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Abstract. We give some sufficient conditions for the existence of at least two
periodic solutions of the quaternionic Riccati equation. In some cases we are
able to give a full description of dynamics and detect solutions heteroclinic to
the periodic ones.

1. Introduction

Campos and Mawhin [2] have initiated a study of the T -periodic solutions of
quaternionic-valued first order differential equations

q̇ = F (t, q)

where F : [0, T ] × H −→ H is continuous and H denotes the set of quaternions
(see Subsection 2.3). They have considered e.g. linear monomial equation and the
quaternionic Riccati equation

q̇ = q2 + f(t)

where f is a real-valued T -periodic forcing term. The aim of this paper is to
continue this study. We present results for the Riccati equation. The special
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interest in this equation comes from the fact that it appears in the Euler vorticity
dynamics (see [11]).

We present partial extensions to the quaternionic settings of the main results of
[17, 16]. We use the notion of isolating segments introduced by Srzednicki [15]. Our
segments are the simplest ones so we can apply the Brouwer fixed point theorem
to the Poincaré map. In the complex case if the vector field is holomorphic then
the Poincaré map is also holomorphic thus the Brouwer fixed point theorem can
be strengthen to the Wolff–Denjoy theorem and the uniqueness of periodic solution
inside isolating segments can be obtained (cf. [16]). This combined with the fact
that the Poincaré map is a Möbius transformation (cf. [1]) allows one to give a full
description of dynamics. But the quaternionic case seems much more complicated.
While the concept of construction of isolating segments in the complex case can
be carried over into the quaternionic case there is no quaternionic version of the
Wolff–Denjoy theorem. In fact there are some theories of “regular” quaternionic-
valued functions imitating the theory of holomorphic functions. The best known is
the one due to Fueter [6]. But even the identity f(q) = q and other polynomials are
not regular in this sense. So we expect that the Poincaré map of the Riccati (and
in general polynomial) equation is not regular either. Another theory was given
by Leutwiler [12]. It deals with the class of functions of the reduced quaternionic
variable x0 + ix1 + jx2. But the Poincaré map is a function of full quaternionic
variable x0 + ix1 + jx2 +kx3 so we can not use this approach. The most interesting
theory was given by Cullen [4]. Polynomials and even power series of the form∑∞

n=0 qnan are regular in this sense. The theory is still being developed (cf. [9, 8])
but the quaternionic version of the Wolff–Denjoy theorem has not been obtained
yet. We hope it will happen soon. But even this theory does not contain all
functions we are interested in.

Presented paper is devoted to the Riccati equation of the form

(1.1) q̇ = v(t, q) = qa(t)q + b(t)q + qd(t) + c(t)

where a, b, c, d : R −→ H. The vector field v is not regular in the sense of Cullen
unless a, b : R −→ R. We deal with the Riccati equation in the form (1.1) because
it can be extended to the point ∞ and in fact to the whole sphere S4 (cf. Subsec-
tion 2.4). Moreover, it has some geometrical properties which suits the technique
we use. Nonetheless, some partial results can be obtained also for the equations

q̇ =q2a(t) + qd(t) + c(t),

q̇ =a(t)q2 + b(t)q + c(t)

but we do not provide any. In some cases we are able to prove the uniqueness
of periodic solutions inside isolating segments. It is possible due to the fact that
Poincaré map is contracting in some sets (cf. Lemma 2.1). This idea comes from
the geometric properties of the polynomial vector field and was developed in the
complex case and carried over into the quaternionic one.

The paper is organised as follows. In Section 2 we collect some basics facts
concerning processes, notion of isolating segments and quaternions. We also state
a crucial lemma which is used instead of the Wolff–Denjoy theorem. In the last
section we present main results. First of all we deal with the equation where the
sets a(R) and c(R) can be separated by a linear hyperplane. Later we present some
improvement of the previous approach, namely by imposing some additional re-
strictions on a(R) and c(R) we are able to present a full description of dynamics in
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the whole clH ' S4 and H. Next we consider the equation with the right hand side
which has two continuous branches of simple zeros. We prove the existence of at
least one periodic solution close to the branch. We present also some improvements
of this result where the periodic solutions are asymptotically stable or asymptoti-
cally unstable. At the end we prove the existence of at least two periodic solutions
close to the branch of double zeros of the vector field. We also detect infinitely
many solutions heteroclinic to the periodic ones.

2. Basic facts

2.1. Processes. Let X be a topological space and Ω ⊂ R×X ×R be an open set.
By a local process on X we mean a continuous map ϕ : Ω −→ X, such that three

conditions are satisfied:
i) for σ and x, {t ∈ R : (σ, x, t) ∈ Ω} is an open interval containing 0,
ii) for σ, ϕ(σ, ·, 0) = idX ,
iii) for x, σ, s and t, ϕ(σ, x, s + t) = ϕ(σ + s, ϕ(σ, x, s), t).

For abbreviation, we write ϕ(σ,t)(x) instead of ϕ(σ, x, t).
Let M be a smooth manifold and let v : R × M −→ TM be a time-dependent

vector field. We assume that v is so regular that for every (t0, x0) ∈ R × M the
Cauchy problem

ẋ = v(t, x),(2.1)

x(t0) = x0(2.2)

has unique solution. Then the equation (2.1) generates a local process ϕ on X by
ϕ(t0,t)(x0) = x(t0, x0, t), where x(t0, x0, ·) is the solution of the Cauchy problem
(2.1), (2.2).

Let T be a positive number. In the sequel T denotes the period. We assume
that v is T -periodic in t. It follows that the local process ϕ is T -periodic, i.e.,

ϕ(σ+T,t) = ϕ(σ,t) for all σ, t ∈ R,

hence there is a one-to-one correspondence between T -periodic solutions of (2.1)
and fixed points of the Poincaré map ϕ(0,T ).

Let g : M −→ M and n ∈ N. Then gn denotes the n-tn iterate of g and g−n

denotes the n-th iterate of g−1.
We call a point z0 attracting (repelling) in W ⊂ M if for every point w ∈ W the

equality limn→∞ gn(w) = z0 (limn→∞ g−n(w) = z0) holds.
We call a T -periodic solution of (2.1) attracting (repelling) in W ⊂ M if the

corresponding fixed point of the Poincaré map is attracting (repelling) in W .

2.2. Periodic isolating segments. Let X be a topological space. We assume
that ϕ is a T -periodic local process on X.

For any set Z ⊂ R×X and t ∈ R we define

Zt = {x ∈ X : (t, x) ∈ Z}

and the exit set and entrance set of Z by

Z− = {(t, x) ∈ Z : ϕ({t} × {x} × [0, τ)) 6⊂ Z for all τ > 0},
Z+ = {(t, x) ∈ Z : ϕ({t} × {x} × (τ, 0]) 6⊂ Z for all τ < 0},

respectively.
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Let π1 : R × X −→ R and π2 : R × X −→ X be projections on, respectively,
time and space variable.

