On two problems concerning quasianalytic Denjoy–Carleman classes

Krzysztof Jan Nowak
IMUJ PREPRINT 2007/19

Abstract

Given a Denjoy–Carleman class $Q = Q_M$, consider the Hilbert space $H = H_M$ of some quasianalytic functions on the cube $(-1, 1)^m$, introduced by Thilliez [5]. In our article [2], we posed the question whether polynomials are dense in H, and indicated that this open problem can be related to that of certain decompositions of functions from H with respect to their Taylor series at zero, which is of great geometric significance. In this paper we shall show that actually the latter assertion entails the former.

Let $M = (M_j)_{j \geq 0}$ be an increasing, logarithmically convex sequence of real numbers with $M_0 = 1$. An infinitely differentiable function f on an open subset $U \subseteq \mathbb{R}^m$ shall be called an ultradifferentiable function of class M, if on each compact subset $K \subset U$ there exist positive constants C and σ such that

$$|\partial^{[\alpha]} f / \partial x^\alpha(x)| \leq C \sigma^{|\alpha|} |\alpha|! M_{|\alpha|}$$

for all $x \in K$.

AMS Classification: 26E10.
Key words: quasianalytic functions, Sobolev spaces.
Logarithmical convexity ensures that the set $E_M(U)$ of ultradifferentiable functions on U is an \mathbb{R}-algebra, and that such \mathbb{R}-algebras are closed under superposition of functions (a result due to Roumieu [3]).

By imposing analogous estimates, one can define the subalgebras $E_m(M)$ and $F_m(M)$ of the local \mathbb{R}-algebras E_m of the germs of smooth (i.e. infinitely differentiable) functions at $0 \in \mathbb{R}^m$ and F_m of formal power series in m variables, respectively. It is easy to check that $E_m(M)$ and $F_m(M)$ are both local rings. The classical Carleman theorem [1] says that, for every quasianalytic class $E_m(M)$ which is larger than the ordinary algebra of analytic germs \mathcal{O}_m at $0 \in \mathbb{R}^m$, the Borel mapping

$$E_m(M) \ni f \longrightarrow \hat{f} \in F_m(M)$$

is not surjective; here \hat{f} denotes the Taylor series of f at $0 \in \mathbb{R}^m$.

Throughout the paper we shall confine ourselves only to the quasianalytic classes of ultradifferentiable functions, which amounts — due to the famous Denjoy–Carleman theorem — to the following condition imposed on the sequence $M = (M_j)_{j \geq 0}$:

$$\sum_{j=0}^{\infty} \frac{M_j}{(j+1)M_{j+1}} = \infty.$$

We now recall the construction of a certain Hilbert space of some ultradifferentiable functions on the cube $(-1,1)^m$, introduced recently by Thilliez [5]. It is an analogue of Sobolev spaces of infinite order of type l_2, which allows one to handle simultaneously an infinite number of derivatives.

Consider the space of those smooth (i.e. of class C^∞) functions u on the cube $(-1,1)^m$ whose derivatives

$$u^\alpha := \frac{\partial^{|\alpha|} u}{\partial x^\alpha}, \quad \alpha \in \mathbb{N}^m,$$

extend continuously to $[-1,1]^m$; put

$$\|u\|_{\infty} := \sup \{|u(x)| : x \in [-1,1]^m\}, \quad \|u\|_2^2 := \int_{[-1,1]^m} |u(x)|^2 \, dx,$$

and

$$\|u\|_2^2 := \sum_{|\alpha|=0}^{\infty} \|u^\alpha\|_2^2 / (|\alpha|! M_{|\alpha|})^2.$$

2
Thilliez [5] introduced the Hilbert space $H = H_M$ of those functions u as above for which $\|u\| < \infty$. Denote by (\cdot, \cdot) the associated scalar product.

Remark 1. It can be checked by induction with respect to m that there are positive constants $c, C > 0$ for which

$$c\|u\|_2 \leq \|u\|_\infty \leq C(\|u\|_2 + \|\partial u/\partial x_1\|_2 + \|\partial^2 u/\partial x_1 \partial x_2\|_2 + \cdots$$

$$+ \|\partial^m u/\partial x_1 \ldots \partial x_m\|_2).$$

Denote by $B_{m,\sigma}(M)$ the Banach space of such ultradifferentiable functions $u : (-1, 1)^m \to \mathbb{R}$ that

$$|\partial^{[\alpha]} u/\partial x^{\alpha}(x)| \leq C \sigma^{[\alpha]} \| \alpha \| M_{[\alpha]} \quad \text{for all} \quad x \in (-1, 1)^m,$$

with norm

$$\|u\|_{m,\sigma} := \sup \left\{ \frac{|\partial^{[\alpha]} u/\partial x^{\alpha}(x)|}{\sigma^{[\alpha]} \| \alpha \| M_{[\alpha]}} : x \in (-1, 1)^m, \alpha \in \mathbb{N}^m \right\}.$$

By Ascoli’s theorem, for any $0 < \sigma < \sigma'$, the canonical inclusions

$$B_{m,\sigma}(M) \subset B_{m,\sigma'}(M)$$

are compact operators. Consequently, for any $\eta > 0$, we have the following topological inclusions

$$B_{m,1-\eta}(M) \subset H_M \subset B_{m,1+\eta}(M')$$

with

$$M' = (M'_j)_{j \geq 0}, \quad M'_j := M_{j+m},$$

which are compact operators too.

Remark 2. The Hilbert space $H = H_M$ is an analogue of Sobolev spaces of infinite order of type l_2, which allows one to handle simultaneously an infinite number of derivatives.

