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Abstract

Let X be an analytic subset of pure dimension n of an open set U ⊂
Cm and let E be a Nash subset of U such that E ⊂ X. Then for every
a ∈ E there is an open neighborhood V of a in U and a sequence {Xν}
of complex Nash subsets of V of pure dimension n converging to X ∩ V
in the sense of holomorphic chains such that the following hold for every
ν ∈ N : E∩V ⊂ Xν and the multiplicity of Xν at x equals the multiplicity
of X at x for every x in a dense open subset of E ∩ V.

Keywords analytic set germ, Nash set germ, approximation
MSC (2000): 32B10, 32C25

1 Introduction and main results

A natural question in analysis and geometry is whether analytic objects can
be approximated by simpler algebraic ones with similar properties. Besides the
fact that the question presents an independent interest, it is strongly motivated
by applications. In particular, algebraic approximation is one of the central
techniques used in numerical computations. This paper addresses the question
in the case where the approximated objects are (germs of) complex analytic
sets whereas the approximating ones are (germs of) complex Nash sets (i.e. the
unions of irreducible analytic components of algebraic sets intersected with an
open subset of a complex vector space, see Section 2.1). The approximation is
expressed by means of the convergence of holomorphic chains (for a de�nition
see Section 2.3).

Since the sixties of the last century, there has been interest in the problem of
transforming the germ of an analytic set in Km onto an algebraic germ in Km,
where K = C or R (see the articles by M. Artin [2], J. Bochnak [8], J. Bochnak
and W. Kucharz [9], M. A. Buchner and W. Kucharz [13], T. Mostowski [22],
A. Nobile [23], J. Cl. Tougeron [31], H. Whitney [35]). This problem is related
to what is discussed in the present paper in the following way. Let φ : V → W
be a biholomorphism where V and W are complex algebraic (or Nash) and
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complex analytic subsets of an open ball B ⊂ Cm respectively. Then for every
a ∈ W there exist local approximations of W in a neighborhood of a by Nash
sets φν(V ∩ B̃) where {φν : B̃ → B} is a sequence of polynomial injections
converging uniformly to φ in some neighborhood B̃ ⊂ B of φ−1(a).

Unfortunately, not every germ of an analytic set is biholomorphically equiv-
alent to an algebraic germ as was �rst observed by H. Whitney [35]. Then such
an analytic germ is not equivalent to a Nash germ either (a consequence of the
equivalence of every Nash germ to an algebraic one, proved by J. Bochnak and
W. Kucharz [9]). Nevertheless, local approximations by Nash sets exist for every
analytic set, as shown in [5] and [6] (see also [4]). In particular, in [6] it is proved
that in a neighborhood of a �xed point the order of tangency of approximating
Nash sets and the limit set can be arbitrarily high. (Let us mention that the
�rst results on approximation of analytic sets by higher order algebraic varieties
are due to R. W. Braun, R. Meise and B. A. Taylor (see [11]).)

The simplest biholomorphic invariant of an analytic set X is its multiplicity
µx(X) at a given point x. Thus a natural question arises whether X can be
approximated by a sequence {Xν} of Nash sets in such a way that µx(X) =
µx(Xν) for every ν and every x in a �xed set E ⊂ X∩

⋂∞
ν=1Xν . The a�rmative

answer to the question in the case where E is an isolated point is given in [6].
It follows from the above mentioned result of that paper. In the present article
we show that such approximation is possible in a certain neighborhood of every
�xed point along any Nash subvariety with a removed nowhere dense analytic
subset. This requires a di�erent approach that the isolated point case since
we cannot hope to obtain an arbitrarily high order of approximation along an
arbitrary Nash subvariety of X.

Assuming the notation of Section 2, and treating analytic sets as holomorphic
chains with components of multiplicity one, we prove the following

Theorem 1.1 Let X be an analytic subset of pure dimension n of an open set
Ω in Cm and let E be a Nash subset of Ω such that E ⊂ X. Then for every
x0 ∈ E there is an open neighborhood V of x0 in Ω and a sequence {Xν} of
complex Nash subsets of V of pure dimension n converging to X∩V in the sense
of holomorphic chains such that for every ν ∈ N the following hold:
(1) E ∩ V ⊂ Xν ,
(2) µx(Xν) = µx(X) for every x ∈ (E ∩ V ) \ Fν where Fν is a nowhere dense

analytic subset of E ∩ V.

In general in the assertion of Theorem 1.1 we cannot drop the assumption
that the multiplicities coincide outside a thin subset of E as the following ex-
ample shows.

Example. De�ne

X = {(x, y, t, z) ∈ C4 : z2(z − y + et) + x4 = 0},

E = {(x, y, t, z) ∈ C4 : x = z = 0}.
Then for every (0, y0, t0, 0) ∈ E the cone tangent to X at (0, y0, t0, 0) inter-
sects the space {03} ×C at the isolated point {04}. Hence, by Proposition 2.3,
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µ(0,y0,t0,0)(X) = µ(0,y0,t0,0)(ρ|X), where ρ : C3
x,y,t × Cz → C3

x,y,t is a natural
projection. This implies that µ(0,y0,t0,0)(X) = 2 for every (0, y0, t0, 0) ∈ E \ F
where

F = {(0, y, t, 0) ∈ C4 : y = et}

and µ(0,y0,t0,0)(X) = 3 for (0, y0, t0, 0) ∈ F. Now, it is easy to see that the
subset of E of points at which the multiplicity of Xν equals 3 cannot be a
transcendental curve for any Nash set Xν .

On the other hand, if E is an analytic curve then for every x0 ∈ E there is
a biholomorphic deformation of a neighborhood of x0 in Cm after which we are
able to avoid removing subsets of E in Theorem 1.1. The following proposition
is a consequence of Theorem 1.1, the fact that every analytic curve is locally
biholomorphically equivalent to an algebraic curve and the fact that proper
analytic subsets of an irreducible analytic curve are isolated points.

Proposition 1.2 Let X be an analytic subset of pure dimension n of an open
set Ω in Cm and let E ⊂ X be an analytic curve. Then for every x0 ∈ E there
is an open neighborhood V of x0 in Ω a biholomorphism φ : V →W ⊂ Cm and
a sequence {Xν} of complex Nash subsets of W of pure dimension n converging
to φ(X ∩ V ) in the sense of holomorphic chains such that for every ν ∈ N the
following hold:
(1) φ(E ∩ V ) ⊂ Xν ,
(2) µx(Xν) = µx(φ(X ∩ V )) for every x ∈ φ(E ∩ V ).