A compact set W ⊂ [a, b]×X is called an isolating segment over [a, b] for ϕ if it
is ENR (Euclidean neighborhood retract - cf. [5]) and there are W−−,W++ ⊂ W
compact ENR’s (called, respectively, the proper exit set and the proper entrance
set) such that

(1) ∂W = W− ∪W+,
(2) W− = W−− ∪ ({b} ×Wb), W+ = W++ ∪ ({a} ×Wa),
(3) there exists homeomorphism h : [a, b] × Wa −→ W such that π1 ◦ h = π1

and h([a, b]×W−−
a ) = W−−, h([a, b]×W++

a ) = W++.
An isolating segment W over [a, b] is said to be (b−a)-periodic (or simply periodic)
if Wa = Wb, W−−

a = W−−
b and W++

a = W++
b .

2.3. Quaternions. We follow [2] and use the letters q, p to denote (real) quater-
nions. By

(2.3) q = (q0, q1, q2, q3) ∈ R4

we mean a quaternion

(2.4) q = q0 + q1i + q2j + q3k,

where the symbols i, j, k satisfies the following rules of multiplication

i2 = j2 = k2 = ijk = −1,

ij = −ji = k, ki = −ik = j, jk = −kj = i.

We denote the set of quaternions by H.
For a quaternion q we define the scalar part

sq = q0 ∈ R
and vectorial part by

vq = (q1, q2, q3) ∈ R3.

Thus one can write

(2.5) q = (sq, vq) ∈ R× R3

and the multiplication of two quaternions q, p has the form

qp = (sq, vq)(sp, vp) = (sqsp − vq · vp, sqvp + spvq + vq × vp),

where · and × denote the inner product and cross product in R3, respectively.
In the sequel we use all the notations (2.3), (2.4) and (2.5) so one can think of

H as R4 or R× R3.
We introduce the inner product and modulus of the quaternions q, p = p0 +p1i+

p2j + p3k by

〈q, p〉 = q0p0 + q1p1 + q2p2 + q3p3 = sqsp + vq · vp,

|q| =
√
〈q, q〉 =

√
s2
q + |vq|2,

where | | denotes also the norm in Rn (and of course a standard modulus in C).
Thus H is a Hilbert space.

For a quaternion q we introduce the real part operator

Re(q) = q0
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and imaginary part by
Im(q) = q1i + q2j + q3k.

Thus q = Re(q) + Im(q) and its conjugate has the form

q = q0 − q1i− q2j − q3k = (sq,−vq) = Re(q)− Im(q).

Moreover

(2.6) [Im(q)]2 = −|Im(q)|2.

In general, the multiplication of two quaternions q, p is not commutative but its
projection on the scalar part has this property, i.e.

Re(qp) = Re(pq).

However, it is not true in the case of three or more quaternions e.g. Re[ijk] = −1 6=
1 = Re[jik] but for r ∈ H we can write

Re[pqr] = Re[rpq] = Re[qrp](2.7)

i.e. only cyclic permutations are allowed. Moreover, quaternion q commutes with
all other quaternions if and only if q ∈ R.

Now we list some useful formulae

〈q, p〉 = Re(qp) = Re(qp),

(qp) = p q, qq = qq = |q|2, |qp| = |pq| = |p||q|,
1
q

=
q

|q|2
.

H is a noncommutative field and it is evident that it contains R as a subfield. It
also contains C as a subfield.

For a nonzero quaternion q we introduce the argument by

Ark(q) = |Arg(sq + |vq|i)|.

It is easy to see that Ark(q) ∈ [0, π] and Ark(0) is not defined. We define the sector

S(α) = {q ∈ H : Ark(q) < α},

where 0 < α ≤ π.
Let q, p ∈ C1(R,H) then qp ∈ C1(R,H) and

(qp)′(t) = q(t)p′(t) + q′(t)p(t).

Let α, β be quaternions such that |α| = |β| = 1. Then the map g : H 3 q −→
αqβ ∈ H is an orthogonal rotation. Moreover, every orthogonal rotation in H has
this form (cf. [14, Chapter 10]). When α = β then the rotation αqβ affects only
the vectorial part of q.

For q ∈ H we define the exponential of q by

eq = exp(q) =
∞∑

n=0

qn

n!
,

where the series converges absolutely and uniformly on compacts subsets of H. If
p ∈ H and pq = qp then epeq = eqep = ep+q. Let α ∈ R and I ∈ H be such that
I2 = −1. Then eαI = cos(α) + sin(α)I. It is easy to see that I2 = −1 if and only if

I ∈ {q ∈ H : |I| = 1,Re[I] = 0}.
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2.4. Basic notions. We make the general assumptions about the equation (1.1)
that its coefficients a, b, c, d ∈ C(R,H) are T -periodic. By the change of variables

(2.8) p = q−1

we get

p′ =
(

q

|q|2

)′
= q′

1
|q|2

− 2q
Re[qq′]
|q|4

=
1
|q|4

(qqq′ − 2qRe[qq′])

=
q

|q|4
(−Re[qq′] + Im[qq′]) = − q

|q|4
qq′ = − q

|q|4
q′q

=− pq′p

thus the equation (1.1) has the form

ṗ = −a(t)− pb(t)− d(t)p− pc(t)p.

Thus it is well defined in the point ∞ and in fact in the whole sphere clH ' S4.
By compactness of clH it follows that for all σ, t ∈ R the Poincaré map ϕ(σ,t) :
clH −→ clH is well defined.

It is worth mentioning that the change of variables (2.8) in the equation

q̇ = q2a(t)

gives

ṗ = u(t, p) = −1
p
a(t)p

where u is not continuous in the point p = 0 unless a ∈ C(R,R). To see this we
fix t ∈ R and set a(t) = a0 + a1i + a2j + a3k where a0, a1, a2, a3 ∈ R. Without
losing of generality we can assume that a1 6= 0. Let λ ∈ (0,∞). For p = λ we get
u(t, p) = −a(t). Let now p = λj. Then 1

p = − 1
λj and

u(t, p) =
1
λ

j(a0 + a1i + a2j + a3k)λj = −a0 + a1jij − a2j + a3jkj

=− a0 + a1i− a2j + a3k.

Thus u(t, p) 6= −a(t).
We call a solution s : R −→ clH of the equation (1.1) singular if there exists

t0 ∈ R such that s(t0) = ∞. In the other case it is called regular. Singular
solution, when considered in H, is one that blows up. Let −∞ ≤ α < ω ≤ ∞
and s : (α, ω) −→ H be the full solution of (1.1). We call s forward blowing up
(shortly f.b.) or backward blowing up (b.b.) if ω < ∞ or α > −∞, respectively. If
−∞ < α < ω < ∞ then s is called backward and forward blowing up (b.f.b.).

The family {Aι} is called a decomposition of a set X when

• ∅ 6= Aι ⊂ X,
•

⋃
{Aι} = X,

• Aι ∩Aκ = ∅
holds for all ι, κ, ι 6= κ.
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2.5. Fixed points. In the present subsection we state the following improvement
of the Brouwer fixed point theorem. We use them instead of the quaternionic
version of the Wolff–Denjoy theorem.

Lemma 2.1. Let m ≥ 1 and X be a nonempty convex and closed subset of Rm.
Let f ∈ C(X, X) be such that for every x, y ∈ X, x 6= y the inequality

|f(x)− f(y)| < |x− y|(2.9)

holds. If in addition the set f(X) is bounded then there exists exactly one fixed
point x0 ∈ X of f . Moreover, x0 is asymptotically stable and attracting in X.