We now turn to the following two problems concerning a quasianalytic Denjoy-Carleman class, posed in our previous paper [2] in connection with some significant geometric applications.
Problem I. Let \(f \in H \) and \(\hat{f} \) be its Taylor series at \(0 \in \mathbb{R}^m \). Split the set \(\mathbb{N}^m \) of exponents into two disjoint subsets \(A \) and \(B \), \(\mathbb{N}^m = A \cup B \), and decompose the formal series \(\hat{f} \) into the sum of two formal series \(G \) and \(H \), supported by \(A \) and \(B \), respectively. Do there exist \(g, h \in H \) with Taylor series at zero \(G \) and \(H \), respectively?

Problem II. Are polynomial mappings dense in the Hilbert space \(H \)?

Here we shall prove that actually the former assertion entails the latter. Supposing, on the contrary, that polynomials are not dense in \(H \), we shall construct disjoint subsets \(A \) and \(B \) of \(\mathbb{N}^m = A \cup B \) which do not satisfy assertion I.

Let us adopt the following notation: for each \(\alpha \in \mathbb{N}^m \), \(e_\alpha \) denotes the monomial \(e_\alpha(x) := x^\alpha / \alpha! \); the mapping

\[
H \to \mathbb{R}, \quad u \mapsto \partial |\alpha| \frac{u}{\partial x^\alpha}(0)
\]

is a continuous linear form on \(H \), and thus there is a unique element \(h_\alpha \in H \) such that

\[
\partial |\alpha| \frac{u}{\partial x^\alpha}(0) = (u, h_\alpha) \quad \text{for all } \quad u \in H;
\]

we have \((h_\alpha, e_\beta) = \delta_{\alpha,\beta} \) (Kronecker’s delta). For simplicity, let us number the multi-indices \(\alpha \in \mathbb{N}^m \) by the non-negative integers \(i \in \mathbb{N} \). Then, in particular, we have \((h_i, e_j) = \delta_{i,j} \).

Further in the proof, we use the well-known fact that, given two subspaces \(E_1 \) and \(E_2 \) of a topological vector space \(E \) with \(\dim E_2 < \infty \), if \(E_1 \) is closed, so is the sum \(E_1 + E_2 \) (see e.g. [4], Th. 1.42). It follows from the assumption of quasi-analyticity that the \(h_i \)'s span a dense linear subspace of \(H \); in other words, the Hilbert subspace \(\langle h_i : i \in \mathbb{N} \rangle \) generated by the \(h_i \) is \(H \). By the two facts above, we get

\[
H_{>n} := \langle h_i : i > n \rangle = \langle e_1, \ldots, e_n \rangle^\perp.
\]

Hence

\[
\langle e_j : j \in \mathbb{N} \rangle = \bigcap_{n \in \mathbb{N}} H_{>n}.
\]

But our assumption means that \(\langle e_j : j \in \mathbb{N} \rangle \) is a proper subspace of \(H \), and therefore \(\langle e_j : j \in \mathbb{N} \rangle^\perp \neq (0) \). Take thus an element

\[
u \in \bigcap_{n \in \mathbb{N}} H_{>n} \quad \text{with} \quad \|u\| = 1.
\]
For each \(n \in \mathbb{N} \), we have
\[
 u = \lim_{l \to \infty} u_{n,l} \text{ with some } u_{n,l} \in \text{lin } \{ h_i : i > n \};
\]
one can, of course, assume that
\[
 \| u - u_{n,l} \| < 1/2^{n+l}.
\]
Then
\[
 \| u - u_{n,n} \| < 1/2^{n+n}, \text{ whence } u_{n,n} \to u \text{ when } n \to \infty.
\]
We shall now define recursively an increasing sequence \((n_k)_{k \in \mathbb{N}} \) of integers as follows. Put \(n_1 := 0 \); having already defined integers \(n_1, \ldots, n_k \), we consider the element \(u_{n_k,n_k} \), which is, by construction, a linear combination of some elements \(h_{i_1}, \ldots, h_{i_r} \) with \(i_1, \ldots, i_r > n_{k-1} \). Pick as \(n_{k+1} \) any integer larger than the integers \(i_1, \ldots, i_r \).

Putting \(v_k := u_{n_k,n_k} \), and further
\[
 A := ([n_1,n_2) \cup [n_3,n_4) \cup \ldots) \cap \mathbb{N}, \quad B := ([n_2,n_3) \cup [n_4,n_5) \cup \ldots) \cap \mathbb{N},
\]
we get
\[
 v_{2k+1} \in H_1 := \langle h_i : i \in A \rangle \quad \text{and} \quad v_{2k} \in H_2 := \langle h_i : i \in B \rangle \quad \text{for all } k \in \mathbb{N}.
\]
Therefore
\[
 u = \lim_{k \to \infty} v_{2k+1} = \lim_{k \to \infty} v_{2k} \in H_1 \cap H_2,
\]
and thus \(H_1 \cap H_2 \neq (0) \). Hence
\[
 H_1^\perp + H_2^\perp \subseteq (H_1 \cap H_2)^\perp \subset H
\]
are proper subspaces of the Hilbert space \(H \). This completes the proof, because the subspaces \(H_1^\perp \) and \(H_2^\perp \) coincide with the subspaces of those functions from \(H \) whose Taylor series at \(0 \in \mathbb{R}^m \) are supported by the sets \(B \) and \(A \), respectively.
References

Institute of Mathematics, Jagiellonian University
ul. Reymonta 4, PL-30-059 Kraków, Poland
e-mail address: nowak@im.uj.edu.pl