The basic obstacle one comes across in the proof of the presented results is
the fact that in the case of set-theoretic non-complete intersections, generic
approximations of describing functions yield sets whose dimension is strictly
smaller than the dimension of the given set. To overcome this di�culty we use
L. Lempert's theorem on approximation of holomorphic mappings with values
in singular varieties (see Theorem 3.6). This theorem is formulated in terms of
basic notions of complex analysis, however, its original proof involves a powerful
machinery from commutative algebra (cf. [20]). More precisely, it relies on the
a�rmative solution to the M. Artin's conjecture for which the reader is referred
to [1], [24], [25], [26], [28]. Let us mention that the local version of Theorem 3.6
(su�cient to obtain Theorem 1.1) can be derived from M. Artin's results of [2].
Recently an elementary proof of the local version (using methods di�erent from
those of [2]) has been given in [7]. In the present paper we treat Theorem 3.6 as a
black box: most reasonings are based on a detailed study of the local properties
of analytic varieties. For other results on algebraic approximation of analytic
mappings between complex spaces see [10], [16], [17], [18], [29], [30].

The notion of the multiplicity of an analytic set at some point is central for
intersection theory (applications to which partially motivate our interest in The-
orem 1.1). We plan to use the techniques developed in this paper applying the
methods of algebraic intersection theory in the analytic setting in a subsequent
publication.

Finally, let us mention that the convergence of positive chains appearing
in the paper is equivalent to the convergence of currents of integration over
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the considered sets (see [19], [15]; the equivalence in the considered context is
discussed in [14], pp. 141, 206-207).

The organization of this paper is as follows. In Section 2 we present prelim-
inaries about Nash sets, multiplicities of analytic sets, holomorphic chains and
symmetric powers. Section 3 contains proofs of our main results.

2 Preliminaries

2.1 Nash sets

Let Ω be an open subset of Cn and let f be a holomorphic function on Ω. We
say that f is a Nash function at x0 ∈ Ω if there exist an open neighborhood U
of x0 and a polynomial P : Cn ×C → C, P 6= 0, such that P (x, f(x)) = 0 for
x ∈ U. A holomorphic function de�ned on Ω is said to be a Nash function if it
is a Nash function at every point of Ω. A holomorphic mapping de�ned on Ω
with values in CN is said to be a Nash mapping if each of its components is a
Nash function.

A subset Y of an open set Ω ⊂ Cn is said to be a Nash subset of Ω if and
only if for every y0 ∈ Ω there exists a neighborhood U of y0 in Ω and there exist
Nash functions f1, . . . , fs on U such that

Y ∩ U = {x ∈ U : f1(x) = . . . = fs(x) = 0}.

We will use the following fact from [32], p. 239. Let π : Ω×Ck → Ω denote a
natural projection.

Theorem 2.1 Let X be a Nash subset of Ω ×Ck such that π|X : X → Ω is a
proper mapping. Then π(X) is a Nash subset of Ω and dim(X) = dim(π(X)).

The fact from [32] stated below explains the relation between Nash and algebraic
sets.

Theorem 2.2 Let X be an irreducible Nash subset of an open set Ω ⊂ Cn. Then
there exists an algebraic subset Y of Cn such that X is an analytic irreducible
component of Y ∩Ω. Conversely, every analytic irreducible component of Y ∩Ω
is an irreducible Nash subset of Ω.

2.2 Multiplicities of analytic sets

Let A be a purely n-dimensional locally analytic subset of Cm and let L be an
m − n dimensional a�ne subspace of Cm such that a is an isolated point of
L ∩ A. Then there is a domain U ⊂ Cm such that U ∩ A ∩ L = {a} and the
projection πL : U ∩A→ πL(U) ⊂ L⊥ along L is a k-sheeted analytic cover. The
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number k will be called the multiplicity of πL at a and denoted by µa(πL|A)
(see [14] p. 102). Now put

µa(A) = min{µa(πL|A) : a is an isolated point of A ∩ L}.

The number µa(A) will be called the multiplicity of A at a. (For the properties
of this notion see [14] p.120.)

Let us recall that the tangent cone C(Y,0) for an analytic subset Y of an
open neighborhood of 0 ∈ Cm is the set of all vectors v ∈ Cm for which there
are a sequence {pν} ⊂ Y and a sequence {cν} ⊂ C such that {pν} converges to
0 and {cνpν} converges to v. The following proposition and lemma from [14],
pp. 122, 102, will be useful to us.

Proposition 2.3 Let Y be an n-dimensional analytic subset of some neighbor-
hood of 0 ∈ Cm such that 0 ∈ Y and let L be an (m − n)-dimensional linear
subspace of Cm such that L ∩ Y = {0}. Then µ0(πL|Y ) = µ0(Y ) if and only if
L ∩ C(Y,0) = {0}.

Lemma 2.4 Let A be a pure n-dimensional analytic subset of a domain U =
U ′ × U ′′ in Cm such that the projection π : A→ U ′ is an analytic cover. Then
for each natural number p the set {z ∈ A : µz(π|A) ≥ p} is analytic.

2.3 Holomorphic chains

Let U be an open subset in Cm. By a holomorphic chain in U we mean the
formal sum A =

∑
j∈J αjCj , where αj 6= 0 for j ∈ J are integers and {Cj}j∈J is

a locally �nite family of pairwise distinct irreducible analytic subsets of U (see
[33], cp. also [3], [14]). The set

⋃
j∈J Cj is called the support of A and is denoted

by |A| whereas the sets Cj are called the components of A with multiplicities
αj . The chain A is called positive if αj > 0 for all j ∈ J. If all the components
of A have the same dimension n then A will be called an n-chain.

Below we introduce the convergence of holomorphic chains in U . To do this
we �rst need the notion of the local uniform convergence of closed sets. Let
Y, Yν be closed subsets of U for ν ∈ N.We say that {Yν} converges to Y locally
uniformly if:

(1l) for every a ∈ Y there exists a sequence {aν} such that aν ∈ Yν and aν → a
in the standard topology of Cm,

(2l) for every compact subset K of U such that K ∩ Y = ∅ it holds K ∩ Yν = ∅
for almost all ν.