3. Main results

3.1. Geometric approach. The lack of the quaternionic version of Wolff–Denjoy
theorem does not allow us to prove the uniquenes of the periodic solutions inside
half-spaces in the following theorem.

Theorem 3.1. Let the coefficients a, c ∈ C(R,H), b, d ∈ C(R,R) be T -periodic. If

ac 6≡ 0(3.1)

and there exists the decomposition {A, l, C} of H such that l is a linear hyperplane
and A, C are the half-spaces and the following conditions

a(R) ⊂A ∪ {0},(3.2)

c(R) ⊂C ∪ l(3.3)

hold then the equation (1.1) has at least two T -periodic solutions in H. One of them
is contained in A and the other in C. There are no periodic solutions contained
in l. There are no b.f.b. solutions.

Proof. Let quaternions α, β, |α| = |β| = 1 be such that the orthogonal transforma-
tion g(q) = αqβ fulfills the following conditions

g(l) ={q ∈ H : Re(q) = 0},
g(A) ={q ∈ H : Re(q) > 0},
g(C) ={q ∈ H : Re(q) < 0}.

We make the change of variables

(3.4) p = αqβ.

Then the equation (1.1) has the form

(3.5) ṗ = pαa(t)βp + b(t)p + pd(t) + αc(t)β.

Thus we may assume that the assumptions of the theorem are satisfied with l =
{q ∈ H : Re(q) = 0}, A = {q ∈ H : Re(q) > 0}, C = {q ∈ H : Re(q) < 0}.

Let
{

l̂, Â, Ĉ
}

be the decomposition of the sphere clH corresponding to the de-

composition {l, A, C} of H i.e. l̂ corresponds to the l ∪ {∞} and Â, Ĉ to the
hemispheres.

(i) Let the condition

(3.6) a(R) ⊂ A and c(R) ⊂ C
7



holds. We show that the sets W = [0, T ] ×
(
l̂ ∪ Ĉ

)
⊂ [0, T ] × clH, Z = [0, T ] ×(

l̂ ∪ Â
)
⊂ [0, T ]×clH are T -periodic isolating segments for the process ϕ generated

in clH by the equation (1.1).
We calculate the inner product in R × H of the vector field (1, v(t, q))T and an

outward normal vector n(t, q) to the set R×A in every point of R× l.
It is easy to see that n(t, q) = (0,−1)T . Thus for (t, q) ∈ R× l by (2.6) and (2.7)

we get〈
n(t, q), (1, v(t, q))T

〉
= −Re[qa(t)q + b(t)q + qd(t) + c(t)]

= −Re[q2a(t)]− b(t)Re[q]− d(t)Re[q]−Re[c(t)]

= |Im[q]|2Re[a(t)]−Re[c(t)](3.7)

≥ −Re[c(t)]
> 0.

Finally the vector field (1, v)T is transversal to R × l in every point of R × l and
it points towards R × C. By the change of variables (2.8) the same is true in
the point ∞. Thus the sets W , Z are isolating segments such that W−− = ∅,
W++ = [0, T ]× l̂, Z++ = ∅ and Z−− = [0, T ]× l̂. It follows that

ϕ(0,T )

(
l̂ ∪ Ĉ

)
 Ĉ and ϕ(0,−T )

(
l̂ ∪ Â

)
 Â.(3.8)

(ii) Let now conditions (3.1), (3.2) and (3.3) hold. The sets W and Z may not be
isolating segments because some trajectories during time intervals of positive but
less than T length can be contained in the set [0, T ]× l̂. But the crucial inclusions
(3.8) still hold.

By the Brouwer fixed point theorem there exist at least one T -periodic solution
in both the sets A and C. By (3.8) every solution after entering the set [0, T ] × l̂

enters the set Ĉ in time shorter than T . Thus there are no periodic solutions
contained in l. By (3.1) and (3.2) every solution entering {∞} has to enter the
half-space C in time shorter than T . Thus there are no b.f.b. solutions. �

Example 3.2. By Theorem 3.1 the equation

q̇ = q[j + 2 sin(t)]q + j − sin(t)

has at least two 2π-periodic solutions. Here l = {q = q0 + q1i + q2j + q3k ∈ H :
q2 = 0}.
Remark 3.3. The condition (3.1) can not be weaken to the form a 6≡ 0 6≡ c as shown
in Example 3.4.

Example 3.4. The equation q̇ = qa(t)q+c(t) where a, c are 2π-periodic and given
by

a(t) =

{
0, for t ∈ [0, π],
− sin(t), for t ∈ [π, 2π],

c(t) =

{
2i sin(2t), for t ∈ [0, π],
0, for t ∈ [π, 2π]

with l = {q ∈ H : Re(q) = 0} fulfills all assumptions of Theorem 3.1 except (3.1).
There exists 2π-periodic solution η contained in l and given by

η(t) =

{
−2i cos(2t) + 2i, for t ∈ [0, π],
0, for t ∈ [π, 2π].
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Remark 3.5. In the condition (3.2) the sum A ∪ {0} can not be replaced by A ∪ l.
The examples from [3, 7, 13] of the complex-valued equations

ż = z2 + b(t)z + c(t)

without periodic solutions give examples of b, c ∈ C(R,R) which for the quaternio-
nic-valued equation

q̇ = q2 + b(t)q + c(t)

has no periodic solutions (cf. [2, Corollary 7.2]). In all the cases l = {q = q0 + q1i+
q2j + q3k ∈ H : q1 = 0} ⊃ R.

Remark 3.6. When in assumptions of Theorem 3.1 l = {q ∈ H : Re[q] = 0},
A = {q ∈ H : Re[q] > 0} and C = {q ∈ H : Re[q] < 0} hold then it is possible to
allow b, d ∈ C(R,H). In that case we need to assume that the following condition

Im[b] = −Im[d].(3.9)

is satisfied. Indeed, in (3.7) we get

−Re[b(t)q + qd(t)] = −Re[(b + d)(t)q] = −Re[(b + d)(t)]Re[q] = 0

which does not make the slightest difference in the final inequality.
The form of l, A and C is crucial to avoid the change of variables (3.4) because

the term b(t)q + qd(t) in (3.5) is equal to αb(t)αp + pβd(t)β where Im [αb(t)α] and
Im

[
βd(t)β

]
are the vectors vb(t) and vd(t), respectively, rotated in R3 which usually

destroys the crucial equality (3.9).

Example 3.7. By Remark 3.6 and Theorem 3.1 the equation

q̇ = q
(
1 + eit

)
q + j cos(t)q − qj cos(t)− 1

has at least two 2π-periodic solutions.

3.2. Full description of dynamics. We make a general assumption in the current
subsection that Ark[0] = 0.

Now we present an improvement of Theorem 3.1.

