lemma 8.5, we can assume that G is a connected algebraic group.
First of all, it is clear that 1 is a continuous bijection. If U C G/H is open,
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then 1 (U) = (7~ }(U)) and by proposition 8.6 a), it follows that ¥ (U) is
open, which implies that 1) is a homeomorphism.

In order to prove that ¢ is an isomorphism, the following has to be estab-
lished: If U is a principal open set in X, the homomorphism of C-algebras
Ox(U) — Ogu( ~H(U)) defined by 1 * is an isomorphism. By definition
of Og/y this means that, for any regular function f on V = ¢~'(U) such
that f(gh) = f(g), Vg € V,h € H, there is a unique regular function F' on
U such that F(¢(g)) = f(g). Let T = {(g,f(9)) : g € V} C V x Al be
the graph of f and put IV = (¢, Id)(T), so I C U x A!. Since T is closed
in V x A, proposition 8.6 a) shows that (¢, [d)(V x AL\ T) =U x A'\ T
is open in U x A'. Hence I" is closed in U x A!. Let A : I" — U be the
morphism induced by the projection on the first component. It follows from
the definition that A is bijective and birational. By Zariski’s main theorem
7.3, A is an isomorphism. This implies that there exists a regular function F
on U such that IV = {(u, F'(u)) : u € U}, which is what we wanted to prove.
This finishes the proof of the theorem. a

We recall that the action of GG on itself by translation on the left gives an
action of G on its coordinate ring C[G] defined by \,(f)(¢') = f(g~'g') for
f€ClGl,g,¢9 € G (see section 8.4).

Proposition 8.10 Let G be an algebraic group, H a closed normal subgroup
of G. We have C|G/H] ~ C|G]".

Proof. We consider the epimorphism 7 given by corollary 8.3. If f € CL[G /H],
then f = fom € C[G]. Moreover, for h € H,g € G, we have A\y(f)(g) =

f(h7tg) = (fom)(h7lg) = f(m(h™g)) = f(n(9)) = f(9). s0 Au(f) = [ and
feClG)H.

If f € C[G]", then f is a morphism G — A! which is constant on the
cosets of H in GG. Hence, by the universal property of the quotient G/H

established in theorem 8.5, there exists ' € C[G/H] such that f = For. O
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9 Suggestions for further reading

1. In section 2.4, we introduced the ring K[d] of differential operators. To
a linear differential equation, we can associate a differential module, i.e.
a K[d]-module. The concept of differential module allows to study dif-
ferential equations in a more intrinsic way. The reader can look at [P-S]
chap. 2 for a detailed exposition and at [Mo] and [Z] for more advanced
applications.

2. In his lecture at the 1966 International Congress of Mathematicians [Ko2],
E. Kolchin raised two important problems in the Picard-Vessiot theory.

1. Given a linear differential equation £(Y') = 0 over a differential field
K, determine its Galois group (direct problem).

2. Given a differential field K, with field of constants C, and a linear
algebraic group G defined over C', find a linear differential equation
defined over K with Galois group G (inverse problem).

The paper [S] is a very good survey on direct and inverse problems in
differential Galois theory.

3. Linear differential equations defined over the field C(7T') of rational func-
tions over the field C of complex numbers can be given a more analytic
treatment. In this context we can define the singularities of the differ-
ential equation as the poles of its coefficients. By considering analytic
prolongation of the solutions along paths avoiding singular points, one
can define the monodromy group of the equation, which is a subgroup
of the Galois group. In the case of equations of Fuchsian type, the Ga-
lois group is equal to the Zariski closure of the monodromy group. Some
interesting topics in the analytic theory of differential equations are the
Riemann-Hilbert problem, Stokes phenomena, hypergeometric equations
and their generalizations. The interested reader can consult [Z] , [Mo]
and [P-S], as well as the bibliography given there.

4. In the recent years, Morales and Ramis have used differential Galois the-
ory to obtain non-integrability criteria for Hamiltonian systems, which
generalize classical results of Poincaré and Liapunov as well as more re-
cent results of Ziglin. This theory is presented in the monograph [Mo]
and is also discussed in [Z].
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5. Some interesting contributions to the theory of differential fields have
been made by model theorists. The proof of the existence of a differential
closure for a differential field uses methods of model theory in an essential
way. The first proof of the existence of an algorithm to determine the
Galois group of a linear differential equation is as well model theoretical
(see [Hr]). The paper [P] is an interesting survey on the relation between
differential algebra and model theory.
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