Two illustrative examples of spaces with maximal projection constant

Bruce L. Chalmers ${ }^{1}$ and Grzegorz Lewicki ${ }^{2}$

May 27, 2008

IMUJ Preprint 2008/02

Abstract

Let V be an n-dimensional real Banach space and let $\lambda(V)$ denote its absolute projection constant. For any $N \in \mathbb{N}, N \geq n$ define $$
\lambda_{n}^{N}=\sup \left\{\lambda(V): \operatorname{dim}(V)=n, V \subset l_{\infty}^{(N)}\right\}
$$

and

$$
\lambda_{n}=\sup \{\lambda(V): \operatorname{dim}(V)=n\} .
$$

A well-known Grünbaum conjecture ([6], p. 465) says that

$$
\lambda_{2}=4 / 3 .
$$

In this paper we show that

$$
\lambda_{3}^{5}=\frac{5+4 \sqrt{2}}{7}
$$

and we determine a three-dimensional space $V \subset l_{\infty}^{(5)}$ satisfying $\lambda_{3}^{5}=$ $\lambda(V)$. In particular, this shows that Prop. 3.1 from ([11], p. 259)

[^0]is incorrect. Hence the proof of the Grünbaum conjecture given in ([11]) which is based on Prop. 3.1 is incomplete. In the second part of this paper an alternative proof of the Grünbaum conjecture will be presented.

MSC: 46A22, 47A30, 47A58
Keywords: absolute projection constant, minimal projection, two-dimensional Hahn-Banach theorem

1 Introduction

Let X be a real Banach space and let $V \subset X$ be a finite-dimensional subspace. A linear, continuous mapping $P: X \rightarrow V$ is called a projection if $\left.P\right|_{V}=\left.i d\right|_{V}$. Denote by $\mathcal{P}(X, V)$ the set of all projections from X onto V. Set

$$
\lambda(V, X)=\inf \{\|P\|: P \in \mathcal{P}(X, V)\}
$$

and

$$
\lambda(V)=\sup \{\lambda(V, X): V \subset X\}
$$

The constant $\lambda(V, X)$ is called the relative projection constant and $\lambda(V)$ the absolute projection constant. General bounds for absolute projection constants were studied by many authors (see e.g. [2, 3, 8, 9, 10, 12, 14]). It is well-known (see e.g [15]) that if V is a finite-dimensional space then

$$
\lambda(V)=\lambda\left(I(V), l_{\infty}\right\}
$$

where $I(V)$ denotes any isometric copy of V in l_{∞}. Denote for any $n \in \mathbb{N}$

$$
\lambda_{n}=\sup \{\lambda(V): \operatorname{dim}(V)=n\}
$$

and for any $N \in \mathbb{N}, N \geq n$

$$
\lambda_{n}^{N}=\sup \left\{\lambda(V): V \subset l_{\infty}^{(N)}\right\} .
$$

By the Kadec-Snobar Theorem (see [7]) $\lambda(V) \leq \sqrt{n}$ for any $n \in \mathbb{N}$. However, determination of the constant λ_{n} seems to be difficult. In ([6], p.465) it was conjectured by B. Grünbaum that

$$
\lambda_{2}=4 / 3
$$

In ([11], Th. 1.1) an attempt has been made to prove the Grübaum conjecture (and a more general result). The proof presented in this paper is mainly based on ([11]), Proposition 3.1, p. 259 and ([11], Lemma 5.1, p. 273). Unfortunately, the proof of Proposition 3.1 is incorrect. In fact the formula (3.19) from ([11], p. 263) is false. This can be easily checked differentiating formula (3.12) on page 262 with respect to the proper variable. Because of this error, the part of the proof of [11], Proposition 3.1 on p. 265 is incorrect and as a result, the proof of [11], Th. 1.1 is incomplete.
In the first part of this paper we show that

$$
\lambda_{3}^{5}=\frac{5+4 \sqrt{2}}{7}
$$

and we determine a three-dimensional space $V \subset l_{\infty}^{(5)}$ satisfying $\lambda_{3}^{5}=\lambda(V)$. In particular, this shows that not only the proof of Proposition 3.1 from ([11]) is incorrect but also the statement of Proposition 3.1 is incorrect.
In the second part of this paper we present an alternative proof of the Grünbaum conjecture, which is based on the proof given for λ_{3}^{5}.
Now we briefly describe the structure of the paper.
In Section 1 we demonstrate some preliminary results useful as well as for determination of λ_{3}^{5} and the proof of the Grünbaum conjecture.
In Section 2 after proving some preliminary lemmas we determine the constant λ_{3}^{5}.
Section 3 contains a proof of the Grünbaum conjecture based on the proof given in Section 2.
The main tools applied in both proofs are the Lagrange Multiplier Theorem and the Implicit Function Theorem.

2 Preliminary results

In this section mainly we consider the following problem. For a fixed $u_{1} \in$ $[0,1]$ maximize a function $f_{u_{1}}: \mathbb{R}^{N-1} \times\left(\mathbb{R}^{N}\right)^{n} \rightarrow R$ defined by:

$$
\begin{equation*}
f_{u_{1}}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=\sum_{i, j=1}^{N} u_{i} u_{j}\left|<x_{i}, x_{j}>_{n}\right| \tag{1}
\end{equation*}
$$

under constraints:

$$
\begin{equation*}
<x^{i}, x^{j}>_{N}=\delta_{i j}, 1 \leq i \leq j \leq n \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=2}^{N} u_{j}^{2}=1-u_{1}^{2} \tag{3}
\end{equation*}
$$

Here for $j=1, \ldots, N, x_{j}=\left(\left(x^{1}\right)_{j}, \ldots,\left(x^{n}\right)_{j}\right),<w, z>_{n}=\sum_{j=1}^{n} w_{j} z_{j}$ for any $w=\left(w_{1}, \ldots, w_{n}\right), z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}$ and $<p, q>_{N}=\sum_{j=1}^{N} p_{j} q_{j}$ for any $p=\left(p_{1}, \ldots, p_{N}\right), q=\left(q_{1}, \ldots, q_{N}\right) \in \mathbb{R}^{N}$. Also we will work with

$$
\begin{equation*}
f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=\sum_{i, j=1}^{N} u_{i} u_{j} a_{i j}<x_{i}, x_{j}>_{n} \tag{4}
\end{equation*}
$$

where $A=\left\{a_{i j}\right\}$ is a fixed $N \times N$ symmetric matrix.
LEMMA 2.1 Let $\left.C=\left(c_{i j}\right)_{i, j=1, \ldots, n}\right)$ be a real $n \times n$ orthonormal matrix. Then for any $x^{1}, \ldots, x^{n}, u \in \mathbb{R}^{N}$ satisfying (2, 3),

$$
f_{u_{1}}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=f_{u_{1}}\left(\left(u_{2}, \ldots, u_{N}\right), C\left(x^{1}\right), \ldots, C\left(x^{n}\right)\right),
$$

and

$$
f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{N}\right), C\left(x^{1}\right), \ldots, C\left(x^{n}\right)\right)
$$

for any $N \times N$ matrix A. Here $C\left(x^{i}\right)=\sum_{j=1}^{n} c_{i j} x^{j}$.
Proof. Note that

$$
\begin{gathered}
<C x^{i}, C x^{j}>_{N}=<\sum_{k=1}^{n} c_{i k} x^{k}, \sum_{l=1}^{n} c_{j l} x^{l}>_{N} \\
=\sum_{k, l=1}^{n} c_{i k} c_{j l}<x^{k}, x^{l}>_{N}=\sum_{k, l=1}^{n} a_{i k} a_{j l} \delta_{k l}=\sum_{k=1}^{n} c_{i k} c_{j k}=\delta_{i j}
\end{gathered}
$$

which shows that u and $C x^{i} i=1, \ldots, n$ satisfy (2,3). Note that for $i=$ $1, \ldots, N$ and $j=1, \ldots, n$

$$
\left(C x^{j}\right)_{i}=\sum_{k=1}^{n} c_{j k}\left(x^{k}\right)_{i}
$$

Denote for $i=1, \ldots, N(C x)_{i}=\left(\left(C x^{1}\right)_{i}, \ldots,\left(C x^{n}\right)_{i}\right)$. Notice that for $i, j=$ $1, \ldots, N$,

$$
<(C x)_{i},(C x)_{j}>_{n}=\sum_{l=1}^{n}\left(\sum_{k=1}^{n} c_{l k}\left(x^{k}\right)_{i}\right)\left(\sum_{u=1}^{n} c_{l u}\left(x^{u}\right)_{j}\right)
$$

$$
\begin{gathered}
=\sum_{k, u=1}^{n} \sum_{l=1}^{n}\left(c_{l k}\left(x^{k}\right)_{i} c_{l u}\left(x^{u}\right)_{j}\right)=\sum_{k, u=1}^{n}\left(x^{k}\right)_{i}\left(x^{u}\right)_{j} \sum_{l=1}^{n} c_{l k} c_{l u} \\
=\sum_{k, u=1}^{n}\left(x^{k}\right)_{i}\left(x^{u}\right)_{j} \delta_{k u}=\sum_{k=1}^{n}\left(x^{k}\right)_{i}\left(x^{k}\right)_{j}=<x_{i}, x_{j}>_{n} .
\end{gathered}
$$

By (1) and (4)

$$
f_{u_{1}}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=f_{u_{1}}\left(\left(u_{2}, \ldots, u_{N}\right), C\left(x^{1}\right), \ldots, C\left(x^{n}\right)\right)
$$

and

$$
f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{N}\right), C\left(x^{1}\right), \ldots, C\left(x^{n}\right)\right)
$$

which shows our claim.
Now we recall the following well-known
LEMMA 2.2 Let $(X,<\cdot, \cdot>)$ be a finite-dimensional Hilbert space with an orthonormal basis x^{1}, \ldots, x^{n}. Let $T: X \rightarrow X$ be a linear isometry. If C is an $n \times n$ matrix with columns $c_{j}=\left(c_{1 j}, \ldots, c_{n j}\right)$ defined by

$$
T x^{j}=\sum_{i=1}^{n} c_{j i} x^{i}
$$

then C is an orthonormal matrix.
Proof. Notice that for any $j=1, \ldots, n$,

$$
\begin{gathered}
1=<x^{j}, x^{j}>=<T x^{j}, T x^{j}>=<\sum_{i=1}^{n} c_{i j} x^{i}, \sum_{l=1}^{n} c_{l j} x^{l}>=\sum_{i, l=1}^{n} c_{i j} c_{l j}<x^{i}, x^{l}> \\
=\sum_{i, l=1}^{n} c_{i j} c_{l j} \delta_{i j}=\sum_{i=1}^{n}\left(c_{i j}\right)^{2}
\end{gathered}
$$

Also for any $i, j \in\{1, \ldots, n\}, i \neq j$

$$
\begin{gathered}
2=<x_{i}+x_{j}, x_{i}+x_{j}>=<T x_{i}+T x_{j}, T x_{i}+T x_{j}> \\
=<T x_{i}, T x_{i}>+<T x_{j}, T x_{j}>+2<T x_{i}, T x_{j}>=2+2<T x_{i}, T x_{j}>
\end{gathered}
$$

Hence

$$
0=<T x_{i}, T x_{j}>=\sum_{k, u=1}^{n} c_{k i} c_{u j}<x^{k}, x^{u}>=\sum_{k, u=1}^{n} c_{k i} c_{u j} \delta_{k u}=\sum_{k=1}^{n} c_{k i} c_{k j},
$$

which shows our claim.

LEMMA 2.3 Let $x^{1}, \ldots, x^{n} \in \mathbb{R}^{N}$ and $u \in \mathbb{R}^{N}$ satisfy (2, 3). Set $V=$ $\operatorname{span}\left[x^{1}, \ldots, x^{n}\right]$. Assume v^{1}, \ldots, v^{n} is an orthonormal basis of V (with respect to $\left.<\cdot, \cdot>_{N}\right)$. Then

$$
f_{u_{1}}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=f_{u_{1}}\left(\left(u_{2}, \ldots, u_{N}\right), v^{1}, \ldots, v^{n}\right)
$$

and

$$
f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{N}\right), v^{1}, \ldots, v^{n}\right)
$$

for any $N \times N$ matrix A.
Proof. It is well-known that for any $x, y \in \mathbb{R}^{N},<x, x>_{N}=<y, y>_{N}=1$, there exists a linear isometry (with respect to the Euclidean norm in \mathbb{R}^{N}) $T_{x, y}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ such that $T x=y$. Applying this fact and the induction argument with respect to n we get that there exists a linear isometry T : $\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ such that $T x^{i}=v^{i}$ for $i=1, \ldots, n$. By Lemma (2.2) there exists an orthonormal matrix C such that $C x^{i}=\sum_{j=1}^{n} C_{i j} x^{j}=v^{i}$. By Lemma (2.1),

$$
f_{u_{1}}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=f_{u_{1}}\left(\left(u_{2}, \ldots, u_{N}\right), v^{1}, \ldots, v^{n}\right)
$$

and

$$
f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right)=f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{N}\right), v^{1}, \ldots, v^{n}\right)
$$

which completes the proof.

LEMMA 2.4 Let $n, N \in \mathbb{N}, N \geq n$. Fix $u=\left(u_{1}, \ldots, u_{N}\right) \in \mathbb{R}^{N}$ with nonnegative coordinates. Let us consider a function $f: \mathbb{R}^{n N} \rightarrow \mathbb{R}$ given by

$$
f\left(x^{1}, \ldots, x^{n}\right)=\sum_{i, j=1}^{N} u_{i} u_{j}\left|<x_{i}, x_{j}>\right|_{n}
$$

where $x^{i} \in \mathbb{R}^{N}$ for $i=1, \ldots, n$, Assume that $y^{1}, \ldots, y^{n} \in \mathbb{R}^{N}$ are so chosen that

$$
f\left(y^{1}, \ldots, y^{n}\right)=\max \left\{f\left(x^{1}, \ldots, x^{n}\right):\left(x^{1}, \ldots, x^{n}\right) \text { satisfying }(2)\right\}
$$

Let $A \in \mathbb{R}^{N \times N}$ be a matrix defined by

$$
\begin{equation*}
a_{i j}=\operatorname{sgn}\left(<y_{i}, y_{j}>_{n}\right) \tag{5}
\end{equation*}
$$

for $i, j=1, \ldots, N .(\operatorname{sgn}(0)=1$ by definition $)$. Define $B \in \mathbb{R}^{N \times N}$ by

$$
\begin{equation*}
b_{i j}=u_{i} u_{j} a_{i j} \tag{6}
\end{equation*}
$$

for $i, j=1, \ldots, N$. Let

$$
b_{1} \geq b_{2} \geq \ldots \geq b_{N}
$$

denote the eigenvalues of B (Since B is symmetric all of them are real.) Then there exist orthonormal (with respect to $<\cdot, \cdot>_{N}$) eigenvectors of B $w^{1}, \ldots, w^{n} \in \mathbb{R}^{N}$ corresponding to b_{1}, \ldots, b_{n} such that

$$
f\left(w^{1}, \ldots, w^{n}\right)=f\left(y^{1}, \ldots, y^{n}\right)=\sum_{j=1}^{n} b_{j}
$$

Set

$$
f_{1}\left(x^{1}, \ldots, x^{n}\right)=\sum_{i, j=1}^{N} b_{i j}<x_{i}, x_{j}>_{n}
$$

If $y^{1}, \ldots, y^{n} \in \mathbb{R}^{N}$ are such that
$f_{1}\left(y^{1}, \ldots, y^{n}\right)=\max \left\{f_{1}\right.$, under constraint (2) $\}=\max \{f$, under constraint (2) $\}$ and $b_{n}>b_{n+1}$ then $\operatorname{span}\left[y^{i}: i=1, \ldots, n\right]=\operatorname{span}\left[w^{i}: i=1, \ldots, n\right]$.

Proof. Since u_{j} are nonnegative,

$$
f_{1}\left(x^{1}, \ldots, x^{n}\right) \leq f\left(x^{1}, \ldots, x^{n}\right)
$$

for any $x^{1}, \ldots, x^{n} \in \mathbb{R}^{N}$. Moreover,

$$
f_{1}\left(y^{1}, \ldots, y^{n}\right)=f\left(y^{1}, \ldots, y^{n}\right)
$$

Hence f_{1} attains its maximum under constraints (2) at $\left(y^{1}, \ldots, y^{n}\right)$. We now apply the Lagrange Multiplier Theorem to the function f_{1}. This is possible since f_{1} is a C^{∞} function. Notice that by $\left([11]\right.$, p. 261) $\operatorname{rank}\left(G^{\prime}\left(y^{1}, \ldots, y^{n}\right)\right)=$ $n(n+1) / 2$ where G is the $n(n+1) / 2 \times n N$ matrix associated with conditions (2). Consequently there exist Lagrange multipliers $k_{i j}, 1 \leq i \leq j \leq n$ such that

$$
\begin{equation*}
\frac{\partial\left(f_{1}-\sum_{1 \leq i \leq j \leq n} k_{i j} G_{i}\right)}{\partial\left(x^{i}\right)_{j}}\left(y^{1}, \ldots, y^{n}\right)=0 \tag{7}
\end{equation*}
$$

for $i=1, \ldots, n, j=1, \ldots, N$, where $G_{i}\left(x^{1}, \ldots x^{n}\right)=<x^{i}, x^{j}>_{N}$. Let us define for $i, j \in\{1, \ldots, n\}, \gamma_{i j}=k_{i j} / 2$ if $i<j, \gamma_{i j}=k_{j i} / 2$, if $j<i$ and $\gamma_{i i}=k_{i i}$. Hence the system (7) can be rewritten (compare with [11], p.262, formula(3.14)) as:

$$
\begin{equation*}
B\left(y^{m}\right)=\sum_{i=1}^{n} \gamma_{m i} y^{i} \tag{8}
\end{equation*}
$$

for $m=1, \ldots, n$. Let $\Gamma=\left\{\gamma_{i j}, i, j=1, \ldots, n\right\}$. Observe that Γ is a symmetric $n \times n$ matrix . Hence it has real eigenvalues a_{1}, \ldots, a_{n}. Without loss of generality we can assume that

$$
\begin{equation*}
a_{1} \geq a_{2} \geq \ldots \geq a_{n} \tag{9}
\end{equation*}
$$

Let $V=\left[v_{i j}\right]$ be the $n \times n$ orthonormal matrix consisting of eigenvectors of Γ. Then

$$
\begin{equation*}
V^{T} \Gamma V=D, \tag{10}
\end{equation*}
$$

where D is a diagonal matrix with $d_{i i}=a_{i}$ for $i=1, \ldots, n$. Now we show that

$$
\begin{equation*}
a_{i}=b_{i} \tag{11}
\end{equation*}
$$

for $i=1, \ldots, n$. First we prove that $a_{m}, m=1, \ldots, n$, are also eigenvalues of B. To do this, fix $m \in\{1, \ldots, n\}$. Define

$$
\begin{equation*}
w^{m}=\sum_{j=1}^{n} v_{j m} y^{j} \tag{12}
\end{equation*}
$$

We show that $B w^{m}=a_{m} w^{m}$. Note that

$$
B w^{m}=B\left(\sum_{j=1}^{n} v_{j m} y^{j}\right)=\sum_{j=1}^{n} v_{j m} B\left(y^{j}\right)=\sum_{j=1}^{n} v_{j m}\left(\sum_{i=1}^{n} \gamma_{j i} y^{i}\right)
$$

$$
=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} v_{j m} \gamma_{j i}\right) y^{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} v_{j m} \gamma_{i j}\right) y^{i}=\sum_{i=1}^{n}(\Gamma V)_{i m} y^{i}
$$

(by(10))

$$
=\sum_{i=1}^{n}(V D)_{i m} y^{i}=\sum_{i=1}^{n} v_{i m} a_{m} y^{i}=a_{m}\left(\sum_{i=1}^{n} v_{i m} y^{i}\right)=a_{m} w^{m} .
$$

Hence for $m=1, \ldots, n a_{m}$ are eigenvalues of B with the corresponding vectors w^{m}. By the proof of Lemma $(2.1),<w^{i}, w^{j}>_{N}=\delta_{i j}$. Notice that by (12) and Lemma(2.3)

$$
f_{1}\left(y^{1}, \ldots, y^{n}\right)=f_{1}\left(w^{1}, \ldots, w^{n}\right)
$$

Since for any $m=1, \ldots, n$ and $i=1, \ldots, N$,

$$
\left(B w^{m}\right)_{i}=a_{m}\left(w^{m}\right)_{i},
$$

multiplying each of the above equations by $\left(w^{m}\right)_{i}$ and summing them up we get that

$$
\sum_{j=1}^{n} a_{m}=f_{1}\left(w^{1}, \ldots, w^{n}\right)=f_{1}\left(y^{1}, \ldots, y^{n}\right)=f\left(y^{1}, \ldots, y^{n}\right)
$$

If $a_{i} \neq b_{i}$ for some $i \in\{1, \ldots, n\}$, let v^{1}, \ldots, v^{n} be the orthonormal eigenvectors of B corresponding to b_{1}, \ldots, b_{n}. Reasoning as above, we get

$$
\begin{gathered}
f\left(v^{1}, \ldots, v^{n}\right) \geq \sum_{i, j=1}^{N} u_{i} u_{j} \operatorname{sgn}\left(<y_{i}, y_{j}>_{n}\right)<v_{i}, v_{j}>_{n} \\
=\sum_{i=1}^{n} b_{i}>\sum_{i=1}^{n} a_{i}=f\left(y^{1}, \ldots, y^{n}\right)
\end{gathered}
$$

a contradiction. The fact that $\operatorname{span}\left[y^{i}: i=1, \ldots, n\right]=\operatorname{span}\left[w^{i}: i=1, \ldots, n\right]$ follows from (12) and invertibility of the matrix V.