Theorem 3.8. Let the coefficients a, c ∈ C(R,H), b, d ∈ C(R,R) be T -periodic and
Ark(0) = 0. If the conditions (3.1) and

Ark[a] <
π

4
,(3.10)

max
t∈R

Ark[a(t)] + max
t∈R

Ark[−c(t)] ≤ π

2
,(3.11)

Re[b + d] ≥ 0(3.12)

hold then the equation (1.1) has exactly two T -periodic solutions ξ, η in H. More-
over, Re[η] > 0 and η is asymptotically unstable while Re[ξ] < 0 and ξ is asymptot-
ically stable and every other solution in S4 is heteroclinic to them. Every nonperi-
odic solution starting in S

(
π
2

)
is f.b. or enters −S

(
π
2

)
. Every solution starting in

−S
(

π
2

)
stays on for all positive times. There are no b.f.b. solutions.
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Proof. Let ϕ be the process generated by (1.1) and α1 = π
2 −maxt∈R Ark[a(t)]. We

define W = clS(α1) ⊂ clH and Z = −W . Obviously {0,∞} ⊂ W ∩Z. Our goal is
to prove that the following inclusions

ϕ(0,−T )(W ) ⊂ intW,(3.13)

ϕ(0,T )(Z) ⊂ intZ(3.14)

hold. Moreover, there exist unique T -periodic solutions in both the sets W and Z
which are asymptotically unstable or asymptotically stable, respectively. Finally
we prove that every other solution is heteroclinic to the periodic ones.

(i) Let maxt∈R Ark[a(t)] > 0 then it is easy to see that

|vc(t)| ≤ − sc(t) tan(α1),(3.15)

|va(t)| ≤sa(t) tan
(π

2
− α1

)
(3.16)

hold.
Let us assume that Re(a) > 0 and Re(c) < 0. We show that the vector field v

points outward the set W in every point of ∂W . Let q ∈ ∂W \ {0,∞}. An outward
orthogonal vector to W in q has the form

n(q) = −|vq|+ sq
Im(q)
|vq|

.(3.17)

Using (2.7) we estimate the inner product of n(q) and the vector field by

〈v(t, q), n(q)〉 =Re {[qa(t)q + b(t)q + qd(t) + c(t)]n(q)}
=Re {a(t)qn(q)q}+ Re {b(t)qn(q) + n(q)qd(t)}+ Re {c(t)n(q)}

=−Re

{
a(t)

[
s2
q

|vq|
+ |vq|

]
Im[q]q

}
+ [b(t) + d(t)]Re{qn(q)}

− sc(t)|vq|+
sq

|vq|
vc(t) · vq

≥|q|
2

|vq|
Re

{
a(t)

[
|vq|2 − sqIm(q)

]}
− sc(t)|vq| − sq|vc(t)|(3.18)

≥|q|
2

|vq|
[
sa(t)|vq|2 + sqva(t) · vq

]
− sc(t)sq tan (α1) + sqsc(t) tan (α1)

≥|q|2
[
sa(t)|vq| − sq|va(t)|

]
≥|q|2

[
sa(t)sq tan(α1)− sqsa(t) tan

(π

2
− α1

)]
>0.

Obviously, the vector field points outward W in the origin and, via the change of
coordinates (2.8), in ∞. Thus (3.13) holds.

Let now a(t) = 0 and c(t) = 0 be possible. Thus in the direct estimation (3.18)
we get only 〈v(t, q), n(q)〉 ≥ 0 but by (3.1) none trajectory starting in ∂W can stay
there in the whole time interval [0, T ] thus (3.13) holds.

By the Brouwer fixed point theorem there exist a T -periodic solution η inside
intW . Now we prove that η is the unique T -periodic solution in W and it is asymp-
totically unstable and repelling in W . To do that we show that η is asymptotically

10



stable and contracting in W for the equation (1.1) with reversed time

(3.19) q̇ = −qa(−t)q − b(−t)q − qd(−t)− c(−t).

We show that Poincaré map of (3.19) is contracting in W , namely for all solutions
χ, ζ such that χ(0), ζ(0) ∈ W and χ 6= ζ the inequality

d

dt
|ζ(t)− χ(t)|2 ≤ 0

holds for every t ∈ [0, T ] and for some t ∈ [0, T ] is strict. It is enough to show that
the inequality 〈ζ(t)− χ(t), ζ ′(t)− χ′(t)〉 ≤ 0 holds for every t ∈ [0, T ] and is strict
for some t ∈ [0, T ]. Thus by (2.7)

〈ζ − χ, ζ ′ − χ′〉 =Re
[
(ζ − χ) (−ζaζ − bζ − ζd + χaχ + bχ + χd)

]
=Re

[
−(ζ − χ) (ζaζ − χaχ)

]
−Re

[
(ζ − χ)[b(ζ − χ) + (ζ − χ)d]

]
=−Re

[
(ζ − χ) (ζaζ − ζaχ + ζaχ− χaχ)

]
− |ζ − χ|2Re[b + d](3.20)

≤−Re
[
(ζ − χ) (ζa(ζ − χ) + (ζ − χ)aχ)

]
=− |ζ − χ|2Re[a(ζ + χ)]
≤0

holds. This follows by

Re[a(ζ + χ)] =sasζ+χ − va · vζ+χ

≥sasζ+χ − sa tan
(π

2
− α1

)
sζ+χ tan(α1)

=0,

where |vζ(t)+χ(t)| ≤ sζ(t)+χ(t) tan(α1) for all t > 0 but for t when ζ(t)+χ(t) ∈ intW
and a(t) 6= 0 the inequalities are strict.

Now we apply Lemma 2.1 to the W and ϕ(0,−T ) which implies the uniqueness
of the periodic solution η inside W . Moreover, η is asymptotically unstable and
repelling in W .

(ii) Let maxt∈R Ark[a(t)] = 0. The case is much simpler then the previous one.
Details are left to the reader.

By the estimation similar to (3.18) one can prove (3.14). Moreover, by calcula-
tions analogous to (3.20) one can use Lemma 2.1 and prove that there exists exactly
one periodic solution ξ inside Z. It is asymptotically stable and attracting in Z.

Now we show that every solution χ such that η 6= χ 6= ξ is heteroclinic from η
to ξ. It is enough to show that for every α ∈ (α1, π − α1) and t ∈ [0, T ] such that
a(t) 6= 0 the vector field v in every point of the set ∂S(α) \ {0,∞} points outward
S(α).

Let us fix α ∈ (α1, π − α1) and q ∈ ∂S(α) \ {0,∞}. An outward orthogonal
vector to S(α) in q is given by (3.17). Repeating (3.18) we get

〈v(t, q), n(q)〉 ≥|q|2
[
sa(t)|vq| − |sq||va(t)|

]
− sc(t)|vq| − |sq||vc(t)|

=(?).

11



When α = π
2 then sq = 0 and (?) > 0 provided (ac)(t) 6= 0. In the other case

|vq| = |sq tan(α)| holds. Thus by (3.15) and (3.16) we get

(?) ≥|q|2
[
sa(t) |sq tan(α)| − |sq|sa(t) tan

(π

2
− α1

)]
− sc(t) |sq tan(α)|+ |sq|sc(t) tan(α1)

>0,

provided (ac)(t) 6= 0. Finally every nonperiodic solution is heteroclinic.
When α = π

2 then ∂W = l̂ where l = {q ∈ H : Re[q] = 0}. Thus the nonexistence
of b.f.b. solutions follows by the same argument as used in the proof of Theorem 3.1.

