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Abstract. We present another proof of Lazarsfeld’s theorem from [9],
connecting Seshadri constants with packing numbers.

1. Seshadri constants

Let X be a projective algebraic manifold with an ample line bundle L. Let
P1, ..., Pr be r different points on X. Seshadri constants, introduced intro-
duced by Demailly in [5], are defined as follows.

Definition 1. Seshadri constant of L in P1, ..., Pr is defined as the number

ε(L, P1, ..., Pr) := inf { LC

multP1C + ... + multPrC
| C is a curve on X},

or, equivalently

ε(L,P1, ..., Pr) := sup {ε | π∗L− ε(E1 + ... + Er) is numerically effective},
where π : X̃ −→ X is the blow up of X in P1, ..., Pr.

Remark 2. This definition is stated for an algebraic manifold of any dimen-
sion dim X ≥ 2. In this note we are interested only in algebraic surfaces, so
from now on we restrict our considerations to the case dimX = 2.

For P1, ..., Pr general on X we will write ε(L, r) instead of ε(L,P1, ..., Pr).
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Remark 3. It follows from the definition that for an ample line bundle L
on X we have

0 < ε(L,P1, ..., Pr) ≤
√

L2

r
.

Finding the exact value of Seshadri constants is in most cases a difficult
problem. For P2 with L = OP2(1) the exact values of ε(L, r) are known
only if r ≤ 9 or r = k2, k ∈ N. The famous conjecture of Nagata states

that ε(OP2(1), r) =
√

1
r (so is maximal possible) for r ≥ 10. (cf [8]). The

generalized conjecture, called Nagata-Biran Conjecture, says that for any
algebraic surface X with an ample line bundle L there exists a number N ,

such that for all r ≥ N ε(L, r) =
√

L2

r . (cf eg [14]).
So far, all known values of Seshadri constants are rational. In general, it is
hard to find the value of a Seshadri constant even in one point. In case we
can prove the existence of so called submaximal curves, ie curves C on X,
such that

LC

multP1C + ... + multPrC
<

√
L2

r
,

we obtain that the Seshadri constant is necessarily rational and less than

the maximal value
√

L2

r , cf eg [13].
On the other hand, there are (so far) not many ways of proving nonexistence
of submaximal curves. This makes very difficult proving that the Seshadri
constants are maximal. One way to attack the problem is to give a lower
bound on the Seshadri constants. A result proved by Lazarsfeld in [9] allows
us to give a lower bound on a Seshadri constant by means of so called packing
numbers, for the definition see next paragraph.
In this note we are going to give another proof of his result.

2. Packing numbers

Let us remind that a symplectic manifold is a smooth real manifold (of di-
mension 2n) with a closed nondegenerate differential 2−form ω. The volume
form in X is given by 1

n!ω
∧n. The classical example is R2n with the 2-form

ω0 := dx1 ∧ dy1 + ... + dxn ∧ dyn.
Another example is given by an algebraic surface X with an ample line
bundle L. This surface may be treated as a real four dimensional manifold
with the closed nondegenerate differential 2-form given by the first Chern
class of L, ωL = c1(L). Thus, X is a symplectic manifold, with the volume
given as vol(X) = 1

2L2.
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If (X1, ω1) and (X2, ω2) are two symplectic manifolds, we define a symplectic
embedding of X1 to X2 as follows.

Definition 4. We say that f : X1 −→ X2 is a symplectic embedding if f is
a C∞-diffeomorphism onto the image and

f∗ω2 = ω1.

We will use the notation

f : (X1, ω1)
s−→ (X2, ω2).

Let (X,ω) be a symplectic manifold (of dimension 2n) and let (B2n(R), ω0)
be a ball of radius R in R2n with the standard symplectic form ω0 =
dx1 ∧ dy1 + ... + dxn ∧ dyn. We may consider the so called symplectic pack-
ing problem: find a maximal radius R such that there exists a symplectic
embedding of the disjoint sum of r balls of radius R into a given symplectic
manifold (X, ω),

f :
r∐

i=1

(B2n(R), ω0)
s−→ (X,ω).

If the volume of X is finite, than there is an obvious upper bound on R,
rvol(B2n(R)) ≤ vol(X). However, even if the volume of X is infinite, there
may be obstructions in packing balls into X, for example the famous Gro-
mov Nonsqueezing Theorem (see [7]) says that if there exists a symplectic
embedding of a ball B2n(R) into (B2(ε)× R2n−2, ω0), then R ≤ ε.
Assume now, that the volume of a symplectic manifold X is finite. To
measure how much of the volume of (X, ω) we may pack with the symplectic
images of balls we define so called packing numbers (cf [2],[10]).

Definition 5. Let (X, ω) be a symplectic manifold and let r be a natural
number. A (symplectic) packing number is defined as

vr := sup
{

rvol(B2n(R))
vol(X)

}
,

where the supremum is taken over all R, such that there exists a symplectic
packing f :

∐r
i=1(B

2n(R), ω0)
s−→ (X,ω).

If vr = 1 we say that full packing exists.