Then we write Yν → Y. For details concerning the topology of local uniform
convergence see [33]. Let us mention that for a compact subset R of U, if
R ∩ Yν → R ∩ Y then dist(R ∩ Yν , R ∩ Y ) converges to zero, where dist is the
Hausdor� distance.
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We say that a sequence {Zν} of positive n-chains converges to a positive
n-chain Z if:

(1c) |Zν | → |Z|,
(2c) for each regular point a of |Z| and each submanifold T of U of dimension

m − n transversal to |Z| at a such that T is compact and |Z| ∩ T = {a},
we have deg(Zν · T ) = deg(Z · T ) for almost all ν.

Then we write Zν � Z. By Z · T we denote the intersection product of Z and
T (cf. [33]). Observe that the chains Zν · T and Z · T for su�ciently large ν
have �nite supports and the degrees are well de�ned. Recall that for a chain
A =

∑d
j=1 αj{aj}, deg(A) =

∑d
j=1 αj .

2.4 Symmetric powers

Let (Ck)d
sym and 〈x1, . . . , xd〉 denote (Ck)d/∼ and the equivalence class of

(x1, . . . , xd) ∈ (Ck)d respectively, where (x′1, . . . , x
′
d) ∼ (x1, . . . , xd) if and only

if (x′1, . . . , x
′
d) = (xp(1), . . . , xp(d)), for some permutation p. We endow (Ck)d

sym

with a metric ρk given by

ρk(〈x1, . . . , xd〉, 〈y1, . . . yd〉) = inf
p

sup
i
||xi − yp(i)||Ck ,

where ||(z1, . . . , zk)||Ck = maxi=1,...,k |zi|, whereas p is any permutation of
(1, . . . , d) (the subscript k in ρk will be often omitted).

Then there exist an integer N and a mapping φ : (Ck)d
sym → CN with the

following properties (cf. [34] pp. 366-368, 152-154):

(a) φ is injective and φ, φ−1 are continuous and proper,
(b) φ ◦ πsym : (Ck)d → CN is a polynomial mapping, where πsym(x1, . . . , xd) =

〈x1, . . . , xd〉,
(c) φ((Ck)d

sym) is an algebraic subset of CN .

(As for (c), in [34] the analyticity of φ((Ck)d
sym) is proved. It is done by observ-

ing that this set is the image of a complex vector space by a proper polynomial
mapping. Then, by Theorem 2.1, φ((Ck)d

sym) is a Nash subset of CN . Hence
irreducibility of φ((Ck)d

sym) implies that it is an algebraic subset of CN (cf. [32]
p. 237).)

Let us mention that φ can be obtained by taking φ ◦ πsym equal to the
collection of elementary symmetric functions

(Ck)d →
⊕

1≤p≤d

Sp(Ck), (x1, . . . , xd) 7→
⊕

1≤p≤d

∑
j1<...<jp

xj1 · · ·xjp

into the symmetric algebra of Ck (identifying the vector space
⊕

1≤p≤d S
p(Ck)

with CN for some N).
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3 Proofs

To prove Theorem 1.1 we construct a system (S) of Nash equations and a system
of holomorphic functions describing X, in a neighborhood of the �xed x, sat-
isfying the equations from (S). These objects will have the following property.
For any sequence of systems of Nash functions satisfying (S) converging locally
uniformly to the originally constructed holomorphic solution, the sets described
by these Nash systems will satisfy the assertion of Theorem 1.1.

Let us turn to the construction. First, some of the equations from (S) will be
responsible for the fact that higher order derivatives of certain functions (zero-
sets of which contain X in a neighborhood of x) vanish on E. Here we shall
need the following lemma which is a sort of higher order Nullstellensatz.

Let Ea, fa denote the germs at a of the set E and the function f respectively
and let I(Ea) be the ideal of the germs of holomorphic functions vanishing on
E in some neighborhood of a.

Lemma 3.1 Let Y be an analytic subset of an open set U ⊂ Cn, irreducible at
y ∈ U and let k0 be a �xed integer. Then there are a neighborhood V of y in U
and a holomorphic function β : V → C such that βy /∈ I(Yy) and the following
is satis�ed. For every holomorphic function f : U → C with

∂kf

∂xt1
1 . . . ∂xtn

n

(x) = 0, for every x ∈ Y, 0 ≤ t1 + . . .+ tn = k ≤ k0

it holds βfy ∈ (I(Yy))k0+1.

Proof. Without loss of generality we assume y = 0 ∈ Cn. Functions and their
germs at zero will be denoted by the same letters (subscript omitted). Let Om

denote the ring of the germs of functions holomorphic in some neighborhood of
0 ∈ Cm, for 0 ≤ m ≤ n.

Let d denote the dimension of Y at 0. By the Rückert's Parametrization
(see [27], p. 28) we may assume that there exist polynomials P,Qj ∈ Od[xd+1],
j = d + 2, . . . , n such that P is unitary and irreducible (i.e. its discriminant
δ ∈ Od \ (0)) and the following holds. There is an integer q ≥ 1 such that

δqI(Y0) ⊂ I = {P, δxd+2 −Qd+2, . . . , δxn −Qn}On ⊂ I(Y0).

We show that there is m such that δmf ∈ Ik0+1 which completes the proof.
Obviously, δqf ∈ I, so assume that δm0f ∈ Is for some m0 and 1 ≤ s ≤ k0. It
is su�cient to check that, for some m1, δ

m1f ∈ Is+1. It holds

δm0f =
∑

td+1+...+tn=s

htd+1,...,tn
P td+1(δxd+2 −Qd+2)td+2 . . . (δxn −Qn)tn ,

where htd+1,...,tn
are germs of holomorphic functions at 0 ∈ Cn. Fix any point

(a, bd+1, . . . , bn) in a neighborhood of 0 in Y such that δ(a) 6= 0. To complete
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the proof it is su�cient to show that htd+1,...,tn(a, bd+1, . . . , bn) = 0 for every
td+1 + . . .+ tn = s.

Since δ(a) 6= 0, we may assume that, after a biholomorphic change of coordi-
nates in the neighborhood of (a, bd+1, . . . , bn), it holds bj = 0, for j = d+1, . . . , n,
and

δm0f =
∑

td+1+...+tn=s

htd+1,...,tnx
td+1
d+1 x

td+2
d+2 . . . x

tn
n .