�

Example 3.9. By Theorem 3.8 the equation

q̇ = q(2 + k)q − 2 + ejt

has exactly two 2π-periodic solutions. Here Ark[a] < π
6 and Ark[−c] ≤ π

6 .

Remark 3.10. It is possible to allow b, d ∈ C(R,H) in Theorem 3.8 but it needs to
assume (3.9) (cf. Remark 3.6). The calculation (3.18) is valid due to the equality
qn(q) = n(q)q.

Example 3.11. By Remark 3.10 and Theorem 3.8 the equation

q̇ = q2 − ejtq + qejt − 1

has exactly two 2π-periodic solutions.

Remark 3.12. The real axis is distinguished in formulation of Theorem 3.8. It is
done to simplify the statement of the theorem. It can be omitted by an appropriate
change of variables (cf. Example 3.13 and 3.14).

Example 3.13. It is impossible to apply directly Theorem 3.8 to the equation

q̇ = qjq + 2j − jekt

because Ark[a] ≡ π
2 . But after the change of variables p = jq we get

ṗ = p2 − 2 + ekt.

Now by Theorem 3.8 we get exactly two 2π-periodic solution of both equations.

Example 3.14. Let us consider the equation

q̇ = −q2 + c(t)

which appears in the Euler vorticity dynamics (cf. [11]). By the change of variables
p = −q we get

ṗ = p2 − c(t).

Now, by Theorem 3.8 if c ∈ C(R,H) is T -periodic then both equations has exactly
two T -periodic solutions provided c 6≡ 0 and Ark[c] ≤ π

2 .
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3.3. Simple zeros of the vector field. Let us assume that the equation (1.1)
has the following form

(3.21) q̇ = u(t, z) = [q − ξ(t)]a(t)[q − η(t)] + c(t).

If c ≡ 0 then ξ, η : R −→ H are the branches of simple zeros of the vector field
otherwise c is treated as perturbation.

Remark 3.15. We investigate the vector field u instead of v because the quaternionic
polynomial of order two can have more than two zeros (e.g. q2 + 1). Thus finding
a “nice” branches of simple zeros could be difficult (cf. [10]).

We state the main theorem in the present subsection.

Theorem 3.16. Let a, c ∈ C(R,H) and ξ, η ∈ C1(R,H) are T -periodic. If there
exist constants E,F > 0, κ, l ∈ R such that the inequalities

Re[a(t)(η(t)− ξ(t))] > E|a(t)||η(t)|κ +
(

|κ|
|η(t)|

+
1

E|η(t)|κ

)
|η′(t)|+ |c(t)|

E|η(t)|κ
,

(3.22)

Re[a(t)(η(t)− ξ(t))] > F |a(t)||ξ(t)|l +
(

|l|
|ξ(t)|

+
1

F |ξ(t)|l

)
|ξ′(t)|+ |c(t)|

F |ξ(t)|l

(3.23)

hold for every t ∈ R then the equation (3.21) has at least two T -periodic solutions
in H. If one of the inequalities (3.22), (3.23) holds then the equation (3.21) has at
least one T -periodic solution in H.

Proof. We write K = {q ∈ H : |q| ≤ 1} and denote by ϕ the process generated by
(3.21).

Let us assume that (3.22) holds. Our goal is to construct a T -periodic isolating
segment W ⊂ [0, T ] × H for ϕ homeomorphic to the cylinder [0, T ] ×K such that
the vector field (1, u)T points outward W in every point of its side.

We define segment

W = {(t, q) ∈ [0, T ]×H : |q − η(t)| ≤ M(t)}

and homeomorphism s : [0, T ]×K −→ W ⊂ [0, T ]×H by

s(t, q) = (t, η(t) + M(t)q)

where M ∈ C1(R, (0,∞)) is T -periodic. It is easy to see that s([0, T ]× ∂K) is the
side of W and an outward orthogonal vector to W in the point s(t, q) has the form

n(t, q) = (−Re[η′(t)q + M ′(t)], q)T .

We estimate the inner product of (1, u)T and n in every point of the side W by〈
n(t, q), (1, (u ◦ s)(t, q))T

〉
=−Re[η′(t)q + M ′(t)]

+ Re {q [η(t)− ξ(t) + M(t)q] a(t)M(t)q}+ Re [qc(t)]

≥− |η′(t)| − |M ′(t)|+ M(t)Re[a(t)(η(t)− ξ(t))]

−M2(t)|a(t)| − |c(t)|
=(?).
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Thus if (?) > 0 then the vector field points outward W . Let M(t) = E|η(t)|κ. Thus
using

|M ′| =
∣∣(E|η|κ)′

∣∣ =
∣∣Eκ|η|κ−2Re[η′η]

∣∣ ≤ E|κ||η|κ−1|η′|

the inequality (?) > 0 follows by (3.22). T -periodicity of η and M implies that W is
a T -periodic isolating segment. Moreover ϕ(0,−T )(W0) ⊂ W0 thus by the Brouwer
fixed point theorem there exists at least one T -periodic solution inside W .

Let now (3.23) holds. We write M(t) = F |η(t)|l. Thus by the argument analo-
gous to above the set

Z = {(t, q) ∈ [0, T ]×H : |q − ξ(t)| ≤ M(t)}

is a T -periodic isolating segment such that the vector field (1, u)T points inward Z
in every point of its side. Thus by the Brouwer fixed point theorem there exists at
least one T -periodic solution inside Z.

Let both (3.22) (3.23) hold. There exist periodic solutions inside W and Z. To
finish the proof it is enough to show that at least two of them are different. Let
Ŵ = W \ Z. By (3.22) we get ξ(t) 6= η(t) for every t ∈ R thus Ŵt 6= ∅ for every
t ∈ R. Moreover, the vector field points outward Ŵ in every point of it side thus
it is an isolating segment and by the Brouwer fixed point theorem there exist a
periodic solution α inside Ŵ . As above there exists a periodic solution β inside Z
so α 6= β. �

We present an improvement of Theorem 3.16.

Theorem 3.17. Let assumptions of Theorem 3.16 be fulfilled. If in addition the
inequalities

Re[a(t)(η(t)− ξ(t)] > 2E|a(t)||η(t)|κ,(3.24)

Re[a(t)(η(t)− ξ(t)] > 2F |a(t)||ξ(t)|l(3.25)

hold for every t ∈ R then the equation (3.21) has at least two T -periodic solu-
tions in H. One of them is asymptotically stable and another one is asymptotically
unstable.

If inequalities (3.22) and (3.24) hold thus there exists at least one T -periodic
asymptotically unstable solution in H. If (3.23) and (3.25) hold then there exists
at least one T -periodic asymptotically stable solution in H.