Reasoning as in the proof of Lemma(2.4) we can show
THEOREM 2.1 Let \mathcal{A} denote the set of all $N \times N$ symmetric matrices $\left(a_{i j}\right)$ such that $a_{i j}= \pm 1$ and $a_{i i}=1$ for $i, j=1, \ldots, N$. Let $f_{u_{1}}$ be given by (1). Then

$$
\max \left\{f_{u_{1}}:\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, \ldots, x^{n}\right) \text { satisfying (2,3) }\right\}
$$

$$
=\max \left\{\sum_{i=1}^{n} b_{i}(v, A): A \in \mathcal{A}, v=\left(v_{1}, \ldots v_{n}\right) \in \mathbb{R}^{N}, \sum_{i=1}^{N} v_{i}^{2}=1, v_{1}=u_{1}\right\},
$$

where $b_{1}(v, A) \geq b_{2}(v, A) \geq \ldots \geq b_{n}(v, A)$ denote the biggest eigenvalues of an $N \times N$ matrix $\left(v_{i} v_{j} a_{i j}\right)_{i j=1}^{N}$. Analogously for any $A=\left(a_{i j}\right) \in \mathcal{A}$,

$$
\begin{gathered}
\max \left\{\sum_{i, j=1}^{N} u_{i} u_{j} a_{i j}<x_{i}, x_{j}>_{n}:\left(x^{1}, \ldots, x^{n}\right)\right. \text { satisfying (2) } \\
\left.u_{j}=\sqrt{\left(1-u_{1}^{2}\right) /(N-1)}, j=2, \ldots, N\right\} \\
=\max \left\{\sum_{i=1}^{n} b_{i}(v, A): A \in \mathcal{A}, v=\left(u_{1}, c\left(u_{1}\right), \ldots, c\left(u_{1}\right)\right)\right\},
\end{gathered}
$$

where $c\left(u_{1}\right)=\sqrt{\left(1-u_{1}^{2}\right) /(N-1)}$. Also

$$
\begin{aligned}
& \max \left\{\sum_{i, j=1}^{N} u_{i} u_{j}\left|<x_{i}, x_{j}>\right|_{n}:\left(x^{1}, \ldots, x^{n}\right) \text { satisfying (2), } \sum_{j=1}^{N} u_{j}^{2}=1\right\} \\
& \quad=\max \left\{\sum_{i=1}^{n} b_{i}(v, A): A \in \mathcal{A}, v=\left(v_{1}, \ldots v_{n}\right) \in \mathbb{R}^{N}, \sum_{i=1}^{N} v_{i}^{2}=1\right\}
\end{aligned}
$$

Now for $n, N \in \mathbb{N}, N \geq n$ define

$$
\begin{equation*}
\lambda_{n}^{N}=\sup \left\{\lambda\left(V, l_{\infty}^{(N)}\right): V \subset l_{\infty}^{(N)}, \operatorname{dim}(V)=n\right\} \tag{13}
\end{equation*}
$$

LEMMA 2.5 For any $n, N \in \mathbb{N}, 2 \leq n \leq N$,

$$
\lambda_{n-1}^{N-1} \leq \lambda_{n}^{N}
$$

Proof. Let $V \subset l_{\infty}^{(N-1)}$ be an n-1-dimensional subspace with a basis w^{1}, \ldots, w^{n-1}. Define

$$
V_{1}=\operatorname{span}\left[e_{1},\left(0, w^{j}\right): j=1, \ldots, n-1\right] \subset l_{\infty}^{N}
$$

Let $P \in \mathcal{P}\left(l_{\infty}^{(N)}, V_{1}\right)$ be such that

$$
\|P\|=\lambda\left(V_{1}, l_{\infty}^{(N)}\right)
$$

(Since V_{1} is finite-dimensional such a projection exists.). Define $Q \in \mathcal{L}\left(l_{\infty}^{(N-1)}, V\right)$ by

$$
Q x=\left(\left(P(0, x)_{2}, \ldots,\left(P(0, x)_{n}\right) .\right.\right.
$$

It is clear that $Q\left(l_{\infty}^{(N-1)}\right) \subset V$ and $Q w^{j}=w^{j}$ for $\mathrm{j}=1, \ldots, \mathrm{n}-1$. Hence $Q \in$ $\mathcal{P}\left(l_{\infty}^{(N-1)}, V\right)$. Moreover, $\|Q\| \leq\|P\|$. Taking supremum over V we get that

$$
\lambda_{n-1}^{N-1} \leq \lambda_{n}^{N}
$$

as required.

THEOREM 2.2 Let $n, N \in \mathbb{N}, N \geq n$. Then

$$
\lambda_{n}^{N}=\max \left\{\sum_{i, j=1}^{N} u_{i} u_{j}\left|<x_{i}, x_{j}>\right|_{n}:\left(x^{1}, \ldots, x^{n}\right) \text { satisfying (2), } \sum_{j=1}^{N} u_{j}^{2}=1\right\} .
$$

Proof. By ([11], Prop. 2.2 and (3.7), p.260),

$$
\lambda_{n}^{N} \leq \max \left\{\sum_{i, j=1}^{N} u_{i} u_{j}\left|<x_{i}, x_{j}>\right|_{n}:\left(x^{1}, \ldots, x^{n}\right) \text { satisfying }(2), \sum_{j=1}^{N} u_{j}^{2}=1\right\}
$$

To prove a converse assume that there exist $n, N \in \mathbb{N}, N \geq n$ such that

$$
\lambda_{n}^{N}<\phi_{n}^{N}=\max \left\{\sum_{i, j=1}^{N} u_{i} u_{j}\left|<x_{i}, x_{j}>\right|_{n}:\left(x^{1}, \ldots, x^{n}\right) \text { satisfying }(2), \sum_{j=1}^{N} u_{j}^{2}=1\right\}
$$

Without loss of generality we can assume that

$$
n=\min \left\{m \in \mathbb{N}: \lambda_{m}^{M}<\phi_{m}^{M} \text { for some } M \geq m\right\}
$$

and

$$
N=\min \left\{M \in \mathbb{N}, M \geq n: \lambda_{n}^{M}<\phi_{n}^{M}\right\}
$$

Let us define

$$
f\left(u, x^{1}, \ldots, x^{n}\right)=\sum_{i, j=1}^{N} u_{i} u_{j}\left|<x_{i}, x_{j}>\right|_{n}
$$

Let $y^{1}, \ldots, y^{n} \in \mathbb{R}^{N}$ satisfying (2) and $u^{o} \in \mathbb{R}^{N}$ with $\sum_{j=1}^{N}\left(u_{j}^{o}\right)^{2}=1$, be such that

$$
f\left(u^{o}, y^{1}, \ldots, y^{n}\right)=\phi_{n}^{N}
$$

Define as in Lemma(2.4)

$$
\begin{equation*}
a_{i j}=\operatorname{sgn}\left(<y_{i}, y_{j}>_{n}\right) \tag{14}
\end{equation*}
$$

for $i, j=1, \ldots, N$. Also let $B \in \mathbb{R}^{N \times N}$ be given by

$$
\begin{equation*}
b_{i j}=u_{i}^{o} u_{j}^{o} a_{i j} \tag{15}
\end{equation*}
$$

for $i=1, \ldots, N$. By Lemma(2.4) and Theorem(2.1) we can get that

$$
f\left(u^{o}, y^{1}, \ldots, y^{n}\right)=\sum_{i=1}^{n} b_{i}\left(u^{o}, A\right)
$$

where $b_{1}\left(u^{o}, A\right) \geq b_{2}\left(u^{o}, A\right) \geq \ldots \geq b_{n}\left(u^{o}, A\right)$ denote the biggest eigenvalues of the above defined matrix B. First suppose that $u_{j}^{o}=0$ for some $j \in\{1, \ldots, N\}$. Without loss of generality we can assume that $u_{1}^{o}=0$. Let B_{1} be an $(N-1) \times(N-1)$ matrix given by

$$
B_{1}=\left\{b_{i j}\right\}_{i, j=2, \ldots, N}
$$

(the part of B without the first row and the first column). Let $d_{1} \geq \ldots \geq$ d_{N-1} be the eigenvalues of B_{1} and z^{1}, \ldots, z^{N-1} the corresponding orthonormal eigenvectors. Since $u_{1}^{o}=0, v^{j}=\left(0, z^{j}\right), j=1, \ldots, N-1$ are the orthonormal eigenvectors of B corresponding to d_{j}. Also $d_{o}=0$ is an eigenvalue of B with e_{1} as an eigenvector. Consequently

$$
b_{j}\left(u^{o}, A\right) \in\left\{0, d_{k}, k=1, \ldots N-1\right\}
$$

for $j=1, \ldots, n$. If $b_{j}\left(u^{o}, A\right)>0$ for $j=1, \ldots, n$, then $b_{j}\left(u^{o}, A\right)$ are also the eigenvalues of B_{1}. By Theorem(2.1),

$$
\sum_{i=1}^{n} b_{i}\left(u^{o}, A\right)=\phi_{n}^{N}=\phi_{n}^{N-1}=\lambda_{n}^{N-1} \leq \lambda_{n}^{N}
$$

a contradiction with the definition of N. If $b_{j}\left(u^{o}, A\right)=0$ for some $j \in$ $\{1, \ldots, n\}$, then again by Theorem(2.1)

$$
\phi_{n}^{N} \leq \sum_{i \neq j} b_{i}\left(u^{o}, A\right) \leq \phi_{n-1}^{N-1}=\lambda_{n-1}^{N-1}
$$

Consequently by Lemma(2.5),

$$
\lambda_{n}^{N} \geq \lambda_{n-1}^{N-1}=\phi_{n-1}^{N-1} \geq \phi_{n}^{N}
$$

which again leads to a contradiction. Now assume that $u_{j}^{o}>0$ for $j=1, \ldots, N$. Let w^{1}, \ldots, w^{n} be the orthonormal eigenvectors corresponding to $b_{i}\left(u^{o}, A\right)$ for $i=1, \ldots, n$. By the proof of Lemma(2.4)

$$
f_{1}\left(u^{o}, w^{1}, \ldots, w^{n}\right)=\phi_{n}^{N}
$$

Define, for $j=1, \ldots, n$,

$$
z^{j}=\left(w_{1}^{j} / u_{1}^{o}, \ldots, w_{N}^{j} / u_{N}^{o}\right)
$$

and let

$$
V=\operatorname{span}\left[z^{j}: j=1, \ldots, n\right] \subset l_{\infty}^{(N)} .
$$

We show that $\lambda\left(V, l_{\infty}^{(N)}\right)=\sum_{j=1}^{n} b_{j}\left(u^{o}, A\right)=\phi_{n}^{N} .$. Define, for $j=1, \ldots, n$,

$$
f^{j}=\left(w_{1}^{j} u_{1}^{o}, \ldots, w_{N}^{j} u_{N}^{o}\right)
$$

and let $P \in \mathcal{L}\left(l_{\infty}^{(N)}, V\right)$ be given by

$$
P x=\sum_{j=1}^{n}<f^{j}, x>_{N} z^{j} .
$$

Since the vectors w^{j} are orthogonal with respect to $<\cdot, \cdot>_{N}, P \in \mathcal{P}\left(l_{\infty}^{(N)}, V\right)$. Now we show that

$$
\|P\|=\lambda\left(V, l_{\infty}^{(N)}\right)=\phi_{n}^{N} .
$$

Since the function f_{1} attains its conditional maximum at $u^{o}, w^{1}, \ldots, w^{n}$ (compare with the proof of Lemma(2.4)) by the Lagrange Multiplier Theorem there exist $k_{i j} \in \mathbb{R}, 1 \leq i \leq j \leq n$ and $d \in \mathbb{R}$ such that

$$
\begin{equation*}
\frac{\partial\left(f_{1}-\sum_{1 \leq i \leq j \leq n} k_{i j} G_{i}-d\left(\sum_{j=1}^{N} u_{j}^{2}-1\right)\right)}{\partial\left(u_{j}\right)}\left(u^{o}, w^{1}, \ldots, w^{n}\right)=0 \tag{16}
\end{equation*}
$$

It is easy to see that (16) reduces to (compare with ([11], (3.12), p.262))

$$
\sum_{j=1}^{N} u_{j}^{o} a_{i j}<w_{i}, w_{j}>_{n}=d u_{i}^{o}
$$

for $i=1, \ldots, N$. Multiplying the above equalities by u_{i}^{o} and summing them up, we get that

$$
d=f_{1}\left(u^{o}, w^{1}, \ldots, w^{n}\right)=\phi_{n}^{N}
$$

Also since $u_{i}^{o}>0$ for $i=1, \ldots, N,(16)$ reduces to

$$
\left(\sum_{j=1}^{N} u_{j}^{o} a_{i j}<w_{i}, w_{j}>_{n}\right) / u_{i}^{o}=d
$$

Consequently, by definition of $\langle\cdot, \cdot\rangle_{n}$, we get, for $i=1, \ldots, N$,

$$
\begin{equation*}
d=\sum_{k=1}^{n}\left(\sum_{j=1}^{N} a_{i j} u_{j}^{o} w^{k}\right)_{j} w_{i}^{k} / u_{i}^{o}=\sum_{k=1}^{n}\left(\sum_{j=1}^{N} a_{i j} f_{j}^{k}\right) z_{i}^{k}=\left(P\left(a_{i 1}, \ldots, a_{i N}\right)\right)_{i} . \tag{17}
\end{equation*}
$$

Since $\left\|\left(a_{i 1}, \ldots, a_{i N}\right)\right\|_{\infty}=1,\|P\| \geq d$. On the other hand, for any $x=$ $\left(x_{1}, \ldots, x_{N}\right) \in l_{\infty}^{(N)},\|x\|_{\infty}=1$ and $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
& \left|(P x)_{i}\right|=\left|\sum_{j=1}^{n}<f^{j}, x>_{N} z_{i}^{j}\right|=\left|\sum_{k=1}^{N} x_{k}\left(\sum_{j=1}^{n} f_{k}^{j} z_{i}^{j}\right)\right| \\
& =\left|\sum_{k=1}^{N} x_{k}\left(\sum_{j=1}^{n} w_{k}^{j} u_{k}^{o} w_{i}^{j} / u_{i}^{o}\right)\right| \leq\left(\sum_{k=1}^{N} u_{k}^{o}\left|<w_{k}, w_{i}>_{n}\right|\right) / u_{i}^{o} \\
& = \\
& =\left(\sum_{k=1}^{N} u_{k}^{o} a_{i k}<w_{k}, w_{i}>_{n}\right) / u_{i}^{o}=d,
\end{aligned}
$$

since $a_{i j}=\operatorname{sgn}\left(<y_{j}, y_{i}>_{n}\right)=\operatorname{sgn}\left(<w_{j}, w_{i}>_{n}\right)$ for $i, j=1, \ldots, N$. Hence

$$
\|P\|=d=\phi_{n}^{N} .
$$

Now we show that

$$
\|P\|=\lambda\left(V, l_{\infty}^{(N)}\right)
$$

To do this set for $i=1, \ldots, N a^{i}=\left(a_{i 1}, \ldots, a_{i N}\right)$ and define an operator $E_{p}: l_{\infty}^{(N)} \rightarrow l_{\infty}^{(N)}$ by

$$
E_{p}(x)=\sum_{i=1}^{N}\left(u_{i}^{o}\right)^{2} x_{i} a^{i}
$$

We show that $E_{p}(V) \subset V$. Note that for any $k=1, \ldots, N$, and $j=1, \ldots, n$

$$
\begin{gathered}
\left(E_{p}\left(z^{j}\right)\right)_{k}=\sum_{i=1}^{N}\left(u_{i}^{o}\right)^{2}\left(w_{i}^{j} / u_{i}^{o}\right)\left(a^{i}\right)_{k}=\sum_{i=1}^{N} u_{i}^{o} w_{i}^{j} a_{k i} \\
= \\
=b_{j}\left(u^{o}, A\right) w_{k}^{j} / u_{k}^{o}=b_{j}\left(u^{o}, A\right) z_{k}^{j},
\end{gathered}
$$

since w^{j} is an eigenvector associated to $b_{j}\left(u^{o}, A\right)$. Observe that by (17)

$$
\left(P a^{i}\right)_{i}=d=\|P\|
$$

for $i=1, \ldots, N$ and $\sum_{i=1}^{N}\left(u_{i}^{o}\right)^{2}=1$. By [4] (see also [13], Th. 1.3), P is a minimal projection in $\mathcal{P}\left(l_{\infty}^{(N)}, V\right)$. Finally

$$
\lambda_{n}^{N} \geq \lambda\left(V, l_{\infty}^{(N)}\right)=\|P\|=d=\phi_{n}^{N}
$$

which leads to a contradiction. The proof is complete.

LEMMA 2.6 For any $n \geq 2$,

$$
\lambda_{n}^{n+1}=2-2 /(n+1)
$$

Moreover, $\lambda_{n}^{n+1}=\lambda\left(k e r(f), l_{\infty}^{(n+1)}\right)$ if and only if $f=c(\pm 1, \ldots, \pm 1)$, where c is a positive constant.

Proof. It is clear that

$$
\lambda_{n}^{n+1}=\max \left\{\lambda\left(\operatorname{ker}(f), l_{\infty}^{(n+1)}\right): f \in l_{1}^{(n+1)} \backslash\{0\},\|f\|_{1}=1\right\} .
$$

$\operatorname{By}([1])$, if $f=\left(f_{1}, \ldots, f_{n+1}\right) \in l_{1}^{(n+1)},\|f\|_{1}=1$ is so chosen that $\lambda\left(\operatorname{ker}(f), l_{\infty}^{(n+1)}\right)>$ 1 , then $\left|f_{j}\right|<1 / 2$ for any $j=1, \ldots, n+1$ and

$$
\lambda\left(k e r(f), l_{\infty}^{(n+1)}\right)=1+\left(\sum_{i=1}^{n+1} \frac{\left|f_{j}\right|}{\left(1-2\left|f_{j}\right|\right)}\right)^{-1}
$$

Hence it is easy to see that

$$
\lambda_{n}^{n+1}=\max \left\{1+\left(\sum_{i=1}^{n+1} \frac{f_{j}}{\left(1-2 f_{j}\right)}\right)^{-1}\right\}
$$

under constraints

$$
\begin{equation*}
\left\{\sum_{j=1}^{n+1} f_{j}=1,1 / 2 \geq f_{j} \geq 0, j=1, \ldots, n+1\right\} \tag{18}
\end{equation*}
$$

Now we show by induction argument that

$$
\lambda_{n}^{n+1}=2-2 /(n+1)
$$

If $n=2$, by the Lagrange Multiplier Theorem the only functional $f=$ $\left(f_{1}, f_{2}, f_{3}\right)$ which can maximize the function $\phi_{2}(f)=1+\left(\sum_{i=1}^{3} \frac{f_{j}}{\left(1-2 f_{j}\right)}\right)^{-1}$ under constraint (18) is $f=(1 / 3,1 / 3,1 / 3)$ and $\phi_{2}(1 / 3,1 / 3,1 / 3)=4 / 3$. Now assume that $\lambda_{k}^{k+1}=2-2 /(k+1)$ for any $k \leq n$. Then by the Lagrange Multiplier Theorem the only functional $f=\left(f_{1}, \ldots, f_{n+1}\right)$ which can maximize the function $\phi_{n}(f)=1+\left(\sum_{i=1}^{n+1} \frac{f_{j}}{\left(1-2 f_{j}\right)}\right)^{-1}$ under constraint (18) is $f=$ $(1 /(n+1), \ldots, 1 /(n+1))$ and $\phi_{n}((1 /(n+1), \ldots, 1 /(n+1))=2-2 /(n+1)$. Notice that $\phi_{n+1}(1 /(n+2), \ldots, 1 /(n+2))=2-2 /(n+2)$, where $\phi_{n+1}(f)=$ $1+\left(\sum_{i=1}^{n+1} \frac{f_{j}}{\left(1-2 f_{j}\right)}\right)^{-1}$ Consequently, by the induction hypothesis,

$$
\lambda_{n+1}^{n+2}=\max \left\{1+\left(\sum_{i=1}^{n+2} \frac{f_{j}}{\left(1-2 f_{j}\right)}\right)^{-1}\right\}
$$

under constraints

$$
\begin{equation*}
\left\{\sum_{j=1}^{n+2} f_{j}=1,1 / 2>f_{j}>0, j=1, \ldots, n+2\right\} \tag{19}
\end{equation*}
$$

Again by the Lagrange Multiplier Theorem the only $f=\left(f_{1}, \ldots, f_{n+2}\right)$ which can maximize ϕ_{n+1} under constraints (19) is $f=(1 /(n+2), \ldots, 1 /(n+2))$. Hence $\lambda_{n+1}^{n+2}=2-2 /(n+2)$, as required. By the above proof, any functional f satisfying $\lambda\left(\operatorname{ker}(f), l_{\infty}^{(n+1)}\right)=\lambda_{n}^{n+1}$ is of the form $c(\pm 1 /(n+1), \ldots, \pm 1 /(n+1))$. The proof is complete.

LEMMA 2.7 Let us consider problem (1) with $u_{1}=0$ and fixed $N \geq n+2$. Assume that $\lambda_{n}^{N-1}>\lambda_{n-1}^{N-1}$. Then the maximum of $f_{u_{1}}$ under constraints (2 , 3) is equal to λ_{n}^{N-1}.

Proof. By ([11], Th. 1.2) and Theorem(2.2) for any $n, N \in \mathbb{N}, N \geq n+1$,

$$
\begin{equation*}
\lambda_{n}^{N}=\max \left\{\sum_{i, j=1}^{N} u_{i} u_{j}\left|<x_{i}, x_{j}>_{n}\right|\right\} \tag{20}
\end{equation*}
$$

under constraints:

$$
\begin{gather*}
<x^{i}, x^{j}>_{N}=\delta_{i j}, 1 \leq i \leq j \leq n ; \tag{21}\\
\sum_{j=1}^{N} u_{j}^{2}=1 \tag{22}
\end{gather*}
$$

Moreover, if $u, y^{1}, \ldots, y^{n} \in \mathbb{R}^{N}$ satisfying $(21,22)$ are such that

$$
\sum_{i, j=1}^{N} u_{i} u_{j}\left|<y_{i}, y_{j}>_{n}\right|=\lambda_{n}^{N}
$$

then by Lemma(2.4) and Theorem(2.1),

$$
\begin{equation*}
\lambda_{n}^{N}=\sum_{j=1}^{n} b_{j}, \tag{23}
\end{equation*}
$$

where $b_{1} \geq b_{2} \geq, \ldots, \geq b_{n}$ are the biggest eigenvalues of the $N \times N$ matrix $B=\left(b_{i j}\right)_{i, j=1, \ldots, N}$ defined by $b_{i j}=u_{i} u_{j} \operatorname{sgn}\left(<y_{i}, y_{j}>_{n}\right)$.
Now, assume

$$
\begin{gathered}
f_{u_{1}}\left(\left(v_{2}, \ldots, v_{n}\right), y^{1}, \ldots, y^{n}\right)=\max \left\{f_{u_{1}}\left(\left(u_{2}, \ldots, u_{n}\right), x^{1}, \ldots, x^{n}\right):\right. \\
\left.\left(u_{1}, \ldots, u_{n}\right),\left(x^{1}, \ldots, x^{n}\right) \text { satisfying }(2,3)\right\}
\end{gathered}
$$

Since $u_{1}=0$, by (20), and Theorem (2.2),

$$
f_{u_{1}}\left(\left(v_{2}, \ldots, v_{n}\right), y^{1}, \ldots, y^{n}\right) \geq \phi_{n}^{N-1}=\lambda_{n}^{N-1} .
$$

To prove the opposite inequality, let B be an $N \times N$ matrix defined by

$$
b_{i j}=v_{i} v_{j} \operatorname{sgn}\left(<y_{i}, y_{j}>_{n}\right) .
$$

Let $b_{1} \geq b_{2} \geq \ldots \geq b_{N}$ be the eigenvalues of B (with multiplicities). By Lemma(2.4),

$$
f_{u_{1}}\left(\left(v_{2}, \ldots, v_{n}\right), y^{1}, \ldots, y^{n}\right)=\sum_{j=1}^{n} b_{j} .
$$

Let $C=\left\{b_{i j}\right\}_{i, j=2, \ldots, N}$ and let $c_{1} \geq c_{2} \geq \ldots, \geq c_{N-1}$ be the eigenvalues of C. Since $u_{1}=0$,

$$
\left\{c_{1}, \ldots, c_{N-1}\right\} \cup\{0\}=\left\{b_{1}, \ldots, b_{N}\right\} .
$$

If $b_{j_{o}}=0$ for some $j_{o} \in\{1, \ldots, n\}$, then again by ([11], Th. 1.2), (20), Theorem(2.1) and Lemma(2.6)

$$
\begin{aligned}
\lambda_{n}^{N-1} & \leq f_{u_{1}}\left(\left(v_{2}, \ldots, v_{n}\right), y^{1}, \ldots, y^{n}\right) \\
& =\sum_{j=1}^{n} b_{j} \leq \sum_{j<j_{o}} b_{j} \leq \lambda_{n-1}^{N-1} ;
\end{aligned}
$$

a contradiction with our assumptions. Hence $b_{i}=c_{i}$ for $i=1, \ldots, n$. Now let $z^{1}, \ldots, z^{n} \in \mathbb{R}^{N-1}$ be the corresponding to b_{1}, \ldots, b_{n} orthonormal eigenvectors of C. Hence for any $j=1, \ldots, n$ and $i=1, \ldots, N-1$

$$
\left(C z^{j}\right)_{i}=c_{j}\left(z^{j}\right)_{i} .
$$

Multiplying each of the above equations by $\left(z^{j}\right)_{i}$ and summing them up we get

$$
\begin{aligned}
& \max \left\{f_{u_{1}}\right\}=\sum_{j=1}^{n} c_{j}=\sum_{i, j=2}^{N} b_{i j}<z_{i-1}, z_{j-1}>_{n} \\
= & \sum_{i, j=2}^{N} v_{i} v_{j} \operatorname{sgn}\left(<y_{i}, y_{j}>_{n}\right)<z_{i-1}, z_{j-1}>_{n} \leq \lambda_{n}^{N-1} .
\end{aligned}
$$

The proof is complete.