Suppose that htd+1,...,tn
(a, 0, . . . , 0) 6= 0 for some td+1, . . . , tn. Then there

exist vd+1, . . . , vn such that∑
td+1+...+tn=s

htd+1,...,tn(a, 0, . . . , 0)vtd+1
d+1 v

td+2
d+2 . . . v

tn
n 6= 0.

This implies that the s-th derivative of the function

F (t) = δm0f(a, tvd+1, . . . , tvn)

at zero is di�erent from zero. A contradiction with the hypothesis.

In the sequel we treat every purely n-dimensional analytic set as a holomor-
phic n-chain such that each of its components appears with multiplicity one.
Then the notion of the convergence in the sense of chains (denoted by "�", see
Section 2.3) is well de�ned in this context.

The proof of Theorem 1.1 involves the fact that if an a�ne space L ⊂ Cm

of dimension m − n intersects X at x transversally then µx(πL|X) = µx(X),
where πL denotes the projection of Cm onto the orthogonal complement of L
(see Proposition 2.3). Thus in order to obtain µx(X) = µx(Xν) for x from a
�xed set, where Xν are approximating varieties, it is su�cient to make sure that
the transversality condition holds also for Xν and that µx(πL|X) = µx(πL|Xν

).
These conditions can be equivalently expressed by the fact that certain Nash
equations are satis�ed by suitably chosen descriptions of X,Xν . The aim of the
following lemma is to formulate such Nash equations in the case where X and
Xν are hypersurfaces.

Let U = U1 × U2 be an open subset of Cn
x1,...,xn

= Cd
x1,...,xd

× Cn−d
xd+1,...,xn

such that 0n ∈ U and let π : Cn ×C → Cn, ρ : Cn
x1,...,xn

×C → Cd+1
x1,...,xd+1

be
natural projections.

Lemma 3.2 Let p̃(x, z) = zr + a1(x)zr−1 + . . . + ar(x) ∈ O(U)[z] be a poly-
nomial with non-zero discriminant, aj(0n) = 0 for j = 1, . . . , r. Next, let
S ⊂ Y = {(x, z) ∈ U × C : p̃(x, z) = 0} be a purely d-dimensional Nash
subset of U ×C irreducible at 0n+1 ∈ Cn ×C, d < n, such that:

(1) S is with proper projection onto U1, ρ|S\F is injective,
(2) C(Y, a) ∩ ({0n} ×C) = {0n+1}, for every a ∈ S \ F,

where F is a nowhere dense analytic subset of S. Then there are an open neigh-
borhood Ũ of 0n in U, holomorphic functions g1, . . . , gt : Ũ → C and Nash

8



functions Fi(x, u1, . . . , ur, v1, . . . , vt), i = 1, . . . , s with the following property.
For all sequences {a1,ν}, . . . , {ar,ν}, {g1,ν}, . . . , {gt,ν} of holomorphic functions
converging to a1, . . . , ar, g1, . . . , gt respectively uniformly on Ũ such that for
every i = 1, . . . , s and x ∈ Ũ , ν ∈ N,

Fi(x, a1,ν(x), . . . , ar,ν(x), g1,ν(x), . . . , gt,ν(x)) = 0,

the following hold:

(3) Yν = {(x, z) ∈ Ũ ×C : zr +a1,ν(x)zr−1 + . . .+ar,ν(x) = 0} � Y ∩ (Ũ ×C),
(4) µa(π|Y ) = µa(π|Yν ) for every a ∈ (S ∩ (Ũ ×C)) \ Sν for almost all ν,
(5) C(Yν , a)∩ ({0n}×C) = {0n+1} for every a ∈ (S ∩ (Ũ ×C)) \Sν for almost

all ν,

where Sν is a nowhere dense analytic subset of S ∩ (Ũ ×C).

Proof. To explain the idea of the proof suppose for a moment that aj(x) = 0
for x ∈ π(S), j = 1, . . . , r (which implies that S ⊂ U × {0} and µb(π|Y ) = r for
b ∈ S). Then, having in mind that the cone tangent to Y at b ∈ S is de�ned by
the initial polynomial of the Taylor expansion of p̃ at b, (2) is equivalent to the
fact that partial derivatives of aj up to su�ciently large order vanish on π(S).
Now using Lemma 3.1 it is easy to formulate Nash equations satis�ed by aj

(together with some other holomorphic functions) such that (5) holds provided
these equations are satis�ed by aj,ν (and the other functions converging to the
original solution). This will be done in detail, in the general situation, below.
(Observe that aj,ν(x) = 0 for x ∈ π(S), j = 1, . . . , r automatically imply (4).)

To apply this sketch in general, we should know that some neighborhood of
0n+1 in S can be embedded in an n dimensional manifold which may not hold
true. However, such embedding is possible if we replace Y by its image by a
certain Nash mapping as speci�ed below. (Of course it may be µb(π|Y ) < r for
b from a dense open subset of S. This does not lead to any di�culties as we
shall see in the sequel.)

Let δ : U1 → C be the discriminant of the unitary reduced polynomial from
O(U1)[xd+1] describing ρ(S). (Note that δ is a non-zero Nash function.) It is
well known (see e.g. [21], ch. VI.2) that, by (1), there is a Nash function
α : (U1 \{δ = 0})×U2 → C such that S∩ ((U1 \{δ = 0})×U2×C) ⊂ graph(α)
and δ · α can be extended over all U1 × U2. This implies that for the mapping

γ̂ : U ×C → U ×C, γ̂(x1, . . . , xn, z) = (x1, . . . , xn, z · δ(x1, . . . , xd))

the set γ̂(S) ⊂ graph(φ), where φ : U → C, φ = δ · α is a Nash function.
Moreover, γ̂ is a biholomorphism on (U1\{δ = 0})×U2×C (recall that S\{δ = 0}
is an open dense subset of S). Taking γ = Ψ ◦ γ̂, where Ψ : U ×C → U ×C is
given by Ψ(x, z) = (x, z − φ(x)), we obtain γ(S) ⊂ U × {0}.