Proof. Let us assume that (3.23) and (3.25) hold. Let ϕ be the process generated
by (3.21) and Z be an isolating segment as in the proof of Theorem 3.16. Our goal
is to apply Lemma 2.1 to the set Z0 and map ϕ(0,T )|Z0 . Let χ and ζ be different
solutions of (3.21) such that χ(0), ζ(0) ∈ Z0. Thus as in the proof of Theorem 3.8
it is enough to show that 〈ζ − χ, ζ ′ − χ′〉 < 0. The vector field points inward Z in
every point of the side of Z so |ζ(t) − ξ(t)| ≤ F |ξ(t)|l and |χ(t) − ξ(t)| ≤ F |ξ(t)|l

14



for every t ∈ [0, T ]. Finally we get

〈ζ − χ, ζ ′ − χ′〉 =Re
{
ζ − χ[(ζ − ξ)a(ζ − η)− (χ− ξ)a(χ− η)]

}
=Re

{
ζ − χ[(ζ − ξ)a(ζ − η)− (ζ − ξ)a(χ− η)]

}
+ Re

{
ζ − χ[(ζ − ξ)a(χ− η)− (χ− ξ)a(χ− η)]

}
=Re

{
ζ − χ[(ζ − ξ)a(ζ − χ) + (ζ − χ)a(χ− η)]

}
=|ζ − χ|2Re {a[ζ − ξ + χ− ξ + ξ − η]}

≤|ζ − χ|2
{
Re[a(ξ − η)] + 2F |a||ξ(t)|l

}
<0

by (3.25). Thus the T -periodic solution inside Z is asymptotically stable.
The technical details of the proof when inequalities (3.22) and (3.24) hold are

similar to the above. �

Example 3.18. By Theorems 3.16 and 3.17 the equation

q̇ =
[
q − ejt

]
i
[
q + 10i + ekt

]
+ 1

has at least two 2π-periodic solutions in H. One of them is asymptotically stable
and another one is asymptotically unstable. It is enough to take E = F = 1 and
κ = l = 0.

Remark 3.19. For a locally Lipschitz mapping f : R −→ H and an open set U ⊂ R
let L(U, f) be a Lipschitz constant of f in the set U . We write

Lf (t) = inf{L(U, f) : U is a neighborhood of t}.

Obviously, if f ∈ C1(R,C) then Lf (t) = |f ′(t)|.
It is easy to see (cf. [17, 16]) that it is enough ξ, η ∈ C(R,H) be locally Lipschitz

in Theorems 3.16 and 3.17. In this case in (3.22) and (3.23) terms |η′(t)| and |ξ′(t)|
should be replaced by Lη(t) and Lξ(t), respectively.

We carry over a concept of the critical line condition from the complex case (cf.
[17, 16]). The present formulation is quite different from the complex one which is
due to the special form of the equation (3.21).

Definition 3.20. We call the set {q ∈ H : Re[q] = 0} the critical hyperplane. The
equation (3.21) fulfills the critical hyperplane condition if the inequality

Re[a(t)(η(t)− ξ(t))] > 0(3.26)

holds for every t ∈ R.

By comparing the growth rates of the both sides of the inequalities (3.22), (3.23),
(3.24) and (3.25) one can prove the following corollaries.

Corollary 3.21. Let a, c, ξ, η ∈ C(R,H) be T -periodic and ξ, η be Lipschitz. If the
equation (3.21) fulfills the critical hyperplane condition (3.26) then every equation

q̇ =[q − ξ(t)]Ra(t)[q − η(t)] + c(t),(3.27)

q̇ =[q −Rξ(t)]a(t)[q −Rη(t)] + c(t),(3.28)

q̇ =[q −Rξ(t)]Ra(t)[q −Rη(t)] + c(t)(3.29)

has at least two T -periodic solutions in H provided R ∈ R is big enough. One of
them is asymptotically stable and another one is asymptotically unstable.
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Proof. Let B = min{Re[a(t)(η(t) − ξ(t))] : t ∈ R} > 0, A = max{|a(t)| : t ∈ R},
C = max{|c(t)| : t ∈ R}, D = max{|η′(t)| : t ∈ R}. We set κ = 0.

We fix E such small that B − 2EA > 0. Then inequalities (3.22) and (3.24) for
(3.27) are satisfied provided R > C+D

E(B−EA) .
Now we fix E such big that B − D

E > 0 Then inequalities (3.22) and (3.24) for

(3.28) are satisfied provided R > max
{

E2A+C
EB−D , 2EA

B

}
.

Finally we fix E > 0. Then inequalities (3.22) and (3.24) for (3.28) are satisfied
provided R > max

{
EA
B + C+D

EB , 1, 2EA
B

}
.

The proof that inequalities (3.23) and (3.25) hold is analogous. �

Example 3.22. By Theorems 3.16 and 3.17 the equation

q̇ =
(
q − kejt

)
R

(
q − 3 + iekt

)
has at least two 2π-periodic solutions (one asymptotically stable and another one
asymptotically unstable) provided R > 4

9 . Here ξ = kejt, η = 3− iekt, |ξ| = |ξ′| =
|η′| ≡ 1, |η| ≡

√
10. We take κ = l = 0 and E = F ≈ 3

2 .

Corollary 3.23. Let a, ξ, η ∈ C(R,H) be 1-periodic and ξ, η be Lipschitz. If the
equation (3.21) fulfills the critical hyperplane condition (3.26) then the equation

q̇ =
[
q − ξ

(
t

T

)]
a

(
t

T

) [
q − η

(
t

T

)]
has at least two T -periodic solutions in H provided T is big enough. One of them
is asymptotically stable and another one is asymptotically unstable.

Proof. Let A,B, D be as in the proof of Corollary 3.21. We set κ = 0 and fix E such
small that B− 2EA > 0. Then inequalities (3.22) and (3.24) are satisfied provided
R > D

E(B−EA) . The proof that inequalities (3.23) and (3.25) hold is analogous. �

Example 3.24. By Theorems 3.16 and 3.17 the equation

q̇ =
(
q − ke

jt
T

) (
q − 3 + ie

kt
T

)
has at least two 2πT -periodic solution (one asymptotically stable and another one
asymptotically unstable) provided T > 4

9 . Here ξ = ke
jt
T , η = 3 − ie

kt
T , |ξ| ≡ 1,

|ξ′| = |η′| ≡ 1
T , |η| ≡

√
10. We take κ = l = 0 and E = F ≈ 3

2 .

The method presented in Theorems 3.16 and 3.17 detects the existence of peri-
odic solutions when |ξ, |η|, |a| and T are big enough. Unfortunatelly it can fail in
the case of small ones as shown in the following examples.

Example 3.25. By Theorem 3.8 and Remark 3.10 the equation

q̇ =R
[
q2 +

(
3 + keit

)
q − q

(
3 + keit

)
−

(
3 + keit

)2
]

=
(
q + 3 + keit

)
R

(
q − 3− keit

)
has exactly two 2π-periodic solutions in H for every R > 0. Here l = {q ∈ H :
Re(q) = 0}. But Theorem 3.16 implies the existence of at least two periodic
solutions only for R > R0 where R0 > 0. Here η = −ξ = 3 + keit. By setting
κ = l = 0 and E = F = 3 we get R > 1

9 .
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Example 3.26. By Theorem 3.8 and Remark 3.10 the equation

q̇ =q2 +
(
3 + ke

it
T

)
q − q

(
3 + ke

it
T

)
−

(
3 + ke

it
T

)2

=
(
q + 3 + ke

it
T

) (
q − 3− ke

it
T

)
has exactly two 2πT -periodic solutions in H for every R > 0. Here l = {q ∈
H : Re(q) = 0}. But Theorem 3.16 implies the existence of at least two periodic
solutions only for T > T0 where T0 > 0. Here η = −ξ = 3 + ke

it
T . By setting

κ = l = 0 and E = F = 3 we get T > 1
9 .