LEMMA 2.8 Let $u=\left(u_{1}, \ldots, u_{N}\right) \in \mathbb{R}^{N}$ and let $z=\left(z_{2}, \ldots, z_{n}\right) \in\{-1,1\}^{N-1}$. Let A_{z} be $N \times N$ matrix defined by $z_{j}=a_{1 j} \in\{ \pm 1\}$ for $j=2, \ldots, N, a_{i j}=-1$ for $i, j=2, \ldots, N i \neq j$ and $a_{i i}=1$ for $i=1, \ldots, N$. Let $B_{z}=\left\{\left(b_{z}\right)_{i j}, i, j=\right.$ $1, \ldots, N\}$ where $\left(b_{z}\right)_{i j}=u_{i} u_{j}\left(A_{z}\right)_{i j}$. Hence

$$
B_{z}=\left(\begin{array}{rrrrr}
u_{1}^{2} & z_{2} u_{1} u_{2} & z_{3} u_{1} u_{3} & \ldots & z_{N} u_{1} u_{N} \tag{24}\\
z_{2} u_{1} u_{2} & u_{2}^{2} & -u_{2} u_{3} & \ldots & -u_{2} u_{N} \\
z_{3} u_{1} u_{2} & -u_{2} u_{3} & u_{3}^{2} & \ldots & -u_{2} u_{N} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
z_{N} u_{1} u_{N} & -u_{2} u_{N} & \ldots & \ldots & u_{N}^{2}
\end{array}\right) .
$$

Let σ be a permutation of $\{1, \ldots, N\}$ such that $\sigma(1)=1$ and let for any $x=\left(x_{1}, \ldots, x_{N}\right), \in \mathbb{R}^{N}, x_{-}=\left(x_{1},-x_{2}, \ldots,-x_{N}\right)$. Then the matrices

$$
\begin{gathered}
B_{\sigma(z)}=\left\{u_{\sigma(i)} u_{\sigma(j)}(A \sigma(z))_{i j}, i, j=1, \ldots, N\right\}, \\
B_{z_{-}}=\left\{\left(u_{i} u_{j}\left(A_{z_{-}}\right)_{i j}\right), i, j=1, \ldots, N\right\}
\end{gathered}
$$

and B_{z} have the same eigenvalues.
Proof. Let b be an eigenvalue of B_{z} with an eigenvector $x=\left(x_{1}, \ldots, x_{N}\right)$. Define $x_{\sigma}=\left(x_{1}, x_{\sigma(2)}, \ldots, x_{\sigma(N)}\right)$ and $x_{-}=\left(x_{1},-x_{2}, \ldots,-x_{N}\right)$. Notice that

$$
\left(B_{\sigma(z)} x_{\sigma(z)}\right)_{1}=u_{1}^{2} x_{1}+\sum_{j=2}^{n} x_{\sigma(j)} u_{\sigma(j)} u_{1}=u_{1}^{2} x_{1}+\sum_{j=2}^{n} x_{j} u_{j} u_{1}=b x_{1} .
$$

Analogously, for $i=2, \ldots, N$,

$$
\begin{gathered}
\left(B_{\sigma(z)} x_{\sigma}\right)_{i}=u_{1} u_{\sigma(i)} x_{\sigma(i)} x_{1}+\sum_{j=2, j \neq i}^{n}-u_{\sigma(j)} u_{\sigma(i)} x_{\sigma(j)}+u_{\sigma(i)}^{2} x_{\sigma(i)} \\
=b x_{\sigma(i)}=b\left(x_{\sigma}\right)_{i} .
\end{gathered}
$$

Also notice that

$$
\left(B_{z_{-}} x_{-}\right)_{1}=u_{1}^{2} x_{1}+\sum_{j=2}^{N}\left(-x_{j}\right) u_{1} u_{j}\left(-x_{j}\right)=b x_{1}=b\left(x_{-}\right)_{1}
$$

and for $i=2, \ldots, N$

$$
\left(B_{z_{-}} x_{-}\right)_{i}=u_{1} u_{i}\left(-x_{i}\right) x_{1}+\sum_{j=2}^{n} a_{i j} u_{1} u_{j}\left(-x_{j}\right)=-b x_{i}=b\left(x_{-}\right)_{i} .
$$

This shows that any eigenvalue of B is an eigenvalue of $B_{z_{-}}$and $B_{\sigma(z)}$ with the same multiplicity. By the same reasoning, any eigenvalue of $B_{z_{-}}$and $B_{\sigma(z)}$ is also an eigenvalue of B, which completes the proof.

THEOREM 2.3 Let $n=3$ and $N=5$. Let $z=\left(z_{2}, z_{3}, z_{4}, z_{5}\right)$ be such that $z_{i}= \pm 1$, for $i=2, \ldots, 5$ and $z_{j}=-1$ for exactly one $j \in\{2,3,4,5\}$. Assume that $A_{z}=\left(a_{i j}(z)\right)$ is a 5×5 matrix defined by

$$
A_{z}=\left(\begin{array}{rrrrr}
1 & z_{2} & z_{3} & z_{4} & z_{5} \tag{25}\\
z_{2} & 1 & -1 & -1 & -1 \\
z_{3} & -1 & 1 & -1 & -1 \\
z_{4} & -1 & -1 & 1 & -1 \\
z_{5} & -1 & -1 & -1 & 1
\end{array}\right)
$$

Let
$M_{A}=\max \left\{\sum_{i, j=1}^{5} u_{i} u_{j} a_{i j}(z)<x_{i}, x_{j}>_{3}:\left(x^{1}, x^{2}, x^{3}\right) \in\left(\mathbb{R}^{5}\right)^{3}\right.$ satisfying (2), $\left.\sum_{i=1}^{5} u_{i}^{2}=1\right\}$.
Then $M_{A}=3 / 2$.
Proof. By Lemma(2.8), we can assume that $z_{2}=-1$. Fix $u \in \mathbb{R}^{5}, \sum_{i=1}^{5} u_{i}^{2}=$ 1. Let B_{u} denote the 5×5 matrix defined by

$$
\left(b_{u}\right)_{i j}=u_{i} u_{j} a_{i j}(z)
$$

for $i, j=1, \ldots, 5$. By Lemma(2.4),

$$
M_{A}=\max \left\{\sum_{j=1}^{3} b_{j}(u, A): u \in \mathbb{R}^{5}, \sum_{i=1}^{5} u_{i}^{2}=1\right\}
$$

where $b_{1}(u, A) \geq b_{2}(u, A) \geq b_{3}(u, A)$ denote the three biggest eigenvalues of B_{u}. Put for $i=1, \ldots, 5, v_{i}=u_{i}^{2}$. After elementary but tedious calculations (we advise to check them by the symbolic Mathematica program) we get that

$$
\begin{aligned}
& \operatorname{det}\left(B_{u}-t I d\right)=-t^{5}+t^{4}\left(\sum_{i=1}^{5} v_{i}\right)+16 t v_{3} v_{4} v_{5}\left(v_{1}+v_{2}\right) \\
& \quad-4 t^{2}\left(v_{3}-v_{4} v_{5}+\left(v_{1}+v_{2}\right)\left(v_{4} v_{5}+v_{3}\left(v_{4}+v_{5}\right)\right)\right)
\end{aligned}
$$

Define $w=\left(w_{1}, \ldots, w_{5}\right)$ by $w_{1}=0, w_{2}=\sqrt{u_{1}^{2}+u_{2}^{2}}, w_{i}=u_{i}$ for $i=3,4,5$. Observe that by the above formula B_{u} and B_{w} have the same eigenvalues.

Since $w_{1}=0$, by Lemma(2.7), Theorem(2.1), Theorem(2.2) and Lemma(2.6) applied to $n=3$ and $N=5$ we get

$$
\sum_{j=1}^{3} b_{j}(u, A) \leq \lambda_{3}^{4}=3 / 2
$$

which completes the proof.

THEOREM 2.4 Let $n=2$ and $N=4$. Let $z=\left(z_{2}, z_{3}, z_{4}\right)$ be such that $z_{i}= \pm 1$, for $i=2,3,4$ and $z_{j}=-1$ for exactly one $j \in\{2,3,4\}$. Assume that $A_{z}=\left(a_{i j}(z)\right)$ is a 4×4 matrix defined by

$$
A_{z}=\left(\begin{array}{rrrr}
1 & z_{2} & z_{3} & z_{4} \tag{26}\\
z_{2} & 1 & -1 & -1 \\
z_{3} & -1 & 1 & -1 \\
z_{4} & -1 & -1 & 1
\end{array}\right)
$$

Let
$M_{A}=\max \left\{\sum_{i, j=1}^{4} u_{i} u_{j} a_{i j}(z)<x_{i}, x_{j}>_{2}:\left(x^{1}, x^{2}\right) \in\left(\mathbb{R}^{4}\right)^{2}\right.$ satisfying (2), $\left.\sum_{i=1}^{4} u_{i}^{2}=1\right\}$.
Then $M_{A}=4 / 3$.
Proof. By Lemma(2.8), we can assume that $z_{4}=-1$. Fix $u \in \mathbb{R}^{4}, \sum_{i=1}^{4} u_{i}^{2}=$ 1. Let B_{u} denote the 4×4 matrix defined by

$$
\left(b_{u}\right)_{i j}=u_{i} u_{j} a_{i j}(z)
$$

for $i, j=1, \ldots, 4$. By Lemma(2.4),

$$
M_{A}=\max \left\{b_{1}(u, A)+b_{2}(u, A): u \in \mathbb{R}^{4}, \sum_{i=1}^{5} u_{i}^{2}=1\right\}
$$

where $b_{1}(u, A) \geq b_{2}(u, A)$ denote the two biggest eigenvalues of B_{u}. Put for $i=1, \ldots, 4, v_{i}=u_{i}^{2}$. After elementary calculations (we advise to check them by the symbolic Mathematica program) we get that

$$
\operatorname{det}\left(B_{u}-t I d\right)=t^{4}-t^{3}\left(\sum_{i=1}^{4} v_{i}\right)+4 t v_{3} v_{2}\left(v_{1}+v_{4}\right)
$$

Define $w=\left(w_{1}, \ldots, w_{4}\right)$ by $w_{1}=0, w_{4}=\sqrt{u_{1}^{2}+u_{4}^{2}}, w_{i}=u_{i}$ for $i=2,3$. Observe that by the above formula B_{u} and B_{w} have the same eigenvalues. Since $w_{1}=0$ by Lemma(2.7), Theorem(2.1), Theorem(2.2) and Lemma(2.6) applied to $n=2$ and $N=4$ we get

$$
b_{1}(u, A)+b_{2}(u, A) \leq \lambda_{2}^{3}=4 / 3
$$

which completes the proof.

LEMMA 2.9 Let $n=2$ and $N=4$ and let $u \in[0,1 / \sqrt{3})$. Assume that $B=B(u)$ is a 4×4 matrix defined by

$$
B=\left(\begin{array}{rrrr}
u^{2} & u / \sqrt{3} & u / \sqrt{3} & -u \sqrt{1 / 3-u^{2}} \tag{27}\\
u / \sqrt{3} & 1 / 3 & -1 / 3 & -\sqrt{1 / 3-u^{2}} / \sqrt{3} \\
u / \sqrt{3} & -1 / 3 & 1 / 3 & -\sqrt{1 / 3-u^{2}} / \sqrt{3} \\
-u \sqrt{1 / 3-u^{2}} & -\sqrt{1 / 3-u^{2}} / \sqrt{3} & -\sqrt{1 / 3-u^{2}} / \sqrt{3} & 1 / 3-u^{2}
\end{array}\right) .
$$

Then the eigenvalues of B are $2 / 3$ (with multiplicity 2), $-1 / 3$ and 0 . Moreover,

$$
\begin{gathered}
w^{1}=\left(\sqrt{2} u, 1 / \sqrt{6}, 1 / \sqrt{6},-\sqrt{2\left(1-3 u^{2}\right)} / \sqrt{3}\right. \\
w^{2}=(0,-1 / \sqrt{2}, 1 / \sqrt{2}, 0)
\end{gathered}
$$

are orthonormal eigenvectors corresponding to $2 / 3$ and

$$
w^{3}=\left(1,0,0, u /\left(\sqrt{1 / 3-u^{2}}\right)\right.
$$

is an eigenvector corresponding to 0 .
Proof. It can be done by elementary calculations. We advise to check them by a symbolic Mathematica program.

LEMMA 2.10 Let $n=2$ and $N=4$ and let $u \in[0,1)$. Assume that $B=B(u)$ is a 4×4 matrix defined by

$$
B=\left(\begin{array}{rrrr}
u^{2} & u \sqrt{1-u^{2}} / \sqrt{2} & u \sqrt{1-u^{2}} / \sqrt{2} & 0 \tag{28}\\
u \sqrt{1-u^{2}} / \sqrt{2} & \left(1-u^{2}\right) / 2 & \left(u^{2}-1\right) / 2 & 0 \\
u \sqrt{1-u^{2}} / \sqrt{2} & \left(u^{2}-1\right) / 2 & \left(1-u^{2}\right) / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Then the eigenvalues of B are

$$
0,\left(u^{2}+\sqrt{4 u^{2}-3 u^{4}}\right) / 2,1-u^{2} \text { and }\left(u^{2}-\sqrt{4 u^{2}-3 u^{4}}\right) / 2 .
$$

Moreover,

$$
w^{2}=\left(z / \sqrt{z^{2}+2}, 1 / \sqrt{z^{2}+2}, 1 / \sqrt{z^{2}+2}, 0\right)
$$

where

$$
z=\left(u^{2}+\sqrt{4 u^{2}-3 u^{4}}\right) / u\left(\sqrt{2-2 u^{2}}\right)
$$

is an eigenvector corresponding to $\left(u^{2}+\sqrt{4 u^{2}-3 u^{4}}\right) / 2$ and

$$
w^{3}=(0,-1 / \sqrt{2}, 1 / \sqrt{2}, 0)
$$

is an eigenvector corresponding to $1-u^{2}$. Also

$$
M=\max \left\{1-u^{2}+\left(u^{2}+\sqrt{4 u^{2}-3 u^{4}}\right) / 2: u \in[1 / \sqrt{3}, 1]\right\}=4 / 3
$$

Proof. It can be verified by elementary calculations that the above defined numbers are the eigenvalues of B. We advise to check them by a symbolic Mathematica program. Also notice that if

$$
f(v)=1-v / 2+\sqrt{4 v-3 v^{2}} / 2
$$

then

$$
f^{\prime}(v)=-1 / 2+(4-6 v) /\left(4 \sqrt{4 v-3 v^{2}}\right)
$$

Notice that $f^{\prime}(v)=0$ if and only if $3 v^{2}-4 v+1=0$. Hence $f^{\prime}(1)=f^{\prime}(1 / 3)=$ 0 . Since $f(1)=1, M=f(1 / 3)=4 / 3$. Notice that if $u=1 / \sqrt{3}$ then $v=1 / 3$, which shows our claim.

LEMMA 2.11 Let $n=2$ and $N=4$ and let $c \in[0,1 / \sqrt{3})$. Assume that $B=B(c)$ is a 4×4 matrix defined by

$$
B=\left(\begin{array}{rrrr}
1-3 c^{2} & c \sqrt{1-3 c^{2}} & c \sqrt{1-3 c^{2}} & c \sqrt{1-3 c^{2}} \tag{29}\\
c \sqrt{1-3 c^{2}} & c^{2} & -c^{2} & -c^{2} \\
c \sqrt{1-3 c^{2}} & -c^{2} & c^{2} & -c^{2} \\
c \sqrt{1-3 c^{2}} & -c^{2} & -c^{2} & c^{2}
\end{array}\right)
$$

Then the eigenvalues of B are $2 c^{2}$ (with multiplicity 2),

$$
\left(1-4 c^{2}+\sqrt{1+8 c^{2}-32 c^{4}}\right) / 2, \text { and }\left(1-4 c^{2}-\sqrt{1+8 c^{2}-32 c^{4}}\right) / 2
$$

Moreover,

$$
w^{1}=(0,1 / \sqrt{6}, 1 / \sqrt{6},-2 / \sqrt{6})
$$

and

$$
w^{2}=(0,-1 / \sqrt{2}, 1 / \sqrt{2}, 0)
$$

are the orthonormal eigenvectors corresponding to $2 c^{2}$.
Proof. It can be done by elementary calculations. We advise to check them by a symbolic Mathematica program.

LEMMA 2.12 Let B be a 5×5 matrix defined by

$$
B=\left(\begin{array}{rrrrr}
u_{o 1}^{2} & z_{2} u_{o 1} c & z_{3} u_{o 1} c & z_{4} u_{o 1} c & z_{5} u_{o 1} c \tag{30}\\
z_{2} u_{o 1} c & c^{2} & -c^{2} & -c^{2} & -c^{2} \\
z_{3} u_{o 1} c & -c^{2} & c^{2} & -c^{2} & -c^{2} \\
z_{4} u_{o 1} c & -c^{2} & -c^{2} & c^{2} & -c^{2} \\
z_{5} u_{o 1} c & -c^{2} & -c^{2} & -c^{2} & c^{2}
\end{array}\right)
$$

where $z_{j} \in\{ \pm 1\}$ for $j=2,3,4,5$. Then $2 c^{2}$ is an eigenvalue of B with multiplicity at least 2.
Proof. Let C be defined by

$$
C=\left(\begin{array}{rrrrr}
0 & 0 & 0 & 0 & 0 \tag{31}\\
0 & c^{2} & -c^{2} & -c^{2} & -c^{2} \\
0 & -c^{2} & c^{2} & -c^{2} & -c^{2} \\
0 & -c^{2} & -c^{2} & c^{2} & -c^{2} \\
0 & -c^{2} & -c^{2} & -c^{2} & c^{2}
\end{array}\right)
$$

Since $2 c^{2}$ is a eigenvalue of C with the multiplicity 3 with the eigenvectors $v^{j}, j=2,3,4$ given by (34), there exist 2 orthonormal vectors w^{1}, w^{2} in $\operatorname{span}\left[v^{2}, v^{3}, v^{4}\right]$ which are orthogonal to the first row of B, which completes the proof.

THEOREM 2.5 Let $n=3$ and $N=5$. Fix $u_{o 1} \in[0,1]$. Assume $A=\left(a_{i j}\right)$ is a 5×5 matrix defined by

$$
A=\left(\begin{array}{rrrrr}
1 & 1 & 1 & -1 & -1 \tag{32}\\
1 & 1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 \\
-1 & -1 & -1 & 1 & -1 \\
-1 & -1 & -1 & -1 & 1
\end{array}\right)
$$

Let

$$
\begin{gathered}
M_{A}\left(u_{1}\right)=\max \left\{\sum_{i, j=1}^{5} u_{i} u_{j} a_{i j}<x_{i}, x_{j}>_{3}:\left(x^{1}, x^{2}, x^{3}\right) \in\left(\mathbb{R}^{5}\right)^{3}\right. \\
\text { satisfying (2), } \left.u_{1}=u_{o 1}, u_{i}=\sqrt{1-u_{1}^{2}} / 2, i=2,3,4,5\right\} .
\end{gathered}
$$

Then

$$
M_{A}\left(u_{1}\right)=\frac{1+6 c^{2}+\sqrt{\left(6 c^{2}-1\right)^{2}+16\left(1-4 c^{2}\right) c^{2}}}{2}
$$

where $c=\sqrt{1-u_{o 1}^{2}} / 2$. Moreover,

$$
M_{A}=\max \left\{M_{A}(u): u \in[0,1]\right\}=\frac{5+4 \sqrt{2}}{7}=M_{A}(\sqrt{(5-3 \sqrt{2}) / 7})
$$

Proof. Notice that by Theorem(2.1),

$$
M_{A}=\sum_{j=1}^{3} b_{j}(B)
$$

where $b_{1}(B) \geq b_{2}(B) \geq \ldots \geq b_{5}(B)$ denote the eigenvalues of the matrix B given by

$$
B=\left(\begin{array}{rrrrr}
u_{o 1}^{2} & u_{o 1} c & u_{o 1} c & -u_{o 1} c & -u_{o 1} c \tag{33}\\
u_{o 1} c & c^{2} & -c^{2} & -c^{2} & -c^{2} \\
u_{o 1} c & -c^{2} & c^{2} & -c^{2} & -c^{2} \\
-u_{o 1} c & -c^{2} & -c^{2} & c^{2} & -c^{2} \\
-u_{o 1} c & -c^{2} & -c^{2} & -c^{2} & c^{2}
\end{array}\right)
$$

where $c=\sqrt{1-u_{o 1}^{2}} / 2$. Hence we should calculate the eigenvalues of B. To do this, let C be given by (31). It is easy to see that the eigenvalues of C are: 0 (with the eigenvector $v^{1}=(1,0,0,0,0), 2 c^{2}$ (with the orthonormal eigenvectors

$$
\begin{gather*}
v^{2}=(0,1 / \sqrt{2},-1 / \sqrt{2}, 0,0,0), v^{3}=(0,0,0,1 / \sqrt{2},-1 / \sqrt{2}) \tag{34}\\
\left.v^{4}=(0,1 / 2,1 / 2,-1 / 2,-1 / 2)\right)
\end{gather*}
$$

and $-2 c^{2}$ (with the eigenvector $v^{5}=(0,1 / 2,1 / 2,1 / 2,1 / 2)$). Hence our theorem is proved for $u_{o 1}=0$ (in this case $c=1 / 2$). If $u_{o 1}>0$, since the vectors v^{2}, v^{3} and v^{5} are orthogonal to the first row of B, by Lemma(2.12), $2 c^{2}$ (with
multiplicity 2) and $-2 c^{2}$ (with multiplicity 1) are also eigenvalues of B. Now we find the other 2 eigenvalues of B. To do this, we show that an element $(a, 1 / 2,1 / 2,-1 / 2,-1 / 2)$ for a properly chosen a is an eigenvector of B. Let us consider a system of equations:

$$
\begin{equation*}
u_{o 1}^{2} a+2 u_{o 1} c=\lambda a \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{o 1} c a+c^{2}=\lambda / 2 \tag{36}
\end{equation*}
$$

with unknown variables a and λ. Hence we easily get that

$$
u_{o 1}^{2} a+2 u_{o 1} c=2\left(u_{o 1} c a+c^{2}\right) a .
$$

The last equation has two solutions. Namely:

$$
a_{1}=\frac{u_{o 1}^{2}-2 c^{2}+\sqrt{\left(u_{o 1}^{2}-2 c^{2}\right)^{2}+16 u_{o 1}^{2} c^{2}}}{4 u_{o 1} c}
$$

and

$$
a_{2}=\frac{u_{o 1}^{2}-2 c^{2}-\sqrt{\left(u_{o 1}^{2}-2 c^{2}\right)^{2}+16 u_{o 1}^{2} c^{2}}}{4 u_{o 1} c}
$$

Since a_{1}, λ_{1} and a_{2}, λ_{2} are the solutions of (35) and (36),) it is easy to check that ($a_{1}, 1 / 2,1 / 2,-1 / 2,-1 / 2$) is an eigenvector of B corresponding to the eigenvalue

$$
\lambda_{1}=2 u_{o 1} c a_{1}+2 c^{2}=2 c^{2}+\frac{u_{o 1}^{2}-2 c^{2}+\sqrt{\left(u_{o 1}^{2}-2 c^{2}\right)^{2}+16 u_{o 1}^{2} c^{2}}}{2}
$$

and $\left(a_{2}, 1 / 2,1 / 2,-1 / 2,-1 / 2\right)$ is an eigenvector of B corresponding to the eigenvalue

$$
\lambda_{2}=2 u_{o 1} c a_{2}+2 c^{2}=2 c^{2}+\frac{u_{o 1}^{2}-2 c^{2}-\sqrt{\left(u_{o 1}^{2}-2 c^{2}\right)^{2}+16 u_{o 1}^{2} c^{2}}}{2} .
$$

It is clear that $\lambda_{1}>2 c^{2}$ and $\lambda_{2}<2 c^{2}$. Hence by Theorem(2.1),

$$
M_{A}=\lambda_{1}+2 c^{2}+2 c^{2}
$$

Since $u_{o 1}^{2}=1-4 c^{2}$,

$$
\lambda_{1}+4 c^{2}=\frac{1+6 c^{2}+\sqrt{\left(6 c^{2}-1\right)^{2}+16\left(1-4 c^{2}\right) c^{2}}}{2}
$$

which completes this part of the proof.
Now define for $c \in[0,1 / 2]$,

$$
h(c)=\frac{1+6 c^{2}+\sqrt{\left(6 c^{2}-1\right)^{2}+16\left(1-4 c^{2}\right) c^{2}}}{2} .
$$

Notice that $h(0)=1$ and $h(1 / 2)=3 / 2$. After elementary calculations (substituting c^{2} by x), we get that

$$
c_{o}=\frac{\sqrt{(2+3 \sqrt{2}) / 7}}{2}
$$

is the only point in $[0,1 / 2]$ such that $h^{\prime}\left(c_{o}\right)=0$. Since

$$
\begin{aligned}
& h\left(c_{o}\right)=\frac{5+4 \sqrt{2}}{7}>3 / 2 \\
& M_{A}=h\left(c_{o}\right)=\frac{5+4 \sqrt{2}}{7} .
\end{aligned}
$$

Note $u_{1}=\sqrt{(5-3 \sqrt{2}) / 7}$ satisfies

$$
u_{1}^{2}+4 c_{o}^{2}=1
$$

The proof is complete.