Observe that the condition (2) is satis�ed with Y, S, F replaced by γ(Y ), γ(S),
F̃ = γ(F ) ∪ {δ = 0} respectively. Moreover,

µb(π|Y ) = µγ(b)(π|γ(Y ))
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for b ∈ S \ {δ = 0}. Therefore to complete the proof of the lemma it is
su�cient to construct holomorphic functions g1, . . . , gt : Ũ → C and Nash
functions Fi(x, u1, . . . , ur, v1, . . . , vt), i = 1, . . . , s, such that the following is
satis�ed. For all sequences {a1,ν}, . . . , {ar,ν}, {g1,ν}, . . . , {gt,ν} converging to
a1, . . . , ar, g1, . . . , gt uniformly on Ũ such that for every i = 1, . . . , s and x ∈ Ũ

Fi(x, a1,ν(x), . . . , ar,ν(x), g1,ν(x), . . . , gt,ν(x)) = 0,

the following hold for ν ∈ N, a ∈ (γ(S) ∩ (Ũ ×C)) \Gν :

(a) C(γ(Yν), a) ∩ ({0n} ×C) = {0n+1},
(b) µa(π|γ(Y )) = µa(π|γ(Yν)),

where Gν is an analytic nowhere dense subset of γ(S)∩ (Ũ ×C). (Note that (3)
will follow automatically by the fact that p̃ has non-zero discriminant.)

To do this denote â = (a1, . . . , ar) and observe that

γ(Y ) = {(x, z) ∈ U ×C : P (x, z) = 0},

for

P (x, z) = zr + zr−1b1(â(x), φ(x), δ(x)) + . . .+ br(â(x), φ(x), δ(x)),

where b1, . . . , br ∈ C[u1, . . . , ur, v, w] are polynomials independent of â, δ, φ.
Indeed, the fact that γ(Y ) is described by P outside {δ = 0} is obvious (direct
calculations). On the other hand, {δ = 0} is nowhere dense in U and γ(Y )
is bounded over every compact subset of U so γ(Y ) is an analytic subset of
U × C. Then there is the unique unitary polynomial in z of degree r (with
non-zero discriminant) describing γ(Y ). The uniqueness immediately implies
that it must be P (because the coe�cients of the polynomials are equal outside
{δ = 0}).

The facts that S is irreducible at 0n+1, aj(0n) = 0 for j = 1, . . . , r imply
that γ(S) is irreducible at 0n+1. This, in view of (2) gives, by Lemma 2.4, that
there are µ ∈ N and a nowhere dense analytic subset F̂ of γ(S) such that

C(γ(Y ), a) ∩ ({0n} ×C) = {0n+1} and µa(π|γ(Y )) = µ

for every a ∈ γ(S) \ F̂ (shrinking U if necessary; then µ = min{µa(π|γ(Y )) : a ∈
γ(S)}). Then, since γ(S) ⊂ U ×{0}, (taking into account that the tangent cone
is described by the initial homogenous polynomial of the Taylor expansion of P
at the given point) we obtain

∂ibj(â, φ, δ)
∂x

α1,i

1 . . . ∂x
αn,i
n

(x) = 0

for every x ∈ π(γ(S)), α1,i + . . .+αn,i = i ≤ µ+ j − r− 1, j = r− µ+ 1, . . . , r.
This in turn, by Lemma 3.1, implies that there are Nash functions h1, . . . , ht̃

describing the set π(γ(S)) (in some neighborhood of zero in Cn) such that for
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every j ∈ {r − µ + 1, . . . , r} there are holomorphic functions θj , ηj,κ1,j ,...,κt̃,j
,

where θj is a non-zero function on π(γ(S)) such that

(c) θjbj(â, δ, φ)−
∑

κ1,j+...+κt̃,j=µ+j−r h
κ1,j

1 . . . h
κt̃,j

t̃
ηj,κ1,j ,...,κt̃,j

= 0

in some neighborhood of 0n ∈ Cn.
We shall show that the required functions Fi, i = 1, . . . , s, can be obtained

by taking the left-hand sides of the equations from the system (c) in which
θj , a1, . . . , ar, ηj,κ1,j ,...,κt,j

are replaced by independent new variables. Then the
replaced functions, apart from a1, . . . , ar, will be the looked for g1, . . . , gt.

To this end, suppose that sequences {a1,ν}, . . . , {ar,ν}, {g1,ν}, . . . , {gt,ν} are
converging uniformly to a1, . . . , ar, g1, . . . , gt in some open neighborhood of zero,
where g1, . . . , gt are as above. Moreover, assume that these sequences satisfy
the equations speci�ed in the previous paragraph. Put âν = (a1,ν , . . . , ar,ν) and
observe that by (c) for some neighborhood Ũ of zero

∂ibj(âν , φ, δ)
∂x

α1,i

1 . . . ∂x
αn,i
n

(x) = 0

for x ∈ π(γ(S)) ∩ Ũ , α1,i + . . .+ αn,i = i ≤ µ+ j − r − 1, j = r − µ+ 1, . . . , r.
Next put

Pν(x, z) = zr + zr−1b1(âν(x), φ(x), δ(x)) + . . .+ br(âν(x), φ(x), δ(x))

and observe that

γ(Yν) = {(x, z) ∈ Ũ ×C : Pν(x, z) = 0}.

In view of the vanishing of certain bj(âν , φ, δ) and by γ(S) ⊂ U × {0} we have

Pν(a) =
∂Pν

∂z
(a) = . . . =

∂µ−1Pν

∂zµ−1
(a) = 0,

for every a ∈ γ(S) ∩ (Ũ × C). It is easy to see that (b) holds for all a ∈
γ(S) ∩ (Ũ ×C) such that

∂µPν

∂zµ
(a) 6= 0 6= ∂µP

∂zµ
(a)

i.e. outside a nowhere dense analytic subset of γ(S)∩(Ũ×C). Then the fact that
partial derivatives of bj(âν , φ, δ) of order smaller than or equal to µ+ j − r − 1
vanish on π(γ(S)) ∩ Ũ implies that (a) holds for every a from γ(S) ∩ (Ũ ×C)
with a removed nowhere dense analytic subset.

The following lemma shows how to reduce the problem of the equity of the
multiplicities at a �xed point of sets of arbitrary codimension to the case of
hypersurfaces which was discussed in Lemma 3.2.