3.4. Double zeros of the vector field. Let us assume that the equation (1.1)
has the following form

(3.30) q̇ = u(t, z) = [q − f(t)]a(t)f ′(t)[q − f(t)] + c(t).

When c ≡ 0 then f : R −→ H is the branch of double zeros of the vector field,
otherwise c is treated as perturbation.

Remark 3.27. The term f ′(t) comes from the complex case (cf. [17, 16]).

We state the main theorem in the present subsection.

Theorem 3.28. Let a ∈ C1(R,H \ {0}), c ∈ C(R,H) and f ∈ C2(R,H) be T -
periodic. If there exist numbers α, κ ∈ R such that the inequalities

Ark[a(t)] <α ≤ π

6
,(3.31)

|f ′(t)| sin(α) >|κ||a(t)|κ−1|a′(t)|+ 2|a(t)|κ |f
′′(t)|

|f ′(t)|
+ |c(t)|,(3.32)

cos(Ark[a(t)] + 2α) >[1 + sin(α)]|a(t)|−2κ−1(3.33)

hold for every t ∈ R than the equation (3.30) has at least two T -periodic solutions
in H. One of them is asymptotically unstable and another one is asymptotically
stable. Moreover the equation has infinitely many solutions which are heteroclinic
to the periodic ones.

Proof. Let ϕ denote the process generated by the equation (3.30). Our goal is to
construct W , Z two T -periodic isolating segments for ϕ and apply Lemma 2.1.

Throughout the current proof we assume Ark[0] = 0 and write

S2 =
{
q ∈ H : q2 = −1

}
.

We define a map s : R× [0, 1]× [0, 1]× S2 −→ R×H by

s(t, x, y, I) =
(

t, f(t) + M(t)x
f ′(t)
|f ′(t)|

[cos(α) + y sin(α)I]
)

,

where M ∈ C1(R, (0,∞)) is T -periodic. We set

W = s
(
[0, T ]× [0, 1]× [0, 1]× S2

)
.

It is easy to see that W0 = WT and Wt is the set {q ∈ H : Ark[q] ≤ α, Re[q] ≤ M(t)}
rotated by f ′(t)

|f ′(t)| and shifted by f(t). Let

K =s
(
[0, T ]× [0, 1]× {1} × S2

)
,

L =s
(
[0, T ]× {1} × [0, 1]× S2

)
.
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We prove that W is an isolating segment such that

W++ =∅,(3.34)

W−− =K ∪ L.(3.35)

First of all ∂(Wt) = Kt ∪ Lt thus to prove (3.34) and (3.35) it is enough to show
that in every point of K ∪ L the vector field (1, u)T points outward the set W .

It is easy to see that an outward orthogonal vector to W in the point s(t, x, 1, I) ∈
K is given by

n(t, x, 1, I) =
(

n1(t, x, 1, I),
f ′(t)
|f ′(t)|

IeαI

)T

∈ R×H ' R× R4,

where

n1(t, x, 1, I) = Re

[
Ie−αI |f ′(t)|+ M ′(t)xI + M(t)xI

f ′(t)
|f ′(t)|

(
f ′(t)
|f ′(t)|

)′]
.

The vector field u in the set K has the form

(u ◦ s)(t, x, 1, I) = M(t)x
f ′(t)
|f ′(t)|

eαIa(t)f ′(t)M(t)x
f ′(t)
|f ′(t)|

eαI + c(t).

We estimate the inner product of n and vector field (1, u)T in every point of K by

〈n, (1, u ◦ s)T 〉 =Re

[
Ie−αI |f ′|+ M ′xI + MxI

f ′

|f ′|

(
f ′

|f ′|

)′]

+ Re

[
f ′

|f ′|
IeαI

{
Mx

f ′

|f ′|
eαIaf ′Mx

f ′

|f ′|
eαI + c

}]
≥|f ′|Re

[
Ie−αI

]
− |M ′| −M

∣∣∣∣∣
(

f ′

|f ′|

)′∣∣∣∣∣
−Re

[
e−αII

f ′

|f ′|
Mx

f ′

|f ′|
eαIaf ′Mx

f ′

|f ′|
eαI

]
− |c|

≥|f ′| sin(α)− |M ′| − 2M
|f ′′|
|f ′|

−M2x2|f ′|Re
[
IeαIa

]
− |c|

=(?),

where ∣∣∣∣∣
(

f ′

|f ′|

)′∣∣∣∣∣ =

∣∣∣∣∣ f ′′

|f ′|
− f ′

Re
[
f ′′f ′

]
|f ′|3

∣∣∣∣∣ ≤ 2
|f ′′|
|f ′|

.(3.36)

It is enough to show that (?) > 0. By (3.31) we get

−Re
[
IeαIa

]
= Re

[
e(−

π
2 +α)Ia

]
≥ Re

[
e(−

π
2 +α−Ark[a])I

]
> 0,

so it is enough to show that

|f ′| sin(α) > |M ′|+ 2M
|f ′′|
|f ′|

+ |c|(3.37)

holds. But taking M(t) = |a(t)|κ one can get |M ′| =
∣∣κ|a|κ−2Re[aa′]

∣∣ ≤ |κ||a|κ−1|a′|
and the inequality (3.37) follows by (3.32).
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Now it is easy to see that an outward orthogonal vector to W in the point
s(t, 1, y, I) ∈ L is given by

n(t, 1, y, I) =
(

n1(t, 1, y, I),
f ′(t)
|f ′(t)|

)T

∈ R×H ' R× R4,

where

n1(t, 1, y, I) =−Re {|f ′(t)|}

−Re

{[
M ′(t) + M(t)

f ′(t)
|f ′(t)|

(
f ′(t)
|f ′(t)|

)′]
[cos(α) + y sin(α)I]

}
.

The vector field u in the set L has the form

(u ◦ s)(t, 1, y, I) =M(t)
f ′(t)
|f ′(t)|

[cos(α) + y sin(α)I]a(t)f ′(t)

·M(t)
f ′(t)
|f ′(t)|

[cos(α) + y sin(α)I] + c(t).

We estimate the inner product of n and the vector field (1, u)T in every point of L
using (3.36) and (3.37) by

〈n, (1, u ◦ s)T 〉 =−Re {|f ′|} −Re {M ′[cos(α) + y sin(α)I]}

−Re

{
M

f ′

|f ′|

(
f ′

|f ′|

)′
[cos(α) + y sin(α)I]

}

+ Re

[
f ′

|f ′|
M

f ′

|f ′|
[cos(α) + y sin(α)I]af ′M

· f ′

|f ′|
[cos(α) + y sin(α)I]

]
+ Re

[
f ′

|f ′|
c

]
≥− |f ′| − |M ′| − 2M

|f ′′|
|f ′|

+ M2|f ′|Re
{
a[cos(α) + y sin(α)I]2

}
− |c|

>− |f ′|[1 + sin(α)] + M2|f ′|Re
{
ae2αI

}
≥M2|f ′||a| cos(Ark[a] + 2α)− |f ′|[1 + sin(α)]

=(??)