REMARK 2.1 Notice that $\lambda_{1} \geq \max \left\{2 c^{2}, u_{o 1}^{2}\right\}$. Indeed if $2 c^{2} \geq u_{o 1}^{2}$, this has been proven in Theorem(2.5). If $u_{o 1}^{2}>2 c^{2}$,

$$
\lambda_{1} \geq 2 c^{2}+\frac{u_{o 1}^{2}-2 c^{2}+\left(u_{o 1}^{2}-2 c^{2}\right)}{2}=u_{o 1}^{2}
$$

LEMMA 2.13 Let B be defined by (30). Assume that $c \in(0,1 / 2)$ is so chosen that there exist $b_{4}(B) \geq b_{5}(B)$ eigenvalues of B satisfying, $b_{4}(B)<$ $2 c^{2}$. Let w^{1}, w^{2}, w^{3} be the orthonormal eigenvectors corresponding to the three biggest eigenvalues of B. Assume that

$$
\begin{equation*}
\sum_{i, j=1}^{5} b_{i j}<w_{i}, w_{j}>_{3}=M=\max \left\{\sum_{i, j=1}^{5} u_{i} u_{j}\left|<z_{i}, z_{j}>\right|_{3}: z^{1}, z^{2}, z^{3} \in \mathbb{R}^{5}\right\} \tag{37}
\end{equation*}
$$

under constraint (2) with $u_{1}=\sqrt{1-4 c^{2}}$ and $u_{j}=c$ for $j=2,3,4,5$. Then the matrix B_{o} determined by $1=z_{2}=z_{3}=-z_{4}=-z_{5}$ satisfies (37).

Proof. By Theorem(2.1) we need to calculate the sum of the three biggest eigenvalues of any matrix B satisfying (30). If $z_{i}=z_{j}=1$ for exactly two indices $i, j \in\{2,3,4,5\}$ then applying Theorem(2.5) and Lemma(2.8), we can show that B has the same eigenvalues as B_{o}. Now assume that $z_{i}=-1$ for exactly one $i \in\{2,3,4,5$.$\} Then by Theorem(2.3),$

$$
b_{1}(B)+b_{2}(B)+b_{3}(B) \leq 3 / 2
$$

where $b_{1}(B) \geq b_{2}(B) \geq b_{3}(B)$ denote the three biggest eigenvalues of B. Notice that by Theorem(2.5),

$$
M \geq M_{A}>3 / 2
$$

By Lemma(2.8) the same conclusion holds true if $z_{i}=1$ for exactly one $i \in\{2,3,4,5\}$.
Now assume that $z_{i}=1$ for $i=2,3,4,5$. Then, reasoning as in Theorem(2.5), we get that the eigenvalues of B are: $2 c^{2}$ with the multiplicity 3 ,

$$
1 / 2-3 c^{2}+\sqrt{1+12 c^{2}-60 c^{4}} / 2 \text { and } 1 / 2-3 c^{2}-\sqrt{1+12 c^{2}-60 c^{4}} / 2
$$

After elementary calculations we obtain that

$$
1 / 2-3 c^{2}+\sqrt{1+12 c^{2}-60 c^{4}} / 2 \geq 2 c^{2}
$$

if and only if $1 / 2 \geq c \geq 1 / \sqrt{5}$. If B_{o} satisfies (37), by Theorem(2.1), we should have:

$$
b_{1}(B) \leq b_{1}\left(B_{o}\right)
$$

which by the above calculations and Theorem(2.5) is equivalent to

$$
\sqrt{1+12 c^{2}-60 c^{4}} / 2<2 c^{2}+\sqrt{1+8 c^{2}-32 c^{4}} / 2
$$

or

$$
2 c^{2}<1 / 2-c^{2}+\sqrt{1+4 c^{2}-28 c^{4}} / 2
$$

After elementary calculations we get that both inequalities are equivalent to

$$
0<c<1 / 2
$$

which shows our claim. If $z_{i}=-1$ for $i=2,3,4,5$, by Lemma(2.8) the conclusion is the same. Finally, by Theorem(2.1), B_{o} satisfies (37).

LEMMA 2.14 Let $A=\left\{a_{i j}, i, j=1, \ldots, 5\right\}$ be a 5×5 symmetric matrix such that $a_{i j} \in\{ \pm 1\}$ for $i, j=1, \ldots, 5$ and $a_{i i}=1$ for $i=1, \ldots, 5$. Consider a function

$$
\begin{equation*}
f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{5}\right), x^{1}, x^{2}, x^{3}\right)=\sum_{i, j=1}^{5} u_{i} u_{j} a_{i j}<x_{i}, x_{j}>_{3} \tag{38}
\end{equation*}
$$

under constraints (2) and (3). Then there exist $x^{1}, x^{2}, x^{5} \in \mathbb{R}^{5}$ satisfying (2) and ($u_{2}, u_{3}, u_{4}, u_{5}$) satisfying (3) maximizing the function $f_{u_{1}, A}$ such that $x_{4}^{3}=x_{5}^{3}=0, x_{2}^{3} \geq 0, x_{2}^{2}=0, x_{4}^{2} \geq 0$ and $x_{2}^{1} \geq 0$.

Proof. Let y^{1}, y^{2}, y^{3} and $\left(u_{2}, u_{3}, u_{4}, u_{5}\right)$ be any vectors satisfying (2) and (3) maximizing $f_{u_{1}, A}$. Let $V=\operatorname{span}\left[y^{1}, y^{2}, y^{3}\right]$. Since $\operatorname{dim}(V)=3$, there exist linearly independent $f, g \in \mathbb{R}^{5}$ such that $V=\operatorname{ker}(f) \cap \operatorname{ker}(g)$. Hence we can find $d^{3} \in V \backslash\{0\}$, which is orthogonal to e_{4}, e_{5} such that $d_{2}^{3} \geq 0$. Set $x^{3}=d^{3} /\left\|d^{3}\right\|_{2}$. Analogously we can find $d^{2} \in V \backslash\{0\}$, orthogonal to x^{3} and e_{2} satisfying $d_{4}^{2} \geq 0$. Define $x^{2}=d^{2} /\left\|d^{2}\right\|_{2}$. Finally we can find $d^{1} \in V \backslash\{0\}$, orthogonal to x^{3} and x^{2} with $d_{2}^{1} \geq 0$. Set $x^{1}=d^{1} /\left\|d^{1}\right\|_{2}$. Note that $x^{i} \in V$ for $i=1,2,3$ and they are orthonormal. By Lemma(2.3), x^{1}, x^{2}, x^{3} and $\left(u_{2}, u_{3}, u_{4}, u_{5}\right)$ maximize the function $f_{u_{1}, A}$, which completes the proof.

LEMMA 2.15 Let $A=\left\{a_{i j}, i, j=1, \ldots, N\right\}$ be an $N \times N$ symmetric matrix such that $a_{i j} \in\{ \pm 1\}$ for $i, j=1, \ldots, N$ and $a_{i i}=1$ for $i=1, \ldots, N$. Consider a function

$$
\begin{equation*}
f_{u_{1}, A}^{N}\left(\left(u_{2}, \ldots, u_{N}\right), x^{1}, x^{2}\right)=\sum_{i, j=1}^{N} u_{i} u_{j} a_{i j}<x_{i}, x_{j}>_{2} \tag{39}
\end{equation*}
$$

under constraints (2) and (3). Then there exist $x^{1}, x^{2} \in \mathbb{R}^{N}$ satisfying (2) and $\left(u_{2}, \ldots, u_{N}\right)$ satisfying (3) maximizing the function $f_{u_{1}, A}^{N}$ such that $x_{N-1}^{2} \geq 0$, $x_{N}^{2}=0$, and $x_{N-2}^{1} \geq 0$.

Proof. Let y^{1}, y^{2} and $\left(u_{2}, \ldots, u_{N}\right)$ be any vectors satisfying (2) and (3) maximizing $f_{u_{1}, A}^{N}$. Let $V=\operatorname{span}\left[y^{1}, y^{2}\right]$. Since $\operatorname{dim}(V)=2$, there exist linearly independent $f^{1}, \ldots f^{N-2} \in \mathbb{R}^{N}$ such that $V=\bigcap_{j=1}^{N-2} \operatorname{ker}\left(f^{j}\right)$. Hence we can find $d^{2} \in V \backslash\{0\}$, which is orthogonal to e_{N} such that $d_{N-1}^{2} \geq 0$. Set $x^{2}=d^{\prime}\left\|d^{2}\right\|_{2}$. Analogously, we can find $d^{1} \in V \backslash\{0\}$, orthogonal to x^{2} with $d_{N-2}^{1} \geq 0$. Set
$x^{1}=d^{1} /\left\|d^{1}\right\|_{2}$. Note that $x^{i} \in V$ for $i=1,2$ and they are orthonormal. By Lemma (2.3), x^{1}, x^{2} and $\left(u_{2}, \ldots, u_{N}\right)$ maximize the function $f_{u_{1}, A}^{N}$, which completes the proof.

LEMMA 2.16 Let A be a fixed 5×5 matrix given by

$$
A=\left(\begin{array}{rrrrr}
1 & z_{2} & z_{3} & z_{4} & z_{5} \tag{40}\\
z_{2} & 1 & -1 & -1 & -1 \\
z_{3} & -1 & 1 & -1 & -1 \\
z_{4} & -1 & -1 & 1 & -1 \\
z_{5} & -1 & -1 & -1 & 1
\end{array}\right)
$$

where $z_{i} \in\{ \pm 1\}$ for $i=2,3,4,5$. Let

$$
\begin{gathered}
g_{t, u_{1}, A}\left(\left(u_{2}, \ldots, u_{5}\right), x^{1}, x^{2}, x^{3}\right)=f_{u_{1}, A}\left(\left(u_{2}, \ldots, u_{5}\right), x^{1}, x^{2}, x^{3}\right) \\
+t\left(\sum_{i=2}^{5} u_{i}+x_{4}^{2}-x_{5}^{2}+x_{2}^{3}-x_{3}^{3}\right)
\end{gathered}
$$

where $t>0$ is fixed and $\left(u_{2}, \ldots, u_{5}\right),\left(x^{1}, x^{2}, x^{3}\right)$ satisfy (2) and (3). Let $u_{1}=0$ and let $\left(u_{2}, \ldots, u_{5}\right)$ and $(x, y, z) \in \mathbb{R}^{15}$ satisfying (2) (3) maximize $g_{t, u_{1}, A}$. Assume that $x_{2} \geq 0$. Then $u_{i}=1 / \sqrt{2}$, for $i=2,3,4,5, x=(0,1 / 2,1 / 2,1 / 2,1 / 2)$, $y=(0,0,0,1 / \sqrt{2},-1 / \sqrt{2})$, and $z=(0,1 / \sqrt{2},-1 / \sqrt{2}, 0,0)$.

Proof. By Lemma(2.7), the above mentioned x, y, z and $\left(u_{2}, \ldots, u_{5}\right)$ maximize $f_{0, A}$ and

$$
\left.f_{0, A}\left(u_{2}, \ldots, u_{5}\right), x^{1}, \ldots, x^{3}\right)=3 / 2
$$

Since the maximum of $\sum_{i=2}^{5} u_{i}+x_{4}^{2}-x_{5}^{2}+x_{2}^{3}-x_{3}^{3}$ under restrictions $\sum_{i=2}^{5} u_{i}^{2}=$ $1-u_{1}^{2}, \sum_{j=1}^{5}\left(x_{j}^{i}\right)^{2}=1$ for $i=2,3$ is attained only for $u_{i}=\sqrt{\left(1-u_{1}^{2}\right)} / 2$ for $i=2,3,4,5, x^{2}=y$ and $\left.x^{3}=z\right)$,

$$
g_{t, 0, A}\left(\left(u_{2}, \ldots, u_{5}\right), x^{1}, \ldots, x^{3}\right)=3 / 2+t(4 / \sqrt{2}+2)
$$

Now assume that $\left(v_{2}, \ldots, v_{5}\right)$ and $\left(x^{1}, y^{1}, z^{1}\right)$ maximize the function $g_{t, 0, A}$. Hence in particular, $\sum_{i=1}^{5} v_{i}=4 / \sqrt{2}$, which shows that $v_{i}=1 / \sqrt{2}=u_{i}$ for $i=2, \ldots, 5$. Analogously, $y=y^{1}$ and $z=z^{1}$. By Lemma(2.4),

$$
\operatorname{span}\left[x^{1}, y^{1}, z^{1}\right]=\operatorname{span}[x, y, z] .
$$

Assume that $x^{1}=p x+q y+r z$. Since $y=y^{1}, z=z^{1}$ and x^{1}, y^{1}, z^{1} are orthonormal, we get $q=r=0$. Hence $p= \pm 1$. Since $x_{2}^{1} \geq 0$ and $x_{2}>0$, $x^{1}=x$, which completes the proof.

The next lemma is a simple consequence of the Implicit Function Theorem.
LEMMA 2.17 Let $U \subset \mathbb{R}^{l}$ be an open, non-empty set and let $f: U \times \mathbb{R}^{n} \rightarrow$ \mathbb{R} and $G_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for $i=1, \ldots, k$ be fixed C^{2} functions. Let $g: U \times \mathbb{R}^{n+k} \rightarrow$ \mathbb{R} be defined by

$$
g(u, x, d)=f(u, x)-\sum_{i=1}^{k} d_{i} G_{i}(x)
$$

for $u \in U, x \in \mathbb{R}^{n}$ and $d \in \mathbb{R}^{k}$. Assume that $\frac{\partial g}{\partial z_{j}}\left(u^{o}, x^{o}, d^{o}\right)=0$ for $j=$ $1, \ldots, n+k$ and

$$
\operatorname{det}\left(\frac{\left(\partial^{2} g\right)}{\partial z_{i} \partial z_{j}}\left(u^{o}, x^{o}, d^{o}\right)\right) \neq 0
$$

for some $\left(u^{o}, x^{o}, d^{o}\right) \in U \times R^{n+k}$ and $i, j=1, \ldots, n+k$ (We do not differentiate with respect to the coordinates of u.) Assume that ($\left.u^{m}, x^{m}, d^{m}\right) \in U \times R^{n+k}$, and $\left(w^{m}, y^{m}, z^{m}\right) \in U \times R^{n+k}$, are such that $\left(u^{m}, x^{m}, d^{m}\right) \rightarrow\left(u^{o}, x^{o}, d^{o}\right)$ and $\left(w^{m}, y^{m}, z^{m}\right) \rightarrow\left(u^{o}, x^{o}, d^{o}\right)$ with respect to any norm in \mathbb{R}^{l+n+k}. If, for any $m \in \mathbb{N}, \frac{\partial g}{\partial z_{j}}\left(u^{m}, x^{m}, d^{m}\right)=0$ and $\frac{\partial g}{\partial z_{j}}\left(w^{m}, y^{m}, z^{m}\right)=0$ for $j=1, \ldots, n+k$ then

$$
\left(u^{m}, x^{m}, d^{m}\right)=\left(w^{m}, y^{m}, z^{m}\right)
$$

for $m \geq m_{o}$.
Proof. It suffices to apply the Implicit Function Theorem to the function

$$
G(u, x, d)=\left(\frac{\partial g}{\partial z_{1}}(u, x, d), \ldots, \frac{\partial g}{\partial z_{n+k}}(u, x, d)\right)
$$

and $(u, x, d)=\left(u^{o}, x^{o}, d^{o}\right)$.

3 Determination of λ_{3}^{5}

In this section we will work with functions $f_{u_{1}}$ and $f_{u_{1}, A}$ defined by (1) and (4). The next two theorems show how look like candidates for maximizing the function $f_{u_{1}, A}$.

THEOREM 3.1 Let A be defined by (32). Fix $t \in \mathbb{R}$ and $u_{1} \in[0,1)$. Let us consider a function $h_{u_{1}, A, t}: \mathbb{R}^{4} \times\left(\mathbb{R}^{5}\right)^{3} \times \mathbb{R}^{6} \times \mathbb{R}$ defined by:

$$
\begin{gather*}
h_{u_{1}, A, t}\left(\left(v_{2}, v_{3}, v_{4}, v_{5}\right), z^{1}, z^{2}, z^{3}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right) \tag{41}\\
=\sum_{i, j=1}^{5} a_{i j} v_{i} v_{j}<z_{i}, z_{j}>_{3}+t\left(\sum_{i=2}^{5} v_{i}+z_{4}^{2}-z_{5}^{2}+z_{2}^{3}-z_{3}^{3}\right) \\
-\left(\sum_{j=1}^{3} d_{j}<z^{j}, z^{j}>_{5}-1\right)-\sum_{i, j=1, i \leq j}^{3} d_{i j}<z^{i}, z^{j}>_{5}-d_{7}<\left(u_{1}, v\right),\left(u_{1}, v\right)>_{5},
\end{gather*}
$$

where $v=\left(v_{2}, v_{3}, v_{4}, v_{5}\right)$. Define for $i=2, \ldots, 5 u_{i}=\sqrt{\left(1-u_{1}^{2}\right)} / 2=c$,

$$
\begin{gathered}
w=w\left(u_{1}\right)=\frac{4 u_{1} c}{\sqrt{\left(u_{1}^{2}-2 c^{2}\right)^{2}+16 c^{2} u_{1}^{2}}+2 c^{2}-u_{1}^{2}}, \\
x_{1}^{1}=w / \sqrt{1+w^{2}}, x_{i}^{1}=\frac{1}{2 \sqrt{1+w^{2}}}, i=2,3, x_{i}^{1}=\frac{-1}{2 \sqrt{1+w^{2}}}, i=4,5, \\
x^{2}=(0,0,0,1 / \sqrt{2},-1 / \sqrt{2}), x^{3}=(0,1 / \sqrt{2},-1 / \sqrt{2}, 0,0), \\
d_{1}=1 / 2-c^{2}+\sqrt{1+4 c^{2}-28 c^{4}} / 2, d_{2}=d_{3}=2 c^{2}+(1 / \sqrt{2}) t, d_{i j}=0 \text { for } \\
i, j=1,2,3, i \leq j \text { and }
\end{gathered}
$$

$$
d_{7}=1+t /(2 c)+2\left(x_{2}^{1}\right)^{2}+\left(x_{1}^{1} x_{2}^{1} u_{1}\right) / c .
$$

Then the above defined $x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}$ satisfy the system of equations:

$$
\frac{\partial h_{u_{1}, A, t}}{\partial w_{j}}\left(x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)=0
$$

for $j=1, \ldots, 26$, where

$$
w_{j} \in\left\{v_{2}, v_{3}, v_{4}, v_{5}, z_{k}^{i}, k=1, \ldots, 5, i=1,2,3\right\}
$$

and

$$
w_{j} \in\left\{d_{i k}, i, k \in\{1,2,3\}, i \leq k, d_{i}, i=1,2,3,7\right\}
$$

(We do not differentiate with respect to u_{1}).