Let π̃ : Cn × Ck → Cn, π : Cn × C → Cn be natural projections. Let
Li : Ck → C, for i = 1, . . . , p, be C-linear forms such that for every (m̃ + 1)-
element subset A of Ck there is i ∈ {1, . . . , p} such that Li|A is injective, where
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m̃ is a �xed integer. (The existence of such forms follows for example by the
proof of Lemma 1 of [6].) Let U be an open connected subset of Cn. For any
X ⊂ U ×Ck put Xi := ΦLi

(X), where ΦLi
: Cn ×Ck → Cn ×C is given by

the formula ΦLi
(x, v) = (x, Li(v)).

Lemma 3.3 Let X ⊂ U ×Ck be an analytic subset of pure dimension n with
proper projection onto U and let E be an analytic subset of U × Ck, E ⊂ X.
For i = 1, . . . , p assume:

(0) max{]X ∩ ({x} ×Ck) : x ∈ U} = max{]Xi ∩ ({x} ×C) : x ∈ U} = m̃,
(1) C(X, a) ∩ ({0n} ×Ck) = {0n+k},
(2) µΦLi

(a)(π|Xi
) = µa(π̃|X),

for every a ∈ E \ F where F is an analytic subset of E. Next, let {Xν} be
a sequence of analytic subsets of U × Ck of pure dimension n, each of which
contains E, such that Xν � X and such that for every ν ∈ N the following
hold:

(3) C(Xν
i , b) ∩ ({0n} ×C) = {0n+1},

(4) µb(π|Xν
i
) = µb(π|Xi

),

for every b ∈ ΦLi
(E \ F ν), i = 1, . . . , p, where F ν is an analytic subset of E.

Then
µa(X) = µa(Xν)

for every a ∈ E \ Eν and almost all ν ∈ N, where Eν = F ∪ F ν .

Proof. The de�nition of the tangent cone and (3) immediately imply that

C(Xν , a) ∩ ({0n} ×Ck) = {0n+k}

for every a ∈ E \ F ν . Indeed, suppose that (0n, h) ∈ C(Xν , a) ⊂ Cn × Ck,
h 6= 0k for some a ∈ E \ F ν . Then there is j ∈ {1, . . . , p} such that Lj(h) 6= 0.
Moreover, there are {(xl, yl)} ⊂ Xν , λl ∈ C with

(xl, yl) → a = (x, y)

as l tends to in�nity such that

λl(x− xl, y − yl) → (0n, h).

Consequently,
λl(ΦLj

(x, y)− ΦLj
(xl, yl)) → (0n, Lj(h)),

which implies that (0n, Lj(h)) ∈ C(Xν
j ,ΦLj (a)), a contradiction with (3).

Hence in view of Proposition 2.3 and (1) it is su�cient to prove that

µa(π̃|Xν ) = µa(π̃|X)

for every a ∈ E\(F ∪F ν) and almost all ν ∈ N. To do this we need the following
simple
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Remark 3.4 Let Y be an analytic subset of U ×Ck of pure dimension n with
proper projection onto U and let L : Ck → C be a C-linear form. Assume that

max{]Y ∩ ({x} ×Ck) : x ∈ U} = max{]ΦL(Y ) ∩ ({x} ×C) : x ∈ U}.

Then for every a ∈ Y such that ΦL|({π̃(a)}×Ck)∩Y is injective it holds µa(π̃|Y ) =
µΦL(a)(π|ΦL(Y )).

Let us �nish the proof of Lemma 3.3. Since Xν � X, (0) holds for Xν for
almost all ν. Let ν be so large that Xν satis�es (0). Pick any a ∈ E \ (F ∪ F ν)
and a form Li, i ∈ {1, . . . , p}, such that ΦLi

|({π̃(a)}×Ck)∩Xν is injective. By
Remark 3.4, (0), (2) and (4) we obtain

µa(π̃|X) = µΦLi
(a)(π|Xi) = µΦLi

(a)(π|Xν
i
) = µa(π̃|Xν )

and the proof is complete.

Proof of Theorem 1.1. Step 1. Let us start with some preparations. We may
restrict our attention to the case where E is of dimension d strictly smaller than
n. This is due to the fact that n-dimensional irreducible components of E are
the components of X so the assertion follows immediately by Theorem 1.1 of [5]
(cp. Step 2 below). We additionally assume that E is irreducible at x0 (from
the proof it will be clear that by this assumption we do not restrict generality).
Next, passing to the image of a neighborhood of x0 by a linear isomorphism, if
necessary, we may assume that x0 = 0m and X is an analytic subset of U ×Ck

(k = m− n) with proper projection onto U, where U = U1 × U2 ⊂ Cd ×Cn−d

is an open connected neighborhood of 0n ∈ Cn and E is with proper projection
onto U1.

Put m̃ = max{](X ∩ ({x} × Ck)) : x ∈ U}. Next, without loss of ge-
nerality, further assumptions can be made: there are non-zero C-linear forms
L1, . . . , Lp : Ck → C such that for every (m̃ + 1)-element subset A of Ck

there is i ∈ {1, . . . , p} such that Li|A is injective (cp. the paragraph preceding
Lemma 3.3) and (after another change of the coordinates if necessary)X satis�es
the hypotheses (0), (1) and (2) of Lemma 3.3 with F nowhere dense in E. Here
(1) requires an explanation: denote µ = min{µa(X) : a ∈ E}. There is a
linear change of coordinates, arbitrarily close to the identity, after which there
is a ∈ E such that µa(π̃|X) = µ. Then, by Lemma 2.4 we have {a ∈ E :
µa(π̃|X) = µ} = E \ V, where V is a nowhere dense analytic subset of E. Now,
by Proposition 2.3, it holds C(X, a)∩ ({0n}×Ck) = {0n+k} for every a ∈ E \V.
As for (2), shrinking U if necessary we may assume that Reg(π̃(E)) is connected.
Take any b0 ∈ Reg(π̃(E)) such that the �ber in (Reg(π̃(E))×Ck) ∩X over b0
has the maximal cardinality. Next we may assume, applying an arbitrarily close
to the identity change of the coordinates, that ΦLj |(X∩({b0}×Ck)) is injective for
every j ∈ {1, . . . , p}. Then the injectivity condition holds with b0 replaced by
every b ∈ π̃(E) \ Ṽ where Ṽ is an analytic nowhere dense subset of π̃(E). Now,
in view of (0), (2) follows immediately.