But by (3.33) the inequality (??) > 0 holds. Finally (3.34) and (3.35) hold. Thus
ϕ(0,−T )(W0) ⊂ W0 and there exists at least one periodic solution of (3.30) inside
W .

Now we define a map ŝ : R× [0, 1]× [0, 1]× S2 −→ R×H by

ŝ(t, x, y, I) =
(

t, f(t)−M(t)x
f ′(t)
|f ′(t)|

[cos(α) + y sin(α)I]
)

,

where M ∈ C1(R, (0,∞)) is T -periodic. We set

Z = ŝ
(
[0, T ]× [0, 1]× [0, 1]× S2

)
.

Let

K̂ =ŝ
(
[0, T ]× [0, 1]× {1} × S2

)
,

L̂ =ŝ
(
[0, T ]× {1} × [0, 1]× S2

)
.
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We prove that Z is an isolating segment such that

Z++ =K̂ ∪ L̂,

Z−− =∅.
We do it similarly to the case of W . The only difference is that the vector field
(1, u)T points inward the set Z in every point of K̂ ∪ L̂. Thus ϕ(0,T )(Z0) ⊂ Z0 and
there exists at least one periodic solution of (3.30) inside Z.

Now our goal is to prove that there is exactly one T -periodic solution inside
Z and it is asymptotically stable. Moreover, we prove that there is exactly one
T -periodic solution inside W and it is asymptotically unstable.

First we deal with Z. Our goal is to use Lemma 2.1 for ϕ(0,T )|Z0 and Z0. It
is easy to see that Z0 is convex. Let ξ̂, η̂ be distinct solutions of (3.30) such that
ξ̂(0) ∈ Z0 and η̂(0) ∈ Z0. Then ξ̂([0, T ]) ⊂ Z and η̂([0, T ]) ⊂ Z. As in the proof of
Theorem 3.8 it is enough to show that〈

ξ̂(t)− η̂(t), ξ̂′(t)− η̂′(t)
〉

< 0

holds for every t ∈ (0,∞). For t ≥ 0 we can write ξ̂(t) = f(t)+ξ(t), η̂(t) = f(t)+η(t)
where there exist functions xξ, xη : (0,∞) −→ (0, 1), yξ, yη : (0,∞) −→ [0, 1),
Iξ, Iη : (0,∞) −→ S2 such that

ξ(t) =−M(t)xξ(t)
f ′(t)
|f ′(t)|

[cos(α) + yξ(t) sin(α)Iξ(t)],

η(t) =−M(t)xη(t)
f ′(t)
|f ′(t)|

[cos(α) + yη(t) sin(α)Iη(t)].

Then 〈
ξ̂ − η̂, ξ̂′ − η̂′

〉
=

〈
ξ − η, ξ̂′ − η̂′

〉
=Re

{
ξ − η

[
ξaf ′ξ + c− ηaf ′η − c

]}
=Re

{
ξ − η

[
ξaf ′ξ − ξaf ′η + ξaf ′η − ηaf ′η

]}
=Re

{
ξ − η

[
ξaf ′(ξ − η) + (ξ − η)af ′η

]}
=|ξ − η|2Re

{
af ′(ξ + η)

}
=− |ξ − η|2|f ′|M

{
xξRe {a[cos(α) + yξ sin(α)Iξ]}

+ xηRe {a[cos(α) + yη sin(α)Iη]}
}

<0

because by (3.31) one gets

Re {a[cos(α) + yξ sin(α)Iξ]} ≥Re {a[cos(α) + sin(α)Iξ]}
≥|a| cos(Ark[a] + α)
>0.

Thus by Lemma 2.1 there exists exactly one T -periodic solution ζ inside Z. It
is asymptotically stable and attracting in Z.

In similar way we apply Lemma 2.1 to W and prove that there exist exactly one
T -periodic solution λ inside W . It is asymptotically unstable and repelling in W .
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It is easy to see that W ∩Z = {(t, q) ∈ [0, T ]×H : q = f(t)}. Thus every solution
ξ of (3.30) such that ξ(t) ∈ W ∩ Z is heteroclinic from λ to ζ. �

Example 3.29. By Theorem 3.28 the equation

q̇ =
[
q − 4ekt

] (
−48ke−kt

) [
q − 4ekt

]
+ j

has at least two T -periodic solutions in H and infinitely many solutions which are
heteroclinic to them. Here f(t) = 4ekt, a ≡ 16, α = π

6 and κ = − 3
10 .

Remark 3.30. Theorem 3.28 holds also for the equation

q̇ = [q − f(t)]f ′(t)a(t)[q − f(t)] + c(t).

The proof is almost the same. We define s in a bit different way, namely

s(t, x, y, I) =
(

t, f(t) + M(t)x [cos(α) + y sin(α)I]
f ′(t)
|f ′(t)|

)
.

There is also a different order of terms in an outward orthogonal vector n.

Remark 3.31. It is enough in Theorem 3.28 to assume that a ∈ C(R,H \ {0}) is
T -periodic and locally Lipschitz. In that case one uses La(t) instead of |a′(t)| in
the inequality (3.32) (cf. Remark 3.19).

Corollary 3.32. Let a ∈ C(R,H\{0}), f ∈ C2(R,H) be T -periodic and a be locally
Lipschitz. If the inequalities |f ′(t)| > 0 and Ark[a(t)] < π

6 hold for every t ∈ R then
every equation

q̇ =[q − f(t)]Ra(t)f ′(t)[q − f(t)],

q̇ =[q − f(t)]f ′(t)Ra(t)[q − f(t)]

has at least two T -periodic solutions in H provided R ∈ R is big enough. One of
them is asymptotically unstable and another one is asymptotically stable. Moreover
every equation has infinitely many solutions which are heteroclinic to the periodic
ones.

Proof. We fix α = π
6 and κ = − 1

4 . The left hand side of (3.32) does not depend on
R and is positive while the right hand side is proportional to R− 1

4 . Similarly, the
left hand side of (3.33) does not depend on R and is positive while the right hand
side is proportional to R− 1

2 . �

Example 3.33. By Theorem 3.28 and Remark 3.30 the equation

q̇ =
[
q − ekt

] (
−ke−ktRei π

12
) [

q − ekt
]

has at least two T -periodic solutions in H and infinitely many solutions which
are heteroclinic to them provided R > R0 where R0 < 100. Here f(t) = ekt,
a(t) ≡ Rei π

12 , α = π
6 and κ = − 61

200 .
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[1] J. Campos. Möbius transformations and periodic solutions of complex Riccati equations. Bull.
London Math. Soc., 29(2):205–215, 1997.

[2] J. Campos and J. Mawhin. Periodic solutions of quaternionic-valued ordinary differential
equations. Ann. Mat. Pura Appl. (4), 185(suppl.):S109–S127, 2006.

[3] J. Campos and R. Ortega. Nonexistence of periodic solutions of a complex Riccati equation.
Differential Integral Equations, 9(2):247–249, 1996.

[4] C. G. Cullen. An integral theorem for analytic intrinsic functions on quaternions. Duke Math.
J., 32:139–148, 1965.

[5] A. Dold. Lectures on algebraic topology. Classics in Mathematics. Springer-Verlag, Berlin,
1995. Reprint of the 1972 edition.
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