From now on we restrict our considerations to the case when X is an algebraic
surface with ample line bundle L, so with the symplectic form ωL given by
the first Chern class of L. Then, X is four dimensional over reals and has a
finite volume, vol(X) = 1

2L2.
As our X is now symplectic and complex manifold we may define similar
constants for embeddings being both symplectic and holomorphic:
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Definition 6. Let (X, ω) be a symplectic and holomorphic manifold and let
r be a natural number. A symplectic and holomorphic packing number is
defined as

vh
r := sup

{
rvol(B4(R))

vol(X)

}
,

where the supremum is taken over all R, such that there exists a symplectic
and holomorphic packing f :

∐r
i=1(B

4(R), ω0)
s,hol−→ (X, ω).

There are many interesting results about the constants vr, cf eg [2], [3], [10].
In his famous paper [3], Biran proved the following theorem (here quoted in
the version restricted to algebraic surfaces with the symplectic form ωL):

Theorem 7. Let (X,L) be projective algebraic surface, treated as a four
dimensional symplectic manifold with the symplectic form ωL. Then there
exists a number N0, such that for any r ≥ N0 there exists full packing, ie
vr = 1. Moreover, this N0 can be taken equal k2

0L
2 where k0 is such, that

the linear system k0L contains a curve C of genus at least one.

It seems that there exists a close connection between Seshadri constants and
packing numbers. This connection was first stated in [10] and then in [2],
[3], [9] and others.
Consider the following example. Let X = P2 with L = OP2(1). For r =
1, ..., 9 we have ε(L, r) = 1, 1

2 , 1
2 , 1

2 , 2
5 , 2

5 , 3
8 , 6

17 , 1
3 respectively. In the same

range of r, we have (cf [2]): vr = 1, 1
2 , 3

4 , 1, 20
25 , 24

25 , 63
64 , 288

289 , 1, so ε(L, r) =√
L2vr

r here. For r ≥ 10 we know by the results of Biran, [3, 2], that vr = 1,
whereas ε(L, r) is still unknown (unless r is a square of a natural number, and
then ε(L, r) = 1√

r
, cf eg [8]). As we have mentioned above, Nagata conjecture

says that ε(L, r) = 1√
r

for all r > 9, (cf eg [12, 8, 14]), so conjecturally, for

any r ε(L, r) =
√

vr
L2

r for P2 with L = OP2(1). Perhaps this conjecture is

true in general, ie ε(L, r) =
√

vr
L2

r , for any polarized algebraic surface.
In [4] Biran and Cieliebak proved that we have the following upper bound
on Seshadri constants by means of symplectic packing numbers:

Theorem 8. With the notation as above√
vr

L2

r
≥ ε(L, r).

On the other hand holomorphic and symplectic packing numbers give the
lower bound. Lazarsfeld in [9] proved that

Theorem 9. ε(L, r) ≥
√

vh
r L2

r .
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Remark 10. Lazarsfeld’s proof of this result is based on the construction
of symplectic blowing up, cf [10]. The theorem in [9] is actually stated for
r = 1, but the proof for any r is analogous.

3. Proof

In this section we present the proof of theorem 9, using some facts form
Geometric Measure Theory. (cf [11], [6], [1]).

Definition 11. Let S be a surface in R4. We say that S is minimal if the
mean curvature of S is zero.

Remark 12. Any analytic curve in C2 is a minimal surface.

Let now S be a minimal surface in R4, being in the same time an analytic
curve in C2. Let S pass through a point P ∈ R4. As S is analytic, the
multiplicity of S in P is defined. Assume that multP S = m. Take then a
ball B4(R), with the center P . By the volume of S ∩ B4(R) we mean the
area of S (in the Euclidean metric). Wirtinger’s Theorem says that in this
situation, the volume of a surface equals the integral from the symplectic
form on S:

Remark 13. (Wirtinger’s Theorem, see [6]).
1. In the situation as above, vol(S ∩B4(R)) =

∫
S∩B4(R) ω0.

2. If C is an analytic curve on a polarized surface (X,L), then volC = LC.

The following fact will be crucial for us.

Theorem 14. (Monotonicity Lemma, see [11], Theorem 9.3). In the situa-
tion described above

vol(S ∩B4(R)) ≥ mπR2.

Let now (X,L) be our algebraic surface, with an ample line bundle L and
symplectic form ωL. Take R, such that there exists f , a symplectic and
holomorphic embedding of r disjoint balls of radius R into X.
Let f(P1), ..., f(Pr) be the images of the centers of these balls. Take C, an
algebraic curve on X, passing through f(P1), ..., f(Pr) with multiplicities
m1, ...,mr respectively. Let Si := f−1(C ∩ f(B(Pi, R))), where B(Pi, R)
denotes the ball of radius R with the center Pi. As f is symplectic and
holomorphic, Si is an analytic curve in B(Pi, R). Moreover, multPiSi = mi.
From Monotonicity Lemma it follows that vol(Si) ≥ miπR2.
Thus,

LC = vol(C) ≥
r∑

i=1

vol(C ∩ f(B(Pi, R)))
f is symplectic

=
r∑

i=1

vol(Si)
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Monotonicity Lemma
≥

r∑

i=1

miπR2.

From this,
LC∑r
i=1 mi

≥ πR2,

for any R such, that symplectic and holomorphic embedding exists. Thus

ε(L, r) ≥ πR2

and from the definition of vh
r , and the fact that the volume of the unit ball

in (R4, ω0) is π2

2 , we get the required inequality

ε(L, r) ≥
√

L2vh
r

r
.
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