We complete the �rst step of the proof by showing that the hypotheses of
Lemma 3.2 may be assumed to be satis�ed with Y, S replaced by ΦLj (X),ΦLj (E)
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respectively for every j ∈ {1, . . . , p} (then p̃ is taken to be the polynomial
with holomorphic coe�cients de�ned on U and non-zero discriminant describ-
ing ΦLj

(X)). Indeed, observe that in the previous paragraph the coordinates
can be changed in such a way that there is an analytic nowhere dense sub-
set Ẽ of E such that the projection of E \ Ẽ onto U1 × Cxd+1 is injective (it
is su�cient to ensure, assuming that E is purely dimensional, that the injec-
tivity of the projection holds over {b0} × Cxd+1 , where b0 ∈ U1 is such that
the �ber in E over b0 is of the maximal cardinality). Moreover, note that
kerΦLj

⊂ {0n} × Ck hence (kerΦLj
) ∩ C(X, a) = {0n+k} for every a in E

with a removed nowhere dense analytic subset. Consequently, (see [14], p. 81)
C(Xj ,ΦLj (a))∩({0n}×C) = {0n+1} for every j ∈ {1, . . . , p} and a in E outside
a nowhere dense analytic subset.

Step 2. We recall the basic construction from [5], concerning approximation of
holomorphic chains by Nash chains, that will be useful in the sequel. LetB ⊂ Cn

denote a polydisc centered at 0n ∈ Cn and let Bθ = {x ∈ Cn : 1
θx ∈ B}, where

0 < θ ≤ 1. Let ψ : B → I be a holomorphic mapping, where I = φ((Ck)m̃
sym).

(For the de�nitions of φ and (Ck)m̃
sym see Section 2.4.) Next put ι = k · m̃ and

identify the space ((C)k)m̃ with Cι. Let W (z1, . . . , zι) = φ ◦ πsym(z1, . . . , zι),
for zi ∈ C, i = 1, . . . , ι. (πsym is introduced in Section 2.4; here πsym is treated,
via the identi�cation above, as a mapping de�ned on Cι. Recall that W is a
polynomial mapping.) Now de�ne

X(ψ, θ) = {(x, z1, . . . , zι) ∈ Bθ ×Cι : ψ(x) = W (z1, . . . , zι)}.

Observe that the fact that the image of ψ is contained in I and the properties
of φ imply that for θ ≤ 1 the set X(ψ, θ) is a purely n-dimensional subset of
Bθ × Cι with proper projection onto Bθ. The pure dimension n of X(ψ, θ)
requires an explanation: in view of the properness of the projection of X(ψ, θ)
onto Bθ, it is a consequence of the non-emptiness of all the �bers over Bθ and
the continuity of the mapping φ−1 ◦ ψ : Bθ → (Ck)m̃

sym.

Now let Y be any purely n-dimensional analytic subset of Bθ × Ck with
proper projection onto Bθ such that the generic cardinality of the �ber of Y
over Bθ equals m̃ and let pr : Cn×Ck×Cι−k → Cn×Ck be a natural projection.
Then there exists a holomorphic mapping ψ : Bθ → I such that Y = pr(X(ψ, θ))
(cp. the proof of Theorem 1.1 in [5]). In the proof of Theorem 1.1 of [5] it is
shown that if a sequence {ψν : Bθ → I} of holomorphic mappings converges
to ψ uniformly then the sequence {pr(X(ψν , θ))} converges to pr(X(ψ, θ)) in
the sense of chains. On the other hand, if ψν are Nash mappings then, by
Theorem 2.1, pr(X(ψν , θ)) are Nash sets of pure dimension n.

Step 3. Without loss of generality we assume that U1, U2 above are polydiscs
and put B = U1 × U2. Now let ψ : B → I be a holomorphic mapping such
that X = pr(X(ψ, 1)), where X is our set to be approximated. In order to
prove Theorem 1.1 we show that there are θ ≤ 1 and a sequence ψν : Bθ → I
of Nash mappings converging to ψ|Bθ uniformly such that certain conditions
which will be expressed in terms of Nash equations are ful�lled. To formulate
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these conditions we need the following simple lemma from [6] (Lemma 3).

Lemma 3.5 For every C-linear form L : Cι → C there are PL,1, . . . , PL,nL
∈

C[y1, . . . , yN , z] such that for any holomorphic mapping ψ : B → I ⊂ CN the
following holds.

ΦL(X(ψ, θ)) = {(x, z) ∈ Bθ ×C : PL,1(ψ(x), z) = . . . = PL,nL
(ψ(x), z) = 0},

for θ < 1, where ΦL(u, v) = (u, L(v)), for u ∈ Cn, v ∈ Cι.

We return to the proof of Theorem 1.1. For every j ∈ {1, . . . , p} de�ne the form
L̃j : Cι → C by the formula L̃j = Lj ◦ p̃r, where p̃r : Cι−k × Ck → Ck is
a natural projection. Let Pj,1, . . . , Pj,nj

, for j = 1, . . . , p, denote polynomials
obtained by applying Lemma 3.5 to ΦL̃j

(X(ψ, 1)) (recall that pr(X(ψ, 1)) = X).
Then, for every j ∈ {1, . . . , p} we have

Pj,i(ψ(x), z) = Hj,i(x, z)(Wj(x, z))kj,i , for i = 1, . . . , nj .

HereWj is a unitary polynomial in z with holomorphic coe�cients and non-zero
discriminant, describing ΦL̃j

(X(ψ, 1)), Hj,i is a polynomial in z and kj,i is an
integer such that {Wj = 0} is not contained in {Hj,i = 0}.

The system of Nash equations mentioned in the �rst paragraph of Section 3,
which will be denoted by (S) consists of the following equations:

(a) algebraic equations describing the set I (recall that I = φ((Ck)m̃
sym) is an

algebraic subset of CN , cf. Section 2.4),
(b) equations Pj,i(ψ(x), z) = Hj,i(x, z)(Wj(x, z))kj,i , for i = 1, . . . , nj , j =
1, . . . , p, from the previous paragraph with ψ and the holomorphic coe�cients
of Wj and the coe�cients of Hj,i replaced by new variables,
(c) equations Fj,i = 0 where Fj,i are obtained by applying Lemma 3.2 with
p̃ = Wj , S = ΦLj

(E) for j = 1, . . . , p, (since ΦL̃j
(X(ψ, 1)) = ΦLj

(X), by
what we have assumed about X it follows that Wj satis�es the hypotheses of
Lemma 3.2).