Proof. Notice that the equations

$$
\frac{\partial h_{u_{1}, A, t}}{\partial w_{j}}\left(x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)=0
$$

for

$$
w_{j} \in\left\{z_{k}^{i}, k=1, \ldots, 5, i=1,2,3\right\}
$$

follow from the fact that $x^{i}, i=1,2,3$, are the orthonormal eigenvectors of the matrix B defined by (33) corresponding to the eigenvalues $d_{i}, i=1,2,3$, which has been established in the proof of Theorem(2.5). Also the equations

$$
\frac{\partial h_{u_{1}, A, t}}{\partial w_{j}}\left(x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)=0
$$

where

$$
w_{j} \in\left\{d_{1}, d_{2}, d_{3}, d_{i k}, i, k \in\{1,2,3\}, i \leq k, d_{7}\right\}
$$

follows immediately from the fact that $<x^{i}, x^{j}>_{5}=\delta_{i j}$ for $i, j=1,2,3, i \leq j$ and $<\left(u_{1}, u\right),\left(u_{1}, u\right)>_{5}=1$, where $u=\left(u_{2}, u_{3}, u_{4}, u_{5}\right)$. To end the proof, we show that

$$
\frac{\partial h_{u_{1}, A, t}}{\partial w_{j}}\left(x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)=0
$$

for

$$
w_{j} \in\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\} .
$$

Notice that for $i=2,3,4,5$

$$
\begin{gathered}
\frac{\partial h_{u_{1}, A, t}}{\partial w_{i}}\left(x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right) \\
=2 \sum_{j=1}^{5} u_{j} a_{i j}<x_{i}, x_{j}>_{3}+t-2 u_{i} d_{7}
\end{gathered}
$$

Since $u_{1}<1, u_{i}=\sqrt{\left(1-u_{1}^{2}\right)} / 2=c>0$ for $i=2,3,4,5$. Hence

$$
\frac{\partial h_{u_{1}, A, t}}{\partial w_{i}}\left(x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)=0
$$

if and only if

$$
\left(\sum_{j=1}^{5} u_{j} a_{i j}<x_{i}, x_{j}>_{3}\right) / c+t /(2 c)=d_{7} .
$$

Notice that for $i=2,3,4,5$,

$$
\begin{gathered}
\left(\sum_{j=1}^{5} a_{i j} u_{j}<x_{i}, x_{j}>_{3}\right) / c=x_{i}^{1}\left(\sum_{j=1}^{5} a_{i j} u_{j} x_{j}^{i}\right) / c \\
+x_{i}^{2}\left(\sum_{j=1}^{5} a_{i j} u_{j} x_{j}^{2}\right) / c+x_{i}^{3}\left(\sum_{j=1}^{5} a_{i j} u_{j} x_{j}^{3}\right) / c \\
=\left(u_{1} a_{i 1} x_{1}^{1} x_{i}^{1}\right) / c+2\left(x_{i}^{1}\right)^{2}+1 / \sqrt{2}((1 / \sqrt{2}) c+(-1)(-1 / \sqrt{2}) c) / c \\
=1+\left(u_{1} a_{i 1} x_{1}^{1} x_{i}^{1}\right) / c+2\left(x_{i}^{1}\right)^{2} .
\end{gathered}
$$

Hence for $i=2,3,4,5$,

$$
d_{7}=1+t /(2 c)+2\left(x_{i}^{1}\right)^{2}+\left(x_{1}^{1} a_{i 1} x_{i}^{1} u_{1}\right) / c
$$

Since $x_{2}^{1}=x_{3}^{1}=-x_{4}^{1}=-x_{5}^{1}, 1=a_{21}=a_{31}=-a_{41}=-a_{51}$, and $u_{i}=c$ for $i=2,3,4,5$,

$$
d_{7}=1+t /(2 c)+2\left(x_{2}^{1}\right)^{2}+\left(x_{1}^{1} x_{2}^{1} u_{1}\right) / c,
$$

as required.
Reasoning as in Theorem(3.1), we can show
THEOREM 3.2 Let A be defined by

$$
A=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \tag{42}\\
1 & 1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1
\end{array}\right)
$$

Fix $t \in \mathbb{R}$ and $u_{1} \in[0,1)$. Let us consider a function $h_{u_{1}, A, t}: \mathbb{R}^{4} \times\left(\mathbb{R}^{5}\right)^{3} \times$ $\mathbb{R}^{6} \times \mathbb{R}$ given by (41) with A defined as above. Define for $i=2, \ldots, 5 u_{i}=$ $\sqrt{\left(1-u_{1}^{2}\right)} / 2=c$,

$$
x^{1}=(0,1 / 2,1 / 2,-1 / 2,-1 / 2)
$$

$$
x^{2}=(0,0,0,1 / \sqrt{2},-1 / \sqrt{2}), x^{3}=(0,1 / \sqrt{2},-1 / \sqrt{2}, 0,0)
$$

$d_{1}=2 c^{2} d_{2}=d_{3}=2 c^{2}+(1 / \sqrt{2}) t, d_{i j}=0$ for $i, j=1,2,3, i \leq j$ and

$$
d_{7}=3 c+t / 2 c
$$

Then the above defined $x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}$ satisfy the system of equations:

$$
\frac{\partial h_{u_{1}, A, t}}{\partial w_{j}}\left(x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)=0
$$

for $j=1, \ldots, 26$, where

$$
w_{j} \in\left\{v_{2}, v_{3}, v_{4}, v_{5}, z_{k}^{1}, k=1, \ldots, 5, i=1,2,3\right\}
$$

and

$$
w_{j} \in\left\{d_{i k}, i, j \in\{1,2,3\}, i \leq j, d_{1}, d_{2}, d_{3}, d_{7}\right\}
$$

(We do not differentiate with respect to u_{1}).
LEMMA 3.1 Let A be defined by (32). For a fixed $u_{1} \in(0,1)$ and $t>0$ let $g_{u_{1}, A, t}: \mathbb{R}^{4} \times\left(\mathbb{R}^{5}\right)^{3} \rightarrow R$ defined by
$g_{u_{1}, A, t}\left(\left(v_{2}, \ldots, v_{5}\right), y^{1}, y^{2}, y^{3}\right)=\sum_{i, j=1}^{5} v_{i} v_{j} a_{i j}<y_{i}, y_{j}>_{3}+t\left(\sum_{i=2}^{5} v_{i}+z_{4}^{2}-z_{5}^{2}+z_{2}^{3}-z_{3}^{3}\right)$
Let $M_{u_{1}, A, t}=\max g_{u_{1}, A, t}$ under constraints:

$$
<y^{i}, y^{j}>_{5}=\delta_{i j}, 1 \leq i \leq j \leq 3
$$

and

$$
\sum_{j=2}^{5} v_{j}^{2}=1-u_{1}^{2}
$$

Assume that $u_{1} \in(0,1)$ is so chosen that

$$
M_{u_{1}, A, 0}=f_{u_{1}, A}\left(\left(u_{2}, u_{3}, u_{4}, u_{5}\right), x^{1}, x^{2}, x^{3}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)
$$

where $u_{2}, u_{3}, u_{4}, u_{5}, x^{1}, x^{2}, x^{3}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}$ are as in Theorem(3.1) (for $\left.c=\sqrt{1-u_{1}^{2}} / 2\right)$. Set

$$
\begin{equation*}
D_{u_{1}}=\left\{\left(v_{2}, v_{3}, v_{4}, v_{5}, y^{1}, y^{2}, y^{3}\right): y_{4}^{3}=y_{5}^{3}=y_{2}^{2}=0, y_{2}^{1} \geq 0\right\} . \tag{43}
\end{equation*}
$$

Then

$$
\begin{equation*}
X_{u_{1}}=\left(u_{2}, u_{3}, u_{4}, u_{5}, x^{1}, x^{2}, x^{3}\right) \tag{44}
\end{equation*}
$$

is the only point maximizing $g_{u_{1}, A, t}$ satisfying (2) and (3) belonging to $D_{u_{1}}$.

Proof. Let

$$
Y_{u_{1}}=\left(v_{2}, v_{3}, v_{4}, v_{5}, y^{1}, y^{2}, y^{3}\right) \in D_{u_{1}}
$$

maximize $g_{u_{1}, A, t}$ and satisfy (2) and (3). Since $t>0$, and the maximum of $f_{u_{1}, A}$ is attained at $X_{u_{1}}$, we have $v_{i}=u_{i}=\sqrt{1-u_{1}^{2}} / 2$ for $i=2,3,4,5, y^{2}=$ x^{2} and $x^{3}=y^{3}$. Since x^{1}, x^{2}, x^{3} are the eigenvectors of A, by Lemma(2.4), $\operatorname{span}\left[y^{i}: i=1,2,3\right]=\operatorname{span}\left[x^{i}: i=1,2,3\right]$. Note that

$$
<x^{1}, x^{i}>_{5}=<y^{1}, x^{i}>_{5}=0
$$

for $i=2,3$. Since $\operatorname{span}\left[y^{i}: i=1,2,3\right]=\operatorname{span}\left[x^{i}: i=1,2,3\right], y^{1}=d x^{1}$. Since $<y^{1}, y^{1}>_{5}=1, y_{2}^{1} \geq 0$ and $x_{2}^{1}>0, x^{1}=y^{1}$, as required.

THEOREM 3.3 Let A be defined by (32). For a fixed $u_{1} \in[0,1)$ and $t \in \mathbb{R}$ let $g_{u_{1}, A, t}$ and $M_{u_{1}, A, t}$ be as in Lemma(3.1). Assume that $u_{1} \in[0,1)$ is so chosen that

$$
M_{u_{1}, A, 0}=g_{u_{1}, A, t}\left(u_{2}, u_{3}, u_{4}, u_{5}, x^{1}, x^{2}, x^{3}\right)
$$

where $u_{2}, u_{3}, u_{4}, u_{5}, x^{1}, x^{2}, x^{3}$ are as in Theorem(3.1) (for $c=\sqrt{1-u_{1}^{2}} / 2$). Let the function $h_{u_{1}, A, t}$ be defined by (41). Assume furthermore that the 23×23 matrix $D_{u, A, t}$ defined by

$$
\begin{equation*}
D_{u, A, t}=\frac{\partial h_{u_{1}, A, t}}{\partial w_{i}, \partial w_{j}}\left(x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right) \tag{45}
\end{equation*}
$$

where

$$
\begin{gathered}
w_{i}, w_{j} \in\left\{v_{2}, v_{3}, v_{4}, v_{5}, y_{k}^{1}, k=1, \ldots, 5, y_{1}^{2}, y_{3}^{2}, y_{4}^{2}, y_{5}^{2}, y_{1}^{3}, y_{2}^{3}, y_{3}^{3},\right. \\
\left.d_{i}, i=1,2,3,7, d_{i k}, 1 \leq i \leq k \leq 3\right\},
\end{gathered}
$$

(we do not differentiate with respect to $u_{1}, y_{4}^{3}, y_{5}^{3}, y_{2}^{2}$) is such that

$$
\operatorname{Det}\left(D_{u, A, t}\right)=\sum_{j=o}^{k} a_{j}(u) t^{j}
$$

and $a_{j}\left(u_{1}\right) \neq 0$ for some $j \in\{1, \ldots, k\}$. (Here $\left(d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)$ are such as in Theorem(3.1) for $c=\sqrt{1-u_{1}^{2}} / 2$ and $t \in \mathbb{R}$.) Then there exists an open interval $U \subset[0,1)$, $\left(U=[0, w)\right.$ if $\left.u_{1}=0\right)$ such that $u_{1} \in U$ and for
any $u \in U$ the function $f_{u, A}$ attains its global maximum under constraints (2) and (3) at

$$
X_{u}=\left(u_{2}, u_{3}, u_{4}, u_{5}, x^{1}, x^{2}, x^{3}\right)
$$

where $u_{i}=c_{u}=\sqrt{1-u^{2}} / 2$ for $i=2,3,4,5$ and x^{1}, x^{2}, x^{3}, are defined in Theorem(3.1) (with $c=c_{u}$.) The same result holds true if A will be defined by (42). (In this case

$$
\left(x^{1}, x^{2}, x^{3}, u_{2}, u_{3}, u_{4}, u_{5}, d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)
$$

are such as in Theorem (3.2).)
Proof. Fix $u_{1} \in[0,1)$ satisfying our assumptions and let $c_{1}=\sqrt{1-u_{1}^{2}} / 2$. Let $j_{o}=\min \left\{j \in\{0, \ldots, k\}: a_{j}\left(u_{1}\right) \neq 0\right\}$. Set for $(u, t) \in[0,1) \times \mathbb{R}$,

$$
h(t, u)=\sum_{j=j_{o}}^{k} a_{j}(u) t^{j-j_{o}} .
$$

Since $a_{j_{o}}\left(u_{1}\right) \neq 0$, and a_{j} are continuous there exists an open interval $U \subset$ $[0,1)$ and $\delta>0$ such that $u_{1} \in U$ and

$$
h(t, u) \neq 0
$$

for $u \in U$ and $|t|<\delta$. Fix $t_{o} \in(0, \delta)$. Set

$$
U_{t_{o}}=\left\{u \in U: M_{u, A, t_{o}} \text { is attained at } X_{u}\right\} .
$$

Note that $u_{1} \in U_{t_{o}}$. Now we show that $U_{t_{o}}$ is an open set. Let $u_{o} \in U_{t_{o}}$. Assume on the contrary that there exist $\left\{u_{n}\right\} \in U \backslash U_{t_{o}}$ such that $u_{n} \rightarrow u_{o}$. Let for any $u \in U$,

$$
Z_{u, t_{o}}=Z_{u}=\left(v_{2 u}, v_{3 u}, v_{4 u}, v_{5 u}, x^{1 u}, x^{2 u}, x^{3 u}\right)
$$

be a point maximizing $g_{u, A, t_{o}}$ under constraints (2) and (3). Since the function $f_{u, A}-g_{t, u, A}$ is independent of x^{1} and by Lemma(2.14), the function $g_{u, A, t}$ can be considered as a function of 16 variables from $\mathbb{R}^{5} \times \mathbb{R}^{4} \times \mathbb{R}^{3} \times \mathbb{R}^{4}$. Consequently, can assume that

$$
Z_{u} \in D_{u}
$$

(see(43)). By (2) and (3), passing to a subsequence, if necessary, we can assume that $Z_{u_{n}} \rightarrow Z$. By definition of $D_{u_{o}}, Z \in D_{u_{o}}$. Also by the continuity of the function

$$
\begin{gathered}
(v, X) \rightarrow\left(\sum_{i, j=1}^{5} v_{i} v_{j} a_{i j}<y_{i}, y_{j}>_{3}+t_{o}\left(\sum_{i=2}^{5} v_{i}+z_{4}^{2}-z_{5}^{2}+z_{2}^{3}-z_{3}^{3}\right)\right) \\
g_{u_{o}, A, t_{o}}(Z)=M_{u_{o}, A, t_{o}} .
\end{gathered}
$$

By Lemma(2.16) and Lemma(3.1) $X_{u_{o}}$ is the only point in $D_{u_{o}}$ which maximizes $g_{u, A, t}$ and $Z \in D_{u_{o}}$. Hence $Z=X_{u_{o}}$. Moreover, since $X_{u_{o}} \in \operatorname{int}\left(D_{u_{o}}\right)$, by the Lagrange Multiplier Theorem, there exists

$$
M_{u_{n}}=M_{u_{n}}\left(t_{o}\right)=\left\{d_{i}^{n}, i=1,2,3,7, d_{i j}^{n}, 1 \leq i \leq j \leq 3\right\} \subset \mathbb{R}^{7}
$$

such that

$$
\begin{equation*}
\frac{\partial h_{u, A, t_{o}}}{\partial w_{i}}\left(Z_{u_{n}}, M_{u_{n}}\right)=0 \tag{46}
\end{equation*}
$$

for $w_{i} \in X \cup D D$. Here $h_{u, A, t}$ is defined by (41) and

$$
D D=\left\{d_{i}, i=1,2,3,7, d_{i j}, 1 \leq i \leq j \leq 3\right\}
$$

Also by (2), (3),(7),(8) (see the proof of Lemma(2.4)) and (46)

$$
M_{n} \rightarrow L_{u_{o}}=L_{u_{o}}\left(t_{o}\right)=\left(d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)
$$

where $L_{u_{o}}$ is defined in Theorem(3.1) for $c=\sqrt{1-u_{o}^{2}} / 2$ and $t=t_{o}$. Now we apply Lemma(2.17). Let us consider a function $G: U \times \mathbb{R}^{12} \times \mathbb{R}^{4} \times \mathbb{R}^{7} \rightarrow \mathbb{R}^{23}$ defined by

$$
\left.G(u, x, v, Q)=\left(\frac{\partial h_{u, A, t_{o}}}{\partial w_{1}}(u, x, v, Q)\right), \ldots, \frac{\partial h_{t_{o}, u}}{\partial w_{23}}(u, x, v, Q)\right) /\left(t_{o}\right)^{j_{o} / 23}
$$

for for $w_{i} \in X \cup D D$. Notice that by (46)

$$
G\left(u_{n}, Z_{u_{n}}, M_{u_{n}}\right)=0
$$

Also $G\left(u_{n}, X_{u_{n}}, L_{u_{n}}\left(t_{o}\right)\right)=0$, where $\left(X_{u_{n}}, L_{u_{n}}\left(t_{o}\right)\right)$ are defined for u_{n} in Theorem(3.1). Moreover,

$$
\left(u_{n}, Z_{u_{n}}, M_{u_{n}}\right) \rightarrow\left(u_{o}, X_{u_{o}}, L_{u_{o}}\right)
$$

and

$$
\left(u_{n}, X_{u_{n}}, L_{u_{n}}\right) \rightarrow\left(u_{o}, X_{u_{o}}, L_{u_{o}}\right) .
$$

Notice that

$$
\begin{gathered}
\operatorname{Det}\left(\frac{\partial G}{\partial w_{j}}\left(u_{o}, X_{u_{o}}, L_{u_{o}}\right)\right) \\
=\frac{\operatorname{det}\left(D_{u_{o}, A, t_{o}}\right)}{\left(t_{o}^{j_{o} / 23}\right)^{23}}=\sum_{j=j_{o}}^{k} a_{j}\left(u_{o}\right) t_{o}^{j-j_{o}}=h\left(t_{o}, u_{o}\right) \neq 0
\end{gathered}
$$

by definition of j_{o} and t_{o}. By Lemma(2.17) applied to the function $G, Z_{u_{n}}=$ $X_{u_{n}}$ and $M_{u_{n}}=L_{u_{n}}$ for $n \geq n_{o}$. Hence $u_{n} \in U_{1}$ for $n \geq n_{o}$; a contradiction. This shows that $U_{t_{o}}$ is an open set. It is clear that $U_{t_{o}}$ is closed. Since $u_{1} \in U_{t_{o}}$ and U is connected, $U_{t_{o}}=U$. Consequently for any $n \in \mathbb{N}, n \geq n_{o}$ and $u \in U$, the functions $g_{u, A, 1 / n}$ achieve their maximum at $u_{2}, u_{3}, u_{4}, u_{5}, x^{1}, x^{2}, x^{3}$, where $u_{i}=c_{u}=\sqrt{1-u^{2}} / 2$ for $i=2,3,4,5$ and x^{1}, x^{2}, x^{3}, are defined in Theorem(3.1) (with $c=c_{u}$). Since $g_{u, A, 1 / n}$ tends uniformly to $g_{u, A, 0}=f_{u, A}$, on the set defined by (2) and (3), with $u \in U$ fixed, $f_{u, A}$ attains its maximum at $u_{2}, u_{3}, u_{4}, u_{5}, x^{1}, x^{2}, x^{3}$ for any $u \in U$.
By Theorem(3.2), reasoning exactly in in the same way as above we can deduce our conclusion for the function $f_{u, A}$ determined by A given by (42). The proof is complete.

Now we show that the assumptions of Theorem(3.3) concerning $D_{u, A, t}$ are satisfied. This is the most important technical result which permits us to determine the constant λ_{3}^{5}.

THEOREM 3.4 Let A be defined by (32) and let $D_{u, A, t}$ be given by (45). Then for any $u \in[0,1)$ and $t \in \mathbb{R}$,

$$
\operatorname{Det}\left(D_{u, A, t}\right)=\sum_{j=0}^{7} a_{j}(u) t^{j}
$$

where the functions a_{j} is continuous for $j=0, \ldots, 7$ and $a_{7}(u) \neq 0$ for any $u \in[0,1)$.

Proof. Set

$$
\begin{gathered}
X=\left(x_{1}, b, b-b,-b, 0,0,1 / \sqrt{2},-1 / \sqrt{2}, 0,1 / \sqrt{2},-1 / \sqrt{2}\right) \\
B=\left(b_{1}, d, d, 0,0,0, b_{7}\right)
\end{gathered}
$$

and

$$
v=(c, c, c, c) .
$$

Assume that we will differentiate $h_{u, A, t}$ in the following manner:

$$
\begin{gathered}
\left(w_{1}, \ldots, w_{5}\right)=\left(x_{1}^{1}, \ldots x_{5}^{1}\right),\left(w_{6}, \ldots, w_{11}\right)=\left(b_{1}, b_{2}, b_{3}, b_{12}, b_{13}, b_{23}\right) \\
\left(w_{12}, \ldots, w_{18}\right)=\left(x_{1}^{2}, x_{3}^{2}, x_{4}^{2}, x_{5}^{2}, x_{1}^{3}, x_{2}^{3}, x_{3}^{3}\right),\left(w_{19}, \ldots, w_{23}\right)=\left(u_{2}, u_{3}, u_{4}, u_{5}, b_{7}\right)
\end{gathered}
$$

(Recall that we do not differentiate with respect to $u_{1}, x_{2}^{2}, x_{4}^{3}$ and x_{5}^{3}.) Notice that by elementary but very tedious calculations (which we verified by a symbolic Mathematica program) we get that the 23×23 symmetric matrix $C=D_{u, A, t}(X, B, v)$ is given by

$$
C=\left(\begin{array}{rr}
A_{1} & B_{1} \tag{47}\\
\left(B_{1}\right)^{T} & A_{2}
\end{array}\right) .
$$

Here
$A_{1}=\left(\begin{array}{rrrrrrrrrrr}2\left(u^{2}-b_{1}\right) & 2 c u & 2 c u & -2 c u & -2 c u & -2 x_{1} & 0 & 0 & 0 & 0 & 0 \\ 2 c u & 2\left(c^{2}-b_{1}\right) & -2 c^{2} & -2 c^{2} & -2 c^{2} & -2 b & 0 & 0 & 0 & -1 / \sqrt{2} & 0 \\ 2 c u & -2 c^{2} & 2\left(c^{2}-b_{1}\right) & -2 c^{2} & -2 c^{2} & -2 b & 0 & 0 & 0 & 1 / \sqrt{2} & 0 \\ -2 c u & -2 c^{2} & -2 c^{2} & 2\left(c^{2}-b_{1}\right) & -2 c^{2} & 2 b & 0 & 0 & -1 / \sqrt{2} & 0 & 0 \\ -2 c u & -2 c^{2} & -2 c^{2} & -2 c^{2} & 2\left(c^{2}-b_{1}\right) & 2 b & 0 & 0 & 1 / \sqrt{2} & 0 & 0 \\ -2 x_{1} & -2 b & -2 b & 2 b & 2 b & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 / \sqrt{2} & 1 \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) ;$
$A_{2}=\left(A_{12}, A_{22}\right)$, where

$$
A_{12}=\left(\begin{array}{rrrrrrr}
2\left(u^{2}-d\right) & 2 c u & -2 c u & -2 c u & 0 & 0 & 0 \tag{49}\\
2 c u & 2\left(c^{2}-d\right) & -2 c^{2} & -2 c^{2} & 0 & 0 & 0 \\
-2 c u & -2 c^{2} & 2\left(c^{2}-d\right) & -2 c^{2} & 0 & 0 & 0 \\
-2 c u & -2 c^{2} & -2 c^{2} & 2\left(c^{2}-d\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2\left(u^{2}-d\right) & 2 c u & 2 c u \\
0 & 0 & 0 & 0 & 2 c u & 2\left(c^{2}-d\right) & -2 c^{2} \\
0 & 0 & 0 & 0 & 2 c u & -2 c^{2} & 2\left(c^{2}-d\right) \\
0 & 0 & 0 & 0 & \sqrt{2} u & 3 \sqrt{2} c & -\sqrt{2} c \\
0 & 0 & 0 & 0 & -\sqrt{2} u & \sqrt{2} c & -3 \sqrt{2} c \\
-\sqrt{2} u & -\sqrt{2} c & 3 \sqrt{2} c & -\sqrt{2} c & 0 & 0 & 0 \\
\sqrt{2} u & \sqrt{2} c & \sqrt{2} c & -3 \sqrt{2} c & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and

$$
A_{22}=\left(\begin{array}{rrrrr}
0 & 0 & -\sqrt{2} u & \sqrt{2} u & 0 \tag{50}\\
0 & 0 & -\sqrt{2} c & \sqrt{2} c & 0 \\
0 & 0 & 3 \sqrt{2} c & \sqrt{2} c & 0 \\
0 & 0 & -\sqrt{2} c & -3 \sqrt{2} c & 0 \\
\sqrt{2} u & -\sqrt{2} u & 0 & 0 & 0 \\
3 \sqrt{2} c & \sqrt{2} c & 0 & 0 & 0 \\
-\sqrt{2} c & -3 \sqrt{2} c & 0 & 0 & 0 \\
2 b^{2}-2 b_{7}+1 & 1-2 b^{2} & 2 b^{2} & 2 b^{2} & -2 c \\
1-2 b^{2} & 2 b^{2}-2 b_{7}+1 & 2 b^{2} & 2 b^{2} & -2 c \\
2 b^{2} & 2 b^{2} & 2 b^{2}-2 b_{7}+1 & 1-2 b^{2} & -2 c \\
2 b^{2} & 2 b^{2} & 1-2 b^{2} & 2 b^{2}-2 b_{7}+1 & -2 c \\
-2 c & -2 c & -2 c & -2 c & 0
\end{array}\right) ;
$$

Notice that in 11-st row of C the only non-zero element is $c_{11,13}=c_{13,11}=$ $1 / \sqrt{2}$ and in 23-rd row of A the only elements which could be different from 0 are $c_{23,19}=c_{23,20}=c_{23,21}=c_{23,22}=-2 c$. Also the only non-zero elements in 7 -th row are $c_{7,14}=-\sqrt{2}$ and $c_{7,15}=\sqrt{2}$. Analogously, the only non-zero elements in 8 -th row are $c_{8,17}=-\sqrt{2}$ and $c_{8,18}=\sqrt{2}$. Consequently, applying the symmetry of C, subtracting 19-th row from 20,21 and 22 -nd row, 19-th column from 20,21 and 22 -nd column, adding 15 -th row to 14 -th row and 15 -th column to 14 -th column and adding 18 -th row to 17 -th row and 18 -th column to 17 -th column we get that

$$
\operatorname{det}(C)=8 c^{2} \operatorname{det}(D)
$$

where D is a 15×15 symmetric matrix defined by

$$
D=\left(\begin{array}{rr}
D_{1} & E \tag{52}\\
E^{T} & D_{2}
\end{array}\right)
$$

Here

$$
D_{1}=\left(\begin{array}{rrrrrrrr}
2\left(u^{2}-b_{1}\right) & 2 c u & 2 c u & -2 c u & -2 c u & -2 x_{1} & 0 & 0 \tag{53}\\
2 c u & 2\left(c^{2}-b_{1}\right) & -2 c^{2} & -2 c^{2} & -2 c^{2} & -2 b & 0 & -1 / \sqrt{2} \\
2 c u & -2 c^{2} & 2\left(c^{2}-b_{1}\right) & -2 c^{2} & -2 c^{2} & -2 b & 0 & 1 / \sqrt{2} \\
-2 c u & -2 c^{2} & -2 c^{2} & 2\left(c^{2}-b_{1}\right) & -2 c^{2} & 2 b & -1 / \sqrt{2} & 0 \\
-2 c u & -2 c^{2} & -2 c^{2} & -2 c^{2} & 2\left(c^{2}-b_{1}\right) & 2 b & 1 / \sqrt{2} & 0 \\
-2 x_{1} & -2 b & -2 b & 2 b & 2 b & 0 & 0 & 0 \\
0 & 0 & 0 & -1 / \sqrt{2} & 1 \sqrt{2} & 0 & 0 & 0 \\
0 & -1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 & 0 & 0 & 0
\end{array}\right) ;
$$

$D_{2}=\left(D_{21}, D_{22}\right)$, where

$$
D_{21}=\left(\begin{array}{rrrr}
2\left(u^{2}-d\right) & -4 c u & 0 & 0 \tag{54}\\
-4 c u & -4 d & 0 & 0 \\
0 & 0 & 2\left(u^{2}-d\right) & 4 c u \\
0 & 0 & 4 c u & -4 d \\
0 & 0 & -2 \sqrt{2} u & -4 \sqrt{2} c \\
-\sqrt{2} u & 2 \sqrt{2} c & -\sqrt{2} u & -2 \sqrt{2} c \\
\sqrt{2} u & -2 \sqrt{2} c & -\sqrt{2} u & -2 \sqrt{2} c
\end{array}\right)
$$

and

$$
D_{22}=\left(\begin{array}{rrr}
0 & -\sqrt{2} u & \sqrt{2} u \tag{55}\\
0 & 2 \sqrt{2} c & -2 \sqrt{2} c \\
-2 \sqrt{2} u & -\sqrt{2} u & -\sqrt{2} u \\
-4 \sqrt{2} c & -2 \sqrt{2} c & -2 \sqrt{2} c \\
8 b^{2}-4 b_{7} & 4 b^{2}-2 b_{7} & 4 b^{2}-2 b_{7} \\
4 b^{2}-2 b_{7} & 2-4 b_{7} & 2-4 b^{2}-2 b_{7} \\
4 b^{2}-2 b_{7} & 2-4 b^{2}-2 b_{7} & 2 b^{2}-4 b_{7}
\end{array}\right) ;
$$

$$
E=\left(\begin{array}{rrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{56}\\
0 & 0 & 0 & 0 & -8 b c-2 u x_{1} & -4 b c-2 u x_{1} & -4 b c-2 u x_{1} \\
0 & 0 & 0 & 0 & 8 b c+2 u x_{1} & 4 b c & 4 b c \\
0 & 0 & 0 & 0 & 0 & -4 b c-2 u x_{1} & 4 b c \\
0 & 0 & 0 & 0 & 0 & 4 b c & -4 b c-2 u x_{1} \\
0 & 0 & 0 & 0 & 0 & 0 & \\
-x_{1} & 2 b & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -x_{1} & -2 b & 0 & 0 & 0
\end{array}\right) ;
$$

Now we calculate the coefficient $a_{7}(u)$. Notice that

$$
\operatorname{Det}(C(t))=\operatorname{Det}\left(D_{u, A, t}(X, B, v)\right)=8 c^{2} \operatorname{Det}(D(t))
$$

where $C(t)$ and $D(t)$ denote the above written matrices C and D with b_{7} replaced by $b_{7}+t / 2 c$ and $d_{2}=d_{3}=d$ replaced by $d+(1 / \sqrt{2}) t$. By definition of determinant

$$
\operatorname{det}(D(t))=\sum_{\sigma \in \Pi_{15}} \operatorname{sgn}(\sigma)\left(\sum_{i=1}^{15} d_{i, \sigma(i)}\right),
$$

where Π_{15} denotes the set of all permutations of $\{1, \ldots, 15\}$. Notice that by the above given formulas the variable t appears only in D_{21} and D_{22}. Consequently to calculate $a_{7}(u)$ it is enough to consider

$$
\sum_{\sigma \in P_{1}} \operatorname{sgn}(\sigma)\left(\sum_{i=1}^{15} d_{i, \sigma(i)}\right)
$$

where

$$
P_{1}=\{\sigma \in \Pi: \sigma(\{13,14,15\})=\{13,14,15\}, \sigma(j)=j, j=9,10,11,12\} .
$$

Consequently, applying the formula on D_{21} and D_{22} we can deduce that

$$
a_{7}(u)=\left(2^{7} / c\right) \operatorname{det}(F) \operatorname{det}\left(D_{1}\right),
$$

where

$$
F=-\left(\begin{array}{ccc}
2 & 1 & 1 \tag{57}\\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

Note that $\operatorname{det}(F)=-4$. Also $c=\sqrt{1-u_{1}^{2}} / 2>0$ for $u_{1} \in[0.1)$. Hence to end the proof we should demonstrate that $\operatorname{Det}\left(D_{1}\right) \neq 0$ for (X, B, v) defined in Theorem(3.1). Let $E_{1}, \ldots E_{8}$ denote the rows of D_{1}. We show that
E_{1}, \ldots, E_{8} are linearly independent. First assume that $u=u_{1}=0$. Then $x_{1}=0, c=b_{1}=1 / 2$. Let

$$
\begin{equation*}
\sum_{j=1}^{8} \alpha_{j} E_{j}=0 \tag{58}
\end{equation*}
$$

Since $b_{1}=1 / 2, \alpha_{1}=0$. Also $\left(\alpha_{i}-\alpha_{i+1}\right) / \sqrt{2}=0$ for $i=2,4$, which gives $\alpha_{2}=\alpha_{3}$ and $\alpha_{4}=\alpha_{5}$. Since $2 b\left(2 \alpha_{4}-2 \alpha_{2}\right)=0$, and $b=1 / 2, \alpha_{2}=\alpha_{4}$. Consequently,

$$
\alpha_{2}\left(-4 c^{2}-2 b_{1}\right)=\alpha_{i} \sqrt{2}=-\alpha_{i} \sqrt{2}
$$

for $i=7,8$, which gives, $\alpha_{7}=\alpha_{8}=0$. Analogously,

$$
\alpha_{2}\left(-4 c^{2}-2 b_{1}\right)=2 b \alpha_{6}=-2 b \alpha_{6}
$$

which implies $\alpha_{6}=0$ and $\alpha_{2}=0$. Consequently, $\operatorname{Det}\left(D_{1}\right) \neq 0$. Now assume that $u=u_{1} \in(0,1)$. Reasoning as in the previous case we can show that $\alpha_{2}=\alpha_{3}$ and $\alpha_{4}=\alpha_{5}$. Also

$$
\alpha_{1} 2 c u_{1}-\alpha_{2} 2 b_{1}-\alpha_{4} 4 c^{2}-2 b \alpha_{6}=\alpha_{8} \sqrt{2}=-\alpha_{8} \sqrt{2}
$$

and

$$
-\alpha_{1} 2 c u_{1}-\alpha_{2} 4 c^{2}-\alpha_{4} 2 b_{1}+2 b \alpha_{6}=\alpha_{7} \sqrt{2}=-\alpha_{7} \sqrt{2}
$$

which implies $\alpha_{7}=\alpha_{8}=0$. By the above equations

$$
-\alpha_{2} 2 b_{1}-\alpha_{4} 4 c^{2}=2 b \alpha_{6}-\alpha_{1} 2 c u_{1}
$$

and

$$
-\alpha_{2} 4 c^{2}-\alpha_{4} 2 b_{1}=-2 b \alpha_{6}+\alpha_{1} 2 c u_{1}
$$

Hence

$$
-\alpha_{2}\left(2 b_{1}+4 c^{2}\right)=\alpha_{4}\left(2 b_{1}+4 c^{2}\right)
$$

Since $b_{1}>0, \alpha_{4}=-\alpha_{2}$. Consequently, applying (58) to 1 -st, 5 -th and 6 -th column of D_{1} we get
$\alpha_{1}\left(2\left(u_{1}^{2}-b_{1}\right),-2 c u_{1},-2 x_{1}\right)+\alpha_{2}\left(8 c u_{1}, 2 d_{1}-4 c^{2},-8 b\right)+\alpha_{6}\left(-2 x_{1}, 2 b, 0\right)=0$.
Let

$$
G=\left(\begin{array}{rrr}
2\left(u_{1}^{2}-b_{1}\right) & -2 c u_{1} & -2 x_{1} \tag{59}\\
8 c u_{1} & 2 b_{1}-4 c^{2} & -8 b \\
-2 x_{1} & 2 b & 0
\end{array}\right)
$$

Note that

$$
\operatorname{Det}(G)=-8\left(4 b^{2}\left(b_{1}-u_{1}^{2}\right)+8 b c u_{1} x_{1}+\left(b_{1}-2 c^{2}\right) x_{1}^{2}\right) .
$$

By Theorem(2.5) and $\operatorname{Remark}(2.1), b_{1}=\lambda_{1}>2 c^{2}$ and $b_{1}=\lambda_{1}>u_{1}^{2}$. Hence $\operatorname{Det}(G)<0$, which means that $\alpha_{1}=\alpha_{2}=\alpha_{6}=0$. This shows that $\operatorname{Det}\left(D_{1}\right) \neq 0$ and consequently $a_{7}(u) \neq 0$, for any $u \in[0,1)$. The proof is complete.

REMARK 3.1 Applying a symbolic Mathematica program we can show that
$\operatorname{Det}\left(D_{11}\right)=-64\left(b_{1}-2 c^{2}\right)^{2}\left(2 c^{2}+b_{1}\right)\left(4 b^{2}\left(b_{1}-u_{1}^{2}\right)+8 b c u_{1} x_{1}+\left(b_{1}-2 c^{2}\right) x_{1}^{2}\right)$.
Now we will prove one of the main results of this section
THEOREM 3.5 Let $f_{u_{1}}$ be defined by (1), i.e.

$$
f_{u_{1}}\left(u_{2}, u_{3}, u_{4}, u_{5}, x^{1}, x^{2}, x^{3}\right)=\sum_{i, j=1}^{5} u_{i} u_{j}\left|<x_{i}, x_{j}>\right|_{3} .
$$

Let $M_{u}=\max \left(f_{u}\right)$ under constraints (2) and (3). Then for any $u \in[0,1]$

$$
M_{u}=\frac{1+6 c^{2}+\sqrt{\left(6 c^{2}-1\right)^{2}+16\left(1-4 c^{2}\right) c^{2}}}{2}
$$

where $c=c(u)=\sqrt{1-u^{2}} / 2$.
Proof. Define

$$
U=\left\{u \in[0,1): M_{u}=\frac{1+6 c^{2}+\sqrt{\left(6 c^{2}-1\right)^{2}+16\left(1-4 c^{2}\right) c^{2}}}{2}\right\}
$$

By Lemma(2.6) and Lemma(2.7), $0 \in U$, since $M_{o}=3 / 2$. Now we show that U is an open set. Fix $u \in U$. First we consider the case $u=0$. We apply Theorem(3.3) and Theorem(3.4). Let (X_{v}, L_{v}) where

$$
X_{u}=\left(x^{1}, x^{2}, x^{3}, c(v), c(v), c(v), c(v)\right),
$$

$(c(0)=1 / 2)$ and

$$
L_{v}(t)=\left(d_{1}, d_{2}, d_{3}, d_{12}, d_{13}, d_{23}, d_{7}\right)
$$

are given by Theorem(3.1) for for fixed $v \in[0,1)$ and $t \in \mathbb{R}$. Assume that $u_{n} \rightarrow 0$ and $u_{n} \notin U$. Let $\left(X_{u_{n}}, L_{u_{n}}(t)\right)$ be such as in Theorem(3.3). Passing to a subsequence, if necessary, and reasoning as in Theorem(3.3), we can assume that $\left(X_{u_{n}}, L_{u_{n}}(t)\right) \rightarrow\left(X_{o}, L_{o}(t)\right)$. Let

$$
X_{u_{n}}=\left(x^{1 n}, x^{2 n}, x^{3 n}, c\left(u_{n}\right), c\left(u_{n}\right), c\left(u_{n}\right), c\left(u_{n}\right)\right) .
$$

Since $X_{u_{n}} \rightarrow X_{o}$, we can assume that $\operatorname{sgn}<x_{i n}, x_{j n}>_{3}=-1$ for $i, j=$ $2,3,4,5, i \neq j$. Without loss of generality, passing to a subsequence if necessary we can assume that for $n \geq n_{o}$

$$
\operatorname{sgn}<x_{1 n}, x_{j n}>_{3}=z_{j}
$$

for $j=2,3,4,5$, where $z_{j}= \pm 1$. By Lemma(2.8) we have to consider three cases:
a) $z_{2}=-1, z_{3}=z_{4}=z_{5}=1$;
b) $z_{2}=z_{3}=z_{4}=z_{5}=1$;
c) $z_{2}=z_{3}=-z_{4}=-z_{5}=1$.

By Theorem(2.3) and Theorem(2.5) a) can be excluded. If b) holds true, then by Theorem(3.3), Theorem(3.2) and Theorem(3.4) applied to $u_{1}=0$ and $h_{t, A, 0}$, where A is given by (42), we get that

$$
M_{u_{n}}=6 c_{u}^{2} \leq 3 / 2
$$

which by Theorem(2.5) leads to a contradiction. (Since $u_{1}=0, D_{o, A, t}$ is the same for the function $h_{o, A, t}$, determined by A given by (42). This permits us to apply Theorem(3.4) in this case.) If c) holds true, we get a contradiction with Theorem(3.3). Consequently, there exists an interval $[0, v) \subset U$.
Now assume that $u \in U$ and $u>0$. Assume $u_{n} \rightarrow u$ and $u_{n} \notin U$ for $n \in \mathbb{N}$. Let $\left(X_{u_{n}}, L_{u_{n}}(t)\right)$ be such as in Theorem(3.3). Without loss of generality we can assume that $\left(X_{u_{n}}, L_{u_{n}}(t)\right) \rightarrow\left(X_{u}, L_{u}(t)\right)$, where $\left(X_{u}, L_{u}(t)\right)$ is defined in Theorem(3.3). Since $X_{u_{n}} \rightarrow X_{u}$

$$
\operatorname{sgn}<x_{i n}, x_{j n}>_{3}=a_{i j}
$$

for $i, j=1,2,3,4,5$ for $n \geq n_{o}$, where the matrix $\left\{a_{i j}\right\}$ is given by (32). Applying Theorem(3.3), we get that $u_{n} \in U$ for $n \geq n_{o}$; a contradiction. Hence the set U is open. It is easy to see that U is also closed. Since $0 \in U$ and $[0,1)$ is connected, $U=[0,1)$. Since $M(1,0)=1$ the proof is complete.

THEOREM 3.6

$$
\lambda_{3}^{5}=\frac{5+4 \sqrt{2}}{7} .
$$

Moreover, $\lambda_{3}^{5}=\lambda(V)$, where $V \subset l_{\infty}^{(5)}$ is spanned by

$$
\begin{gathered}
x^{1}=\left(a / u_{1}, b / c_{o}, b / c_{o},-b / c_{o},-b / c_{o}\right), \\
x^{2}=(0,0,0,1 / \sqrt{2},-1 / \sqrt{2}) / c_{o}
\end{gathered}
$$

and

$$
x^{3}=(0,1 / \sqrt{2},-1 / \sqrt{2}, 0,0) / c_{o}
$$

where

$$
u_{1}=\sqrt{(5-3 \sqrt{2}) / 7}, c_{o}=\frac{\sqrt{(2+3 \sqrt{2}) / 7}}{2}
$$

and

$$
a=\sqrt{(2 \sqrt{2}-1) / 7}, b=\sqrt{1-a^{2}} / 2
$$

Proof. Let $f_{3,5}: \mathbb{R}^{5} \times\left(\mathbb{R}^{5}\right)^{3} \rightarrow R$ be defined by

$$
f_{3,5}\left(\left(v_{1}, v_{2}, \ldots, v_{5}\right), y^{1}, y^{2}, y^{3}\right)=\sum_{i, j=1}^{5} v_{i} v_{j}\left|<y_{i}, y_{j}>_{3}\right|
$$

Let $M_{3,5}=\max f_{3,5}$ under constraints:

$$
<y^{i}, y^{j}>_{5}=\delta_{i j}, 1 \leq i \leq j \leq 3
$$

and

$$
\sum_{j=1}^{5} v_{j}^{2}=1
$$

By Theorem(2.2),

$$
\lambda_{3}^{5}=M_{3,5}
$$

By Theorem(3.5),

$$
\left.M_{3,5}=\max \left\{h(c)=\frac{1+6 c^{2}+\sqrt{\left(6 c^{2}-1\right)^{2}+16\left(1-4 c^{2}\right) c^{2}}}{2}\right\}: c \in[0,1 / 2]\right\} .
$$

By Theorem(2.5), $c_{o}=\frac{\sqrt{(2+3 \sqrt{2}) / 7}}{2}$ and

$$
M_{3,5}=h\left(c_{o}\right)=\frac{5+4 \sqrt{2}}{7}
$$

By the proof of Theorem(2.2), and Theorem(2.5), the function $f_{3,5}$ attains its maximum at $z^{1}=(a, b, b,-b,-b), z^{2}=(0,0,0,1 / \sqrt{2},-1 / \sqrt{2})$ and $z^{3}=$ $(0,1 / \sqrt{2},-1 / \sqrt{2}, 0,0), u=\left(u_{1}, c_{o}, c_{o}, c_{o}, c_{o}\right)$, where

$$
u_{1}=\sqrt{(5-3 \sqrt{2}) / 7}, c_{o}=\frac{\sqrt{(2+3 \sqrt{2}) / 7}}{2}
$$

and

$$
a=\sqrt{(2 \sqrt{2}-1) / 7}, b=\sqrt{1-a^{2}} / 2
$$

By the proof of Theorem(2.2), x^{1}, x^{2} and x^{3}, defined in the statement of our theorem, form a basis of a space V satisfying $\lambda(V)=\lambda_{3}^{5}$.

REMARK 3.2 Note that (compare with [11], p. 259) $3 / 2=\lambda_{3}^{4}<\lambda_{3}^{5}$. Also $\lambda_{2}^{3}=4 / 3$ and by the Kadec-Snobar Theorem ([7]) $\lambda_{2}^{4} \leq \sqrt{2}<3 / 2$. If x^{1}, x^{2}, x^{3}, u are such as in Theorem(3.6), then after elementary calculations we get

$$
\left\|x_{1}\right\|_{3}=\sqrt{\frac{2 \sqrt{2}-1}{5-3 \sqrt{2}}}
$$

and

$$
\left\|x_{2}\right\|_{3}=\sqrt{\frac{22-2 \sqrt{2}}{2+3 \sqrt{2}}}
$$

where $x_{1}=\left(x_{1}^{1}, x_{1}^{2}, x_{1}^{3}\right), x_{2}=\left(x_{2}^{1}, x_{2}^{2}, x_{2}^{3}\right)$ and $\|\cdot\|_{3}$ is the Euclidean norm in \mathbb{R}^{3}. Hence it is easy to see that

$$
\left\|x_{1}\right\|_{3}=\left\|x_{2}\right\|_{3}
$$

if and only if

$$
77 \sqrt{2}=112
$$

which is false. Consequently, by the above calculations and Theorem(3.6) Proposition 3.1 from [11] is incorrect.