Step 4. In the sequel, holomorphic solutions to the system (S) will be approx-
imated by Nash functions. To do this we need the following theorem which is
due to L. Lempert (see [20], Theorem 3.2, pp. 338-339).

Theorem 3.6 Let K ⊂ Cn be a compact polydisc and f : K → Ck a holo-
morphic mapping that satis�es a system of equations Q(z, f(z)) = 0 for z ∈ K.
Here Q is a Nash mapping from a neighborhood U ⊂ Cn × Ck of the graph
of f into some Cq. Then f can be uniformly approximated by a Nash mapping
F : K → Ck satisfying Q(z, F (z)) = 0.

We use Theorem 3.6 in the situation where Q = 0 are the equations of the
system (S) whereas the components of f are the components of ψ (the equations
(a) are satis�ed by these functions), the coe�cients of Wj , the coe�cients of
Hj,i (which satisfy (b) together with functions ψ) and the holomorphic functions
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obtained from Lemma 3.2 (note that in Lemma 3.2 the functions a1, . . . , ar,
g1, . . . , gt satisfy the equations Fi = 0, i = 1, . . . , s). Formally we should remove
the variable z in (b) before using Theorem 3.6: this can be done by replacing
every equation from (b) by an equivalent system of equations as every function
appearing in (b) is a polynomial in z.

Let ψν , Wj,ν be the components of a mapping from the obtained sequence of
Nash mappings, converging uniformly to ψ, Wj respectively in some neighbor-
hood of 0n ∈ Cn. By Step 2, in view of the fact that ψν satisfy the equations (a)
and X = pr(X(ψ, 1)), we know that Xν � X∩((Bθ)×Ck), for some 0 < θ ≤ 1,
where Xν = pr(X(ψν , θ)). Next, by the fact that the equations (b) are satis�ed,
it is easy to see that the unitary polynomialWj,ν in z with Nash coe�cients and
non-zero discriminant describes ΦL̃j

(X(ψν , θ)) = ΦLj (Xν). Finally, by the fact
that the coe�cients of Wj,ν (together with some other Nash functions) satisfy
(c) and by Lemma 3.2, we see that the sets X ∩ ((Bθ) ×Ck), Xν , for ν ∈ N,
satisfy the hypotheses (3) and (4) of Lemma 3.3. (Recall that, by Step 1 of the
proof of Theorem 1.1, X satis�es (0), (1) and (2) of Lemma 3.3.) In order to
apply Lemma 3.3 it is su�cient to check that E ⊂ Xν for ν ∈ N. This in turn
follows by Lemma 3.2(4) and by the fact that for every (m̃+1)-element A ⊂ Ck

there is i ∈ {1, . . . , p} such that Li|A is injective. Applying Lemma 3.3 �nishes
the proof of Theorem 1.1.

Let us mention that if E was not irreducible at x0 then the only di�erence
in the proof would be to make the preparations in Step 1 simultaneously for
every irreducible component of E and then in the construction of the system
(S) in (c) include equations coming from every component of E.

Proof of Proposition 1.2. It is su�cient to modify the proof of Theorem 1.1
so we give only a sketch. First, every analytic curve is locally biholomorphically
equivalent to an algebraic curve (see [12]), therefore we may assume that E is
algebraic. We also may assume that X satis�es all the assumptions made in the
�rst paragraph of Step 1 of the proof of Theorem 1.1.

Next, the conditions (0), (1) and (2) of Lemma 3.3 may be assumed satis�ed
for X for every a ∈ E (in Theorem 1.1 we had these conditions for a from
a dense subset of E). Indeed, (0) can be clearly obtained. As for (1) and
(2), by a, close to the identity, change of the coordinates in a neighborhood of
0n+k we obtain the conditions for a = 0n+k (recall that x0 = 0n+k). Then we
proceed as in the second paragraph of Step 1 of the proof of Theorem 1.1. (So
another perturbation of the coordinate system is applied. Since it can be again
arbitrarily close to the identity, we may assume that (1) and (2) remain true for
0n+k.) Now that (1) and (2) hold both outside a nowhere dense analytic subset
of E and for 0n+k, these conditions must hold in some neighborhood of 0n+k in
E as E is one-dimensional.

Similarly, (1) and (2) of Lemma 3.2 may be assumed satis�ed with Y, S re-
placed by ΦLi(X),ΦLi(E) respectively for every i = 1, . . . , p, with the additional
assumption that F is empty. This completes Step 1.

Next observe that if in Lemma 3.2 we assume that S is a curve and F = ∅
then we may take Sν = {0n+1} for every ν. Indeed, it is su�cient to make sure

16



that ∂µPν

∂zµ (a) 6= 0 for a ∈ γ(S) ∩ (Ũ × C) \ {0n+1} (see the proof). Yet, since
∂µP
∂zµ (a) 6= 0 for a ∈ γ(S) ∩ (Ũ ×C) \ {0n+1} it su�ces to ensure that the order
of zero of P − Pν at 0n+1 is high enough (because every irreducible component
of the germ of E at 0n+1 is the image of an analytic homeomorphism de�ned
on a neighborhood of zero in C: the Puiseux theorem. Composing ∂µP

∂zµ and
∂µPν

∂zµ with this mapping one observes that the claim is a simple consequence of
the Rouché theorem). This in turn can be easily achieved by substituting aj ,
j = 1, . . . , r, in the equations (c) (in the proof of Lemma 3.2), by áj+āj where āj

is the sum of su�ciently large �nite number of the terms of the Taylor expansion
of aj about 0n, whereas áj = aj − āj . Then every áj(x) can be expressed as
xβ1

1 · . . . · xβn
n ãj(x), where ãj(0n) 6= 0. Now in the equations (c) the ãj 's are

replaced by new variables instead of the aj 's.
Finally, the construction of the system (S) in Step 3 di�ers in point (c)

from what was presented in the proof of Theorem 1.1. Here we use Lemma 3.2
in a just strengthened version and obtain two systems of equations: one for
S = E and the other for S = {0n+k}, both included in (S). Approximating
the holomorphic solutions of (S) by Nash solutions yields sets Xν satisfying the
hypotheses of Lemma 3.3 with F = F ν = ∅. Application of this lemma �nishes
the proof.
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