4 A proof of the Grünbaum conjecture

Our proof of the Grünbaum conjecture will be given by the induction argument. First we show that $\lambda_{2}^{3}=\lambda_{2}^{4}=4 / 3$. The proof of this fact goes exactly in the same way as the proof presented in the previous section for determination λ_{3}^{5}. Then assuming that $\lambda_{2}^{N}=4 / 3$, we show that $\lambda_{2}^{N+1}=4 / 3$. In this section we will work with a function $f_{u_{N-3}}^{N}$ instead of $f_{u_{1}}\left(u_{N-3} \in[0,1]\right.$ will be fixed). The next three theorems show how look like candidates for maximizing the function $f_{u_{N-3}}^{N}$ given by

$$
\begin{equation*}
\left.f_{u_{N-3}}^{N}\left(v_{1}, v_{2}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), z^{1}, z^{2}\right)=\sum_{i, j=1}^{N} v_{i} v_{j}\left|<z_{i}, z_{j}>_{2}\right| . \tag{60}
\end{equation*}
$$

Also define for any $N \times N$ matrix A, as in Section 1

$$
\begin{equation*}
\left.f_{u_{N-3}, A}^{N}\left(v_{1}, v_{2}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), z^{1}, z^{2}\right)=\sum_{i, j=1}^{N} a_{i j} v_{i} v_{j}<z_{i}, z_{j}>_{2} \tag{61}
\end{equation*}
$$

THEOREM 4.1 Let A be an $N \times N$ symmetric matrix defined by

$$
A=\left(\begin{array}{rrrrrrr}
1 & a_{1,2} & \ldots & a_{1, N-3} & a_{1, N-2} & a_{1, N-1} & a_{1, N} \tag{62}\\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
a_{N-3,1} & a_{N-3,2} & \ldots & 1 & 1 & 1 & a_{N-3, N} \\
a_{N-2,1} & a_{N-2,2} & \ldots & 1 & 1 & -1 & a_{N-2, N} \\
a_{N-1,1} & a_{N-1,2} & \ldots & 1 & -1 & 1 & a_{N-1, N} \\
a_{N, 1} & a_{N, 2} & \ldots & a_{N, N-3} & a_{N, N-2} & a_{N, N-1} & 1
\end{array}\right),
$$

where $a_{i j} \in\{-1,1\}$ for $i \neq j$. Assume additionally that

$$
a_{j, N}=a_{N, j}=-1
$$

for $j=N-3, N-2, N-1$. Fix $t \in \mathbb{R}$ and $u_{N-3} \in[0,1 / \sqrt{3})$. Let us consider a function $h_{u_{N-3}, A, t}^{N}: \mathbb{R}^{N-1} \times\left(\mathbb{R}^{N}\right)^{2} \times \mathbb{R}^{3} \times \mathbb{R}$ defined by:

$$
\begin{gather*}
h_{u_{N-3}, A, t}\left(\left(v_{1}, v_{2}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), z^{1}, z^{2}, b_{1}, b_{2}, b_{12}, b_{4}\right) \tag{63}\\
\quad=f_{u_{N-3}, A}\left(\left(v_{1}, v_{2}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), z^{1}, z^{2}\right) \\
+t\left(\left(v_{N-1}+v_{N-2}\right) / \sqrt{1-3 u_{N-3}^{2}}+v_{N}+z_{N-1}^{2}-z_{N-2}^{2}\right)
\end{gather*}
$$

$$
\begin{gathered}
-\left(b_{1}\left(<z^{1}, z^{1}>_{N}-1\right)+b_{2}\left(<z^{2}, z^{2}>_{N}-1\right)\right) \\
-b_{12}<z^{1}, z^{2}>_{N}-b_{4}\left(<\left(u_{N-3}, v\right),\left(u_{N-3}, v\right)>_{N}-1\right),
\end{gathered}
$$

where $v=\left(v_{1}, v_{2}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right)$. Let us define for fixed $N \in \mathbb{N}$,

$$
\begin{gathered}
u^{N}=u=\left(0, \ldots, 0_{N-4}, u_{N-2}, u_{N-1}, u_{N}\right), \\
x^{1 N}=x^{1}=\left(0, \ldots, 0_{N-4}, x_{N-3}^{1}, x_{N-2}^{1}, x_{N-1}^{1}, x_{N}^{1}\right), \\
x^{2 N}=x^{2}=\left(0, \ldots, 0_{N-4}, x_{N-3}^{2}, x_{N-2}^{2}, x_{N-1}^{2}, x_{N}^{2}\right)
\end{gathered}
$$

and

$$
d^{N}=d=\left(d_{1}, d_{2}, d_{12}, d_{4}\right)
$$

Here $u_{N-2}=u_{N-1}=1 / \sqrt{3}, u_{N}=\sqrt{1 / 3-u_{N-3}^{2}}, x_{N-3}^{1}=\sqrt{2} u_{N-3}, x_{N-2}^{1}=$ $x_{N-1}^{1}=1 / \sqrt{6}, x_{N}^{1}=-\sqrt{2\left(1-3 u_{N-3}^{2}\right)} / \sqrt{3}, x_{N-3}^{2}=0, x_{N-2}^{2}=-x_{N-1}^{2}=$ $-1 / \sqrt{2}, x_{N}^{2}=0, d_{1}=2 / 3, d_{2}=2 / 3+t(/ \sqrt{2}), d_{12}=0$ and $d_{4}=4 / 3+$ $t /\left(2 \sqrt{1 / 3-u_{N-3}^{2}}\right)$. Then the above defined x^{1}, x^{2}, u, d satisfy the system of equations:

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{j}}\left(x^{1}, x^{2}, v, d\right)=0
$$

for $j=1, \ldots, 3 N+3$ where $w_{j} \in\left\{v_{1}, v_{2}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}, z_{k}^{i}, i=1,2, k=1, \ldots, N\right\}, j=1, \ldots, 3 N-1$
and

$$
w_{j} \in\left\{b_{12}, b_{1}, b_{2}, b_{4}\right\}, j=3 N, \ldots, 3 N+3
$$

(We do not differentiate with respect to u_{N-3}).
Proof. Notice that the equations

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{j}}\left(x^{1}, x^{2}, u, d\right)=0
$$

for

$$
w_{j} \in\left\{z_{k}^{i}, i=1,2 ; k=1, \ldots, N\right\}
$$

follow from the fact that (for $N=4$,) $x^{i 4}=x^{i}, i=1,2$, are the orthonormal eigenvectors of the matrix B defined by (27) corresponding to the eigenvalues $d_{i}, i=1,2$ which has been established in Lemma(2.9). Also the equations

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{j}}\left(x^{1}, x^{2}, u, d\right)=0
$$

for

$$
w_{j} \in\left\{b_{12}, b_{1}, b_{2}, b_{4}\right\}
$$

follows immediately from the fact that $<x^{i}, x^{j}>_{N}=\delta_{i j}$ for $i, j=1,2, i \leq j$ and $<\left(u_{N-3}, u\right),\left(u_{N-3}, u\right)>_{N}=1$. To end the proof, we show that

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{j}}\left(x^{1}, x^{2}, u, d\right)=0
$$

for

$$
w_{j} \in\left\{v_{1}, v_{2}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right\}
$$

Notice that, for $i=1, \ldots, N-4$,

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{i}}\left(x^{1}, x^{2}, u, d\right)=2 \sum_{j=1}^{N} u_{j} a_{i j}<x_{i}, x_{j}>_{2}-2 u_{i} d_{4}=0
$$

since $x_{i}=0$ and $u_{i}=0$ for $i=1, \ldots, N-4$. Now assume that $w_{i}=u_{N-2}$. Then

$$
\begin{aligned}
& 2 \sum_{j=1}^{N} u_{j} a_{N-2, j}<x_{N-2}, x_{j}>_{2}+t / \sqrt{1-3 u_{N-3}^{2}}-2 u_{N-2} d_{4} \\
& =2\left(u_{N-3}^{2} / \sqrt{3}+1 / \sqrt{3}+(1 / 3 \sqrt{3})\left(1-3 u_{N-3}^{2}\right)+t / 2 \sqrt{1-3 u_{N-3}^{2}}-u_{N-2} d_{4}\right) \\
& =2\left((4 / 3) / \sqrt{3}+t / 2 \sqrt{1-3 u_{N-3}^{2}}-(4 / 3) u_{N-2}-t /\left(2 \sqrt{1 / 3-u_{N-3}^{2}}\right) u_{N-2}\right)=0 .
\end{aligned}
$$

The same calculation works for $i=N-1$. If $i=N$, then

$$
\begin{gathered}
2 \sum_{j=1}^{N} u_{j} a_{N, j}<x_{N}, x_{j}>_{2}+t-2 u_{N} d_{4} \\
=2\left(2 u_{N-3}^{2} \sqrt{1-3 u_{N-3}^{2}} / \sqrt{3}+2 \sqrt{1-3 u_{N-3}^{2}} / 3 \sqrt{3}+t / 2\right.
\end{gathered}
$$

$$
\begin{gathered}
\left.+(2 / 3)\left(1-3 u_{N-3}^{2}\right) \sqrt{(1 / 3)-u_{N-3}^{2}}-u_{N} d_{4}\right) \\
=2\left(2 u_{N-3}^{2} \sqrt{(1 / 3)-u_{N-3}^{2}}+(4 / 3) \sqrt{(1 / 3)-u_{N-3}^{2}}+t / 2\right. \\
\left.-2 u_{N-3}^{2} \sqrt{(1 / 3)-u_{N-3}^{2}}-d_{4} u_{N}\right)=0,
\end{gathered}
$$

which completes the proof.

THEOREM 4.2 Let A be an $N \times N$ symmetric matrix defined by (62.) Fix $t \in \mathbb{R}$ and $u_{N-3} \in[1 / \sqrt{3}, 1)$. Let us consider a function $h_{u_{N-3}, A, t}^{N}$: $\mathbb{R}^{N-1} \times\left(\mathbb{R}^{N}\right)^{2} \times \mathbb{R}^{3} \times \mathbb{R}$ defined by:

$$
\begin{aligned}
& h_{u_{N-3}, A, t}^{N}\left(\left(v_{1}, v_{2}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), z^{1}, z^{2}, b_{1}, b_{2}, b_{12}, b_{4}\right) \\
& =\sum_{i, j=1}^{N} a_{i j} v_{i} v_{j}<z_{i}, z_{j}>_{2}+t\left(u_{N-2}+u_{N-1}+z_{N-1}^{2}-z_{N-2}^{2}\right) \\
& \quad-\left(b_{1}\left(<z^{1}, z^{1}>_{N}-1\right)+b_{2}\left(<z^{2}, z^{2}>_{N}-1\right)\right) \\
& \quad-b_{12}<z^{1}, z^{2}>_{N}-b_{4}\left(<\left(u_{N-3}, v\right),\left(u_{N-3}, v\right)>_{N}-1\right)
\end{aligned}
$$

where $v=\left(v_{1}, v_{2}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right)$. Let us define for fixed $N \in \mathbb{N}$,

$$
\begin{gathered}
u^{N}=u=\left(0, \ldots, 0_{N-4}, u_{N-2}, u_{N-1}, u_{N}\right), \\
x^{1 N}=x^{1}=\left(0, \ldots, 0_{N-4}, x_{N-3}^{1}, x_{N-2}^{1}, x_{N-1}^{1}, x_{N}^{1}\right), \\
x^{2 N}=x^{2}=\left(0, \ldots, 0_{N-4}, x_{N-3}^{2}, x_{N-2}^{2}, x_{N-1}^{2}, x_{N}^{2}\right)
\end{gathered}
$$

and

$$
d^{N}=d=\left(d_{1}, d_{2}, d_{12}, d_{4}\right)
$$

Here $u_{N-2}=u_{N-1}=\sqrt{\left(1-u_{N-3}^{2}\right) / 2}, u_{N}=0, x_{N-3}^{1}=0, x_{N-2}^{1}=-x_{N-1}^{1}=$ $\left.-1 / \sqrt{2}, x_{N}^{1}=0, x_{N-2}^{2}=x_{N-1}^{2}=1 / \sqrt{2+w^{2}}, x_{N-3}^{2}=w / \sqrt{2+w^{2}}\right), x_{N}^{2}=0$, $d_{1}=1-u_{N-3}^{2}$,

$$
d_{2}=\left(u_{N-3}^{2}+\sqrt{4 u_{N-3}^{2}-3 u_{N-3}^{4}}\right) / 2+t / \sqrt{2}
$$

$$
\begin{aligned}
& d_{12}=0 \text { and } d_{4}=1+\frac{u_{N-3} w}{u_{N-2}\left(2+w^{2}\right)}+t /\left(2 u_{N-1}\right) . \text { Here } \\
& \qquad w=\frac{u_{N-3}^{2}+\sqrt{4 u_{N-3}^{2}-3 u_{N-3}^{3}}}{u_{N-3} \sqrt{2-2 u_{N-3}^{2}}} .
\end{aligned}
$$

Then the above defined x^{1}, x^{2}, u_{1}, d satisfy the system of equations:

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{j}}\left(x^{1}, x^{2}, u, d\right)=0
$$

for $j=1, \ldots, 3 N+3$ where
$w_{j} \in\left\{v_{1}, v_{2}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}, z_{k}^{i}, i=1,2, k=1, \ldots, N\right\}, j=1, \ldots, 3 N-1$
and

$$
w_{j} \in\left\{b_{12}, b_{1}, b_{2}, b_{4}\right\}, j=3 N, \ldots, 3 N+3
$$

(We do not differentiate with respect to u_{N-3}).
Proof. Notice that the equations

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{j}}\left(x^{1}, x^{2}, u, d\right)=0
$$

for

$$
w_{j} \in\left\{z_{k}^{i}, i=1,2, k=1, \ldots, N\right\}
$$

follow from the fact that (for $N=4$) $x^{i 4}=x^{i}, i=1,2$, are the orthonormal eigenvectors of the matrix B defined by (28) corresponding to the eigenvalues $d_{i}, i=1,2$ which has been established in the proof of Lemma(2.10). Also the equations

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{j}}\left(x^{1}, x^{2}, u, d\right)=0
$$

for

$$
w_{j} \in\left\{b_{12}, b_{1}, b_{2}, b_{4}\right\}
$$

follows immediately from the fact that $<x^{i}, x^{j}>_{N}=\delta_{i j}$ for $i, j=1,2, i \leq j$ and $<\left(u_{N-3}, u\right),\left(u_{N-3}, u\right)>_{N}=1$. To end the proof, we show that

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{j}}\left(x^{1}, x^{2}, u, d\right)=0
$$

for

$$
w_{j} \in\left\{v_{1}, v_{2}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right\}
$$

Notice that for $i=1, \ldots, N-4, N$

$$
\begin{gathered}
\frac{\partial h_{u_{N-3}, t}}{\partial w_{i}}\left(x^{1}, x^{2}, u, d\right)= \\
=2 \sum_{j=1}^{N} u_{j} a_{i j}<x_{i}, x_{j}>_{2}+t-2 u_{i} d_{4}=0
\end{gathered}
$$

since $x_{i}=0$ and $u_{i}=0$ for $i=1, \ldots, N-4, N$. Now assume that $w_{i}=u_{N-2}$. Then

$$
\begin{aligned}
& 2\left(\sum_{j=1}^{N} u_{j} a_{N-2, j}<x_{N-2}, x_{j}>_{2}+t / 2-u_{N-2} d_{4}\right) \\
= & 2\left(\left(u_{N-3} w\right) /\left(2+w^{2}\right)+u_{N-2}+t / 2-u_{N-2} d_{4}\right)=0
\end{aligned}
$$

Since $u_{N-2}=u_{N-1}$, the same calculations work for $i=N-1$ which completes the proof.

Reasoning as in Theorem(4.1) and Theorem(4.2) and applying Lemma(2.11) we can show

THEOREM 4.3 Let A be an $N \times N$ symmetric matrix defined by (62). Assume additionally that

$$
1=a_{N, N-3}=-a_{N, N-2}=-a_{N, N-1} .
$$

Fix $t \in \mathbb{R}$ and $u_{N-3} \in[0,1)$. Let us consider a function $h_{u_{N-1}, A, t}^{N}: \mathbb{R}^{N-1} \times$ $\left(\mathbb{R}^{N}\right)^{2} \times \mathbb{R}^{3} \times \mathbb{R}$ defined by:

$$
\begin{gathered}
h_{u_{N-3}, A, t}^{N}\left(\left(v_{1}, v_{2}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), z^{1}, z^{2}, b_{1}, b_{2}, b_{12}, b_{4}\right) \\
=\sum_{i, j=1}^{N} a_{i j} v_{i} v_{j}<z_{i}, z_{j}>_{2}+t\left(u_{N}+u_{N-2}+u_{N-1}+z_{N-1}^{2}-z_{N-2}^{2}\right) \\
\quad-\left(b_{1}\left(<z^{1}, z^{1}>_{N}-1\right)+b_{2}\left(<z^{2}, z^{2}>_{N}-1\right)\right) \\
\quad-b_{12}<z^{1}, z^{2}>_{N}-b_{4}\left(<\left(u_{N-3}, v\right),\left(u_{N-3}, v\right)>_{N}-1\right),
\end{gathered}
$$

where $v=\left(v_{1}, v_{2}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right)$. Let us define for fixed $N \in \mathbb{N}$,

$$
\begin{gathered}
u^{N}=u=\left(0, \ldots, 0_{N-4}, u_{N-2}, u_{N-1}, u_{N}\right), \\
x^{1 N}=x^{1}=\left(0, \ldots, 0_{N-4}, x_{N-3}^{1}, x_{N-2}^{1}, x_{N-1}^{1}, x_{N}^{1}\right), \\
x^{2 N}=x^{2}=\left(0, \ldots, 0_{N-4}, x_{N-3}^{2}, x_{N-2}^{2}, x_{N-1}^{2}, x_{N}^{2}\right)
\end{gathered}
$$

and

$$
d^{N}=d=\left(d_{1}, d_{2}, d_{12}, d_{4}\right)
$$

Here $u_{N-2}=u_{N-1}=u_{N}=\sqrt{\left(1-u_{N-3}^{2}\right) / 3}, x_{N-2}^{1}=x_{N-1}^{1}=1 / \sqrt{6}, x_{N}^{1}=$ $-2 / \sqrt{6}, x_{N-2}^{2}=-x_{N-1}^{2}=-1 / \sqrt{2}, x_{N}^{2}=0 d_{1}=2 c^{2}, d_{2}=2 c^{2}+t / \sqrt{2} d_{12}=0$ and $d_{4}=4 c^{2}+t /\left(2 u_{N}\right)$, where $c=\sqrt{\left(1-u_{N-3}^{2}\right) / 3}$. Then the above defined x^{1}, x^{2}, u, d satisfy the system of equations:

$$
\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{j}}\left(x^{1}, x^{2}, u, d\right)=0
$$

for $j=1, \ldots, 3 N+3$ where
$w_{j} \in\left\{v_{1}, v_{2}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}, z_{k}^{i}, i=1,2 ; k=1, \ldots, N\right\}, j=1, \ldots, 3 N-1$
and

$$
w_{j} \in\left\{b_{12}, b_{1}, b_{2}, b_{4}\right\}, j=3 N, \ldots, 3 N+3
$$

(We do not differentiate with respect to u_{N-3}).
LEMMA 4.1 Let A be such as in Theorem(4.1). For a fixed $u_{N-3} \in$ $[0,1 / \sqrt{3})$ and $t>0$ let $g_{u_{N-3}, A, t}^{N}: \mathbb{R}^{N-1} \times\left(\mathbb{R}^{N}\right)^{2} \rightarrow R$ defined by

$$
\begin{gathered}
g_{u_{N-3}, A, t}^{N}\left(\left(v_{1}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), y^{1}, y^{2}\right)=\sum_{i, j=1}^{N} v_{i} v_{j} a_{i j}<y_{i}, y_{j}>_{2} \\
+t g_{u_{N-3}}^{1, N}\left(\left(v_{1}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), y^{1}, y^{2}\right)
\end{gathered}
$$

where

$$
\begin{gathered}
g_{u_{N-3}}^{1, N}\left(\left(v_{1}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), y^{1}, y^{2}\right) \\
=\left(v_{N}+\left(v_{N-2}+v_{N-1}\right) / \sqrt{1-3 v_{N-3}^{2}}+y_{N-1}^{2}-y_{N-2}^{2}\right),
\end{gathered}
$$

Let $M_{u_{N-3}, A, t}^{N}=\max g_{u_{N-3}, A, t}^{N}$ under constraints:

$$
<y^{i}, y^{j}>_{N}=\delta_{i j}, 1 \leq i \leq j \leq 2
$$

and

$$
\sum_{j=1}^{N} v_{j}^{2}=1
$$

Assume that $u_{N-3} \in[0,1 / \sqrt{3})$ is so chosen that

$$
M_{u_{N-3}, A, 0}^{N}=g_{u_{N-3}, A, 0}\left(u, x^{1}, x^{2}\right)
$$

where u, x^{1}, x^{2} are as in Theorem(4.1). Set

$$
\begin{equation*}
D_{u_{N-3}}^{N}=\left\{\left(v_{1}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}, y^{1}, y^{2}\right): y_{N}^{2}=0, y_{N-2}^{1} \geq 0\right\} \tag{64}
\end{equation*}
$$

Then

$$
X_{u_{N-3}}^{N}=\left(u, x^{1}, x^{2}\right)
$$

is the only point maximizing $g_{u_{N-3}, A, t}^{N}$ satisfying (2) and (3) belonging to $D_{u_{N-3}}^{N}$.
Proof. Let

$$
Y_{u_{N-3}}^{N}=\left(\left(v_{1}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), y^{1}, y^{2}\right) \in D_{u_{N-3}}^{N}
$$

maximizes $g_{u_{N-3}, A, t}^{N}$ and satisfies (2) and (3). Notice that $g_{u_{N-3}}^{1, N}$ (as a function of $v=\left(v_{1}, \ldots, v_{N-4}, v_{N-2}, \ldots, v_{n}\right)$ and $\left.y^{2}\right)$ attains its maximum under constraints (2) and (3) only at

$$
v=\left(0, \ldots, 0_{N-4}, 1 / \sqrt{3}, 1 / \sqrt{3}, \sqrt{1 / 3-u_{N-3}^{2}}\right)
$$

and

$$
y^{2}=\left(0, \ldots, 0_{N-3},-1 / \sqrt{2}, 1 / \sqrt{2}, 0\right)
$$

Since $g_{u_{N-3}}^{1, N}$ does not depend on $y^{1}, t>0$, and the maximum of $g_{u_{N-3}, A, 0}^{N}$ is attained at $X_{u_{N-3}}^{N}$, we have $v_{i}=0$ for $i=1, \ldots, N-4, v_{N-2}=v_{N-1}=1 / \sqrt{3}$, $v_{N}=u_{N}$ and $y^{2}=x^{2}$. Since x^{1}, x^{2} are the eigenvectors of A, by Lemma(2.4), $\operatorname{span}\left[y^{i}: i=1,2\right]=\operatorname{span}\left[x^{i}: i=1,2\right]$. Note that

$$
<x^{1}, x^{2}>_{N}=<y^{1}, x^{2}>_{N}=0
$$

Hence $y^{1}=d x^{1}$. Since $<y^{1}, y^{1}>_{N}=1$ and $y_{N-2}^{1} \geq 0$ and $x_{N-2}^{1}>0, x^{1}=y^{1}$, as required.

REMARK 4.1 Lemma(4.1) remains true (with the same proof) if we replace the function $g_{u_{N-3}}^{1, N}$ by

$$
g_{u_{N-3}}^{2, N}\left(\left(v_{1}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), y^{1}, y^{2}\right)=v_{N-2}+v_{N-1}+y_{N-2}^{2}-y_{N-1}^{2}
$$

and $X_{u_{N-3}}^{N}$, A from Theorem(4.1) by $X_{u_{N-3}}^{N}$ and A from Theorem(4.2).Also the statement Lemma(4.1) remains true if we replace $g_{u_{N-3}}^{1, N}$ by
$g_{u_{N-3}}^{3, N}\left(\left(v_{1}, \ldots v_{N-4}, v_{N-2}, v_{N-1}, v_{N}\right), y^{1}, y^{2}\right)=v_{N-2}+v_{N-1}+v_{N}+y_{N-2}^{2}-y_{N-1}^{2}$,
$X_{u_{N-3}}^{N}$ and A from Theorem(4.1) by $X_{u_{N-3}}^{N}$ and A from Theorem(4.3).
THEOREM 4.4 Fix $N \geq 4$ and $u_{N-3} \in[0,1 / \sqrt{3})$. Let A,

$$
u, x^{1}, x^{2}, d=d(t)
$$

be as in Theorem(4.1). Let $M_{u_{N-3}, A, t}^{N}=\max g_{u_{N-3}, A, t}^{N}$, where $g_{u_{N-3}, A, t}^{N}$ has been defined in Lemma(4.1), under constraints:

$$
<y^{i}, y^{j}>_{N}=\delta_{i j}, 1 \leq i \leq j \leq 2
$$

and

$$
\sum_{j=1, j \neq N-3}^{N} v_{j}^{2}=1-u_{N-3}^{2} .
$$

Assume that $u_{N-3} \in[0,1 / \sqrt{3})$ is so chosen that

$$
M_{u_{N-3}, 0}^{N}=f_{u_{N-3}, A}^{N}\left(u, x^{1}, x^{2}\right) .
$$

Denote by $D_{u, A, t}^{N}$ a $3 N+2 \times 3 N+2$ matrix defined by

$$
\begin{equation*}
D_{u, A, t}^{N}=\frac{\partial h_{u_{N-3}, A, t}^{N}}{\partial w_{i}, \partial w_{j}}\left(x^{1}, x^{2}, u, d_{1}(t), d_{2}(t), d_{12}(t), d_{4}(t)\right), \tag{65}
\end{equation*}
$$

where
$w_{i}, w_{j} \in\left\{v_{1}, \ldots, v_{N-4}, v_{N-2}, v_{N-1}, v_{N}, y_{j}^{1}, j=1, \ldots, N, y_{j}^{2}, j=1, \ldots, N-1, b_{1}, b_{2}, b_{1,2}, b_{4}\right\}$, (we do not differentiate with respect to u_{N-3} and y_{N}^{2}). Assume that

$$
\operatorname{det}\left(D_{u, A, t}^{N}\right)=\sum_{j=o}^{k} c_{j, N}(u) t^{j}
$$

and $c_{j, N}\left(u_{N-3}\right) \neq 0$ for some $j \in\{1, \ldots, k\}$. Then there exists an open interval $U_{N} \subset[0,1 / \sqrt{3})$, ($U_{N}=[0, w)$ if $u_{N-3}=0$) such that $u_{N-3} \in U_{N}$ and for any $u \in U_{N}$ the function $f_{u, A}^{N}$ attains its global maximum under constraints (2) and (3) at (u, x^{1}, x^{2}) defined in Theorem(4.1). The same result holds true if we replace the function $g_{u, A, t}^{N}$ from Theorem(4.1)by the function $g_{u, A, t}^{N}$ from Theorem (4.2) and we assume that $u_{N-3} \in[1 / \sqrt{3}, 1)$. In this case $\left(x^{1}, x^{2}, u, d_{1}(t), d_{2}(t), d_{12}(t), d_{4}(t)\right)$ are as in Theorem (4.2).

Proof. The proof goes in exactly the same way as the proof of Theorem(3.3), so we omit it.

Now we prove the crucial technical result of this section, which shows that the assumptions of Theorem(4.4) concerning $D_{u, A, t}^{N}$ are satisfied.

THEOREM 4.5 Let $A, d(t)=\left(d_{1}(t), d_{2}(t), d_{12}(t), d_{4}(t)\right)$, and $\left(u, x^{1}, x^{2}\right)$ be as in Theorem(4.1). Let $D_{u, A, t}^{N}$ be defined by (65). Then for any $u \in[0,1 / \sqrt{3})$ and $t \in \mathbb{R}$,

$$
\operatorname{det}\left(D_{u, A, t}^{N}\right)=\sum_{j=0}^{2(N-4)+4} c_{j, N}(u) t^{j}
$$

where the functions $c_{j, N}$ are continuous for $j=0, \ldots, 2(N-4)+4$ and

$$
c_{2 N-4, N}(u) \neq 0
$$

for any $u \in[0,1 / \sqrt{3})$. The same result holds true if we replace $A,\left(d(t), u, x^{1}, x^{2}\right)$ from Theorem(4.1) by $A,\left(d(t), u, x^{1}, x^{2}\right)$ from Theorem(4.2) and assume that $u \in[1 / \sqrt{3}, 1)$.

Proof. First we assume that $N=4$. Let $g_{u_{1}, A, t}^{4}$ be as in Theorem(3.1). We will differentiate our function $h_{u_{1}, A, t}^{4}$ in the following way:

$$
\left(w_{1}, \ldots, w_{8}\right)=\left(x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, x_{4}^{1}, b_{1}, b_{2}, b_{12}, b_{4}\right)
$$

and

$$
\left(w_{9}, \ldots, w_{14}\right)=\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, v_{2}, v_{3}, v_{4}\right)
$$

Set

$$
\begin{gathered}
X=\left(x_{1}, b, b, x_{4}, 0,-1 / \sqrt{2}, 1 / \sqrt{2}, 0\right), \\
B B=\left(b_{1}, b_{2}, 0, z\right)
\end{gathered}
$$

and

$$
v=\left(u_{1}, c, c, u_{4}\right) .
$$

Notice that by elementary but very tedious calculations (which we have checked applying a symbolic Mathematica program) we get that the 14×14 symmetric matrix $C=D_{u_{1}, A, t}^{4}(X, B B, v)$ is given by

$$
C=\left(\begin{array}{cc}
A_{1} & B \tag{66}\\
B^{T} & A_{2}
\end{array}\right) .
$$

Here

$$
A_{1}=\left(\begin{array}{rrrrrrr}
2\left(u_{1}^{2}-b_{1}\right) & 2 c u_{1} & 2 c u_{1} & -2 u_{1} u_{4} & -2 x_{1} & 0 & 0 \tag{67}\\
2 c u_{1} & 2\left(c^{2}-b_{1}\right) & -2 c^{2} & -2 c u_{4} & -2 b & 0 & 1 / \sqrt{2} \\
2 c u_{1} & -2 c^{2} & 2\left(c^{2}-b_{1}\right) & -2 c u_{4} & -2 b & 0 & -1 / \sqrt{2} \\
-2 u_{1} u_{4} & -2 c u_{4} & -2 c u_{4} & 2\left(u_{4}^{2}-b_{1}\right) & -2 x_{4} & 0 & 0 \\
-2 x_{1} & -2 b & -2 b & -2 x_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0 & 0 & 0
\end{array}\right) ;
$$

$$
A_{2}=\left(\begin{array}{rrrrrrr}
0 & 0 & 0 & 0 & -2 c & -2 c & -2 u_{4} \\
0 & 2\left(u_{1}^{2}-b_{2}\right) & 2 c u_{1} & 2 c u_{1} & -\sqrt{2} u_{1} & \sqrt{2} u_{1} & 0 \\
0 & 2 c u_{1} & 2\left(c^{2}-b_{2}\right) & -2 c^{2} & -3 \sqrt{2} c & -\sqrt{2} c & 0 \\
0 & 2 c u_{1} & -2 c^{2} & 2\left(c^{2}-b_{2}\right) & 2 \sqrt{2} c & 3 \sqrt{2} c & 0 \\
-2 c & -\sqrt{2} u_{1} & -3 \sqrt{2} c & \sqrt{2} c & 1+2\left(b^{2}-z\right) & 1-2 b^{2} & -2 b x_{4} \\
-2 c & \sqrt{2} u_{1} & -\sqrt{2} c & 3 \sqrt{2} c & 1-2 b^{2} & 1+2\left(b^{2}-z\right) & -2 b x_{4} \\
-2 u_{4} & 0 & 0 & 0 & -2 b x_{4} & -2 b x_{4} & 2\left(x_{4}^{2}-z\right)
\end{array}\right)
$$

and

$$
B^{T}=\left(\begin{array}{rrrrrr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -x_{1} \\
0 & 0 & 0 & 0 & \sqrt{2} & -b \\
2 b u_{1} & 2\left(c b+u_{1} x_{1}-u_{4} x_{4}\right) & -2 c b & 0 & -\sqrt{2} \\
2 b u_{1} & -2 c b & 2\left(c b+u_{1} x_{1}-u_{4} x_{4}\right) & -b \\
-2 u_{1} x_{4} & -2 c x_{4} & -2 c x_{4} & 4\left(u_{4} x_{4}-u_{1} x_{1} / 2-c b\right) & -2 b u_{4} & 0 \\
0 & 0 \\
0 & -2 b u_{4} & 0 & 0 & 0 \\
0
\end{array}\right) ;
$$

(69)

Notice that in 6-th row of C the only non-zero elements are $c_{6,10}=-c_{6,11}=$ $\sqrt{2}$ and in 8-th row of C the only elements which could be different from 0 are $c_{8,12}=c_{8,13}=-2 c$ and $c_{8,14}=-2 u_{4}$. Consequently, applying the symmetry of C, adding 10 -th row to 11 -th, 10 -th column to 11 -th column, subtracting 14 -th row multiplied by c / u_{4} from 12 -th and 13 -row and subtracting 14 -th column multiplied by c / u_{4} from 12 -th and 13 -th column

$$
\operatorname{det}(C)=8\left(u_{4}\right)^{2} \operatorname{det}(D)
$$

where D is a 10×10 symmetric matrix defined by

$$
D=\left(\begin{array}{cc}
D_{1} & E \tag{70}\\
E^{T} & D_{2}
\end{array}\right)
$$

Here

$$
\begin{align*}
& D_{1}=\left(\begin{array}{rrrrrr}
2\left(u_{1}^{2}-b_{1}\right) & 2 c u_{1} & 2 c u_{1} & -2 u_{1} u_{4} & -2 x_{1} & 0 \\
2 c u_{1} & 2\left(c^{2}-b_{1}\right) & -2 c^{2} & -2 c u_{4} & -2 b & 1 / \sqrt{2} \\
2 c u_{1} & -2 c^{2} & 2\left(c^{2}-b_{1}\right) & -2 c u_{4} & -2 b & -1 / \sqrt{2} \\
-2 u_{1} u_{4} & -2 c u_{4} & -2 c u_{4} & 2\left(u_{4}^{2}-b_{1}\right) & -2 x_{4} & 0 \\
-2 x_{1} & -2 b & -2 b & -2 x_{4} & 0 & 0 \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 0 & 0
\end{array}\right) \tag{71}\\
& D_{2}=\left(\begin{array}{rrrrr}
2\left(u_{1}^{2}-b_{2}\right) & 4 c u_{1} & -\sqrt{2} u_{1} & \sqrt{2} u_{1} \\
4 c u_{1} & -4 b_{2} & -2 \sqrt{2} c & 2 \sqrt{2} c \\
-\sqrt{2} u_{1} & -\sqrt{2} c & d_{3,3}-\left(2+2 c /\left(u_{4}\right)^{2}\right) z & d_{3,4}-2\left(c /\left(u_{4}\right)^{2}\right) z \\
\sqrt{2} u_{1} & \sqrt{2} c & d_{4,3}-2\left(c /\left(u_{4}\right)^{2}\right) z & d_{4,4}-\left(2+2 c /\left(u_{4}\right)^{2}\right) z
\end{array}\right)
\end{align*}
$$

(72)
where $d_{3,4}=d_{4,3}$ and $d_{3,3}=d_{4,4}$ do not depend on b_{2} and z. Also observe that the coefficients of B^{T} do not depend on b_{2} and z, hence the same is holds true for E. Now we calculate the coefficient $c_{4,4}\left(u_{1}\right)$ of $\operatorname{Det}\left(D_{u_{1}, A, t}^{4}\right)$. Notice that

$$
\operatorname{det}(C(t))=\operatorname{Det}\left(D_{u_{1}, A, t}^{4}(X, B B, v)\right)=8 u_{4}^{2} \operatorname{det}(D(t))
$$

where $C(t)$ and $D(t)$ denote the above written matrices C and D with z replaced by $z+t /\left(2 u_{4}\right)$ and $b_{2}=b_{1}+t / \sqrt{2}$. By definition of determinant

$$
\operatorname{det}(D(t))=\sum_{\sigma \in \Pi_{10}} \operatorname{sgn}(\sigma)\left(\sum_{i=1}^{15} d_{i, \sigma(i)}\right),
$$

where Π_{10} denotes the set of all permutations of $\{1, \ldots, 10\}$. Notice that by the above given formulas the variable t appears only in D_{1} and D_{2}. Consequently to calculate $c_{4,4}\left(u_{1}\right)$ it is enough to consider

$$
\sum_{\sigma \in P_{1}} \operatorname{sgn}(\sigma)\left(\sum_{i=1}^{10} d_{i, \sigma(i)}\right)
$$

where

$$
P_{1}=\{\sigma \in \Pi: \sigma(\{9,10\})=\{9,10\}, \sigma(j)=j, j=7,8\}
$$

Consequently, applying the formula on D_{1} and D_{2} we can deduce that

$$
c_{4,4}\left(u_{1}\right)=32 \operatorname{det}(F) \operatorname{det}\left(D_{1}\right)
$$

where

$$
F=\left(\begin{array}{rr}
-\left(1+c /\left(u_{4}\right)^{2}\right) & -c / u_{4}^{2} \tag{73}\\
-c /\left(u_{4}^{2}\right) & -\left(1+c /\left(u_{4}^{2}\right)\right)
\end{array}\right) .
$$

Note that $\operatorname{det}(F)=1+2 c /\left(u_{4}^{2}\right)>0$. (In the case of Theorem(4.1) applied to $N=4, u_{1} \in[0,1 / \sqrt{3}), c=1 / \sqrt{3}$ and $u_{4}=\sqrt{1 / 3-u_{1}^{2}}>0$.) Hence
to end the proof we should demonstrate that $\operatorname{Det}\left(D_{1}\right) \neq 0$ for $(X, B B, v)$ defined in Theorem(4.1). But this can be done as in Theorem(3.4) (see also $\operatorname{Remark}(4.2))$.
Now assume that $N=4$ and let $A,\left(x^{1}, x^{2}, u, d\right)$ be as in Theorem(4.2). In this case we have that $u_{4}=0$ and $x_{4}^{1}=0$. Reasoning in a similar way as above we get that

$$
\operatorname{Det}(C)=8 c^{2} \operatorname{det}(D)
$$

where D is a 10×10 symmetric matrix defined by

$$
D=\left(\begin{array}{cc}
D_{1} & E \tag{74}\\
E^{T} & D_{2}
\end{array}\right)
$$

such that D_{1} is as in the previous case and

$$
D_{2}=\left(\begin{array}{rrrr}
2\left(u_{1}^{2}-b_{2}\right) & 4 c u_{1} & \sqrt{2} u_{1} & 0 \tag{75}\\
4 c c u_{1} & -4 b_{2} & 4 \sqrt{2} c & 0 \\
2 \sqrt{2} u_{1} & 4 \sqrt{2} c & { }_{0} & 0, \\
0 & 0 & d_{3,3}-4 z & 0 \\
0 & -2 z
\end{array}\right),
$$

Also, as in the previous case, the coefficients of E do not depend on z and b_{2}. Moreover, the coefficients of D_{1} and D_{2} do not depend on $a_{N, j}$ for $j=N-3, N-2, N-1$, which are not fixed, for A given by (62), as in Theorem(4.1). Hence, reasoning as above we can show that

$$
c_{4,4}\left(u_{1}\right)=2^{6}\left(c^{2}\right) /\left(u_{3}\right)^{2} \operatorname{Det}\left(D_{1}\right)
$$

Since $u_{1}<1, u_{3}=\sqrt{\left(1-u_{1}^{2}\right) / 2}>0$ (compare with Theorem(4.2)). Hence to end the proof we should demonstrate that $\operatorname{Det}\left(D_{1}\right) \neq 0$ for $(X, B B, v)$ defined in Theorem(4.2). But this can be done as in Theorem(3.4) (see also $\operatorname{Remark}(4.2))$.
Now take any $N>4$. We show that the proof of this case practically reduces to the proof given for $N=4$. First assume that $A,\left(x^{1}, x^{2}, u, d(t)\right)$ are such as in Theorem(4.1). We will differentiate in the following way:

$$
\begin{gathered}
\left(w_{1}, \ldots, w_{3(N-4)}\right)=\left(x_{1}^{1}, x_{1}^{2}, u_{1}, \ldots, x_{N-4}^{1}, x_{N-4}^{2}, u_{N-4}\right) \\
\left(w_{3(N-4)+1}, \ldots, w_{3 N+2}\right) \\
=\left(x_{N-3}^{1}, x_{N-2}^{1}, x_{N-1}^{1}, x_{N}^{1}, x_{N-3}^{2}, x_{N-2}^{2}, x_{N-1}^{2}, b_{1}, b_{2}, b_{12}, b_{4}, u_{N-2}, u_{N-1}, u_{N}\right)
\end{gathered}
$$

(We do not differentiate with respect to x_{N}^{2} and u_{N-3}.) Now we show that (since $u_{j}=x_{j}^{1}=x_{j}^{2}=0$ for $j=1, \ldots, N-4$) the matrix C_{N} corresponding
to our case has a form

$$
C_{N}=\left(\begin{array}{rrrrr}
W_{1} & 0 & \ldots & 0 & 0 \tag{76}\\
0 & W_{2} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & W_{N-4} & 0 \\
0 & 0 & \ldots & 0 & C_{4}
\end{array}\right),
$$

where C_{4} denotes the matrix obtained for

$$
\begin{gathered}
X=\left(x_{N-3}^{1}, x_{N-2}^{1}, x_{N-1}^{1}, x_{N}^{1}, x_{N-3}^{2}, x_{N-2}^{2}, x_{N-1}^{2}, x_{N}^{2}\right) \\
u=\left(u_{N-3}, u_{N-2}, u_{N-1}, u_{N}\right), b=\left(d_{1}(t), d_{2}(t), d_{12}(t), d_{4}(t)\right)
\end{gathered}
$$

in the case $N=4$. Here, for $i=1, \ldots, N-4, W_{i}$ is a 3×3 matrix given by

$$
W_{i}=\left(\begin{array}{rrr}
-2 b_{1} & 0 & w_{i, 1} \tag{77}\\
0 & -2 b_{2} & w_{i, 2} \\
w_{i, 1} & w_{i, 2} & -2 z
\end{array}\right) \text {, }
$$

where

$$
w_{i, k}=\sum_{j=N-3}^{N} a_{i j} u_{j} x_{j}^{k}
$$

for $k=1,2$. Indeed for any $j=1, \ldots, N$

$$
\frac{\partial h_{u_{1, A, t}}^{N}}{x_{j}^{1}}\left(x^{1}, x^{2}, u, d(t)\right)=2\left(\sum_{k=1}^{N} a_{j k} x_{k}^{1} u_{j} u_{k}-d_{12}(t) x_{j}^{2}-d_{1}(t) x_{j}^{1}\right) .
$$

and

$$
\frac{\partial h_{u_{1}, A, t}^{N}}{u_{j}}\left(x^{1}, x^{2}, u, d(t)\right)=2\left(\sum_{k=1}^{N} a_{j k} u_{k}<x_{j}, x_{k}>_{2}-d_{4}(t) u_{j}\right) .
$$

Hence for any $j=1, \ldots, N-4$

$$
\frac{\partial h_{u, A, t}^{N}}{x_{j}^{1}, w_{l}}\left(x^{1}, x^{2}, u, d(t)\right)=0
$$

for $w_{l} \neq x_{j}^{1}$ and $w_{l} \neq u_{j}$. The same reasoning applies if we differentiate with respect to $x_{j}^{2}, j=1, \ldots, N-4$. Analogously, for $j=1, \ldots, N-4$,

$$
\frac{\partial h_{u_{1}, A, t}^{N}}{u_{j}, w_{l}}\left(x^{1}, x^{2}, u, d(t)\right)=0
$$

for $w_{l} \neq x_{j}^{i}, i=1,2$ and $w_{l} \neq u_{j}$. Also for

$$
\begin{gathered}
w_{k}, w_{j} \in\left\{\left(x_{N-3}^{1}, x_{N-2}^{1}, x_{N-1}^{1}, x_{N}^{1}, x_{N-3}^{2}, x_{N-2}^{2}, x_{N-1}^{2}, u_{N-2}, u_{N-1}, u_{N}, b_{1}, b_{2}, b_{12}, b_{4}\right\}\right. \\
\frac{\partial h_{u_{1}, A, t}^{N}}{w_{j}, w_{k}}\left(x^{1}, x^{2}, u, d\right)=\frac{\partial h_{u_{1}, A, t}^{4}}{w_{j}, w_{k}}\left(z^{1}, z^{2}, v, d\right),
\end{gathered}
$$

where $h_{u_{1}, A, t}^{4}$ is the function from Theorem(4.1) corresponding to $N=4$ and $z^{1}=\left(x_{N-3}^{1}, x_{N-2}^{1}, x_{N-1}^{1}, x_{N}^{1}\right), z^{2}=\left(x_{N-3}^{2}, x_{N-2}^{2}, x_{N-1}^{2}\right), v=\left(u_{N-2}, u_{N-1}, u_{N}\right)$.

This shows our claim concerning the matrix C_{N}.
Since $w_{i, k}$ for $k=1,2$ and $i=1, \ldots, N-4$ do not depend on b_{2} and z, $b_{1}=2 / 3, b_{2}=2 / 3+t / \sqrt{2} z=4 / 3+t / 2 u_{n}$

$$
c_{4+2(N-4), N}\left(u_{N-3}\right) \neq 0
$$

for any $u_{N-3} \in[0,1 / \sqrt{3})$, which completes the proof for $N>4$ in the case of A from Theorem(4.1). The case of A from Theorem(4.2) and $N>4$ is exactly the same, so we omit it.

REMARK 4.2 If $x^{1}, x^{2}, u, d(t)$ are as in Theorem(4.1) for $N=4$, applying a symbolic Mathematica program we can show that

$$
\operatorname{Det}\left(D_{1}\right)=64 / 27\left(2+6 \sqrt{2} u_{1} x_{2}^{1}+3\left(x_{2}^{1}\right)^{2}\right)>0 .
$$

If $x^{1}, x^{2}, u, d(t)$ are as in Theorem(4.2) for $N=4$, applying a symbolic Mathematica program we can show that

$$
\begin{aligned}
\operatorname{Det}\left(D_{1}\right)= & 8 u_{1}\left(4 x_{2}^{1} u_{1}\left(1-u_{1}^{2}\right)+4 u_{1} x_{2}^{1}\left(u_{1}^{2}+\sqrt{4 u_{1}^{2}-3 u_{1}^{4}}\right) x_{1}^{1}\right. \\
& \left.+u_{1}\left(2-u_{1}^{2}+\sqrt{4 u_{1}^{2}-3 u_{1}^{4}}\right)\left(x_{1}^{1}\right)^{2}\right)>0 .
\end{aligned}
$$

Now we will prove the main results of this section.
THEOREM 4.6 Fix $N \in \mathbb{N}, N \geq 4$ and $u_{N-3} \in[0,1]$. Let

$$
f_{u_{N-3}}^{N}\left(u_{1}, \ldots, u_{N-4}, u_{N-2}, u_{N-1}, u_{N}, x^{1}, x^{2}\right)=\sum_{i, j=1}^{N} u_{i} u_{j}\left|<x_{i}, x_{j}>_{2}\right| .
$$

Let $M_{u, N}=\max \left(f_{u}^{N}\right)$ under constrains (2) and (3). Then for any $u_{N-3} \in$ $[0,1 / \sqrt{3})$

$$
M_{u_{N-3}, N}=4 / 3
$$

and for any $u_{N-3} \in[1 / \sqrt{3}, 1]$

$$
M_{u_{N-3}, N}=1+\left(\sqrt{4 u_{N-3}^{2}-3 u_{N-3}^{4}}-u_{N-3}^{2}\right) / 2
$$

Proof. We will proceed by the induction argument with respect to N. First assume $N=4$. Define

$$
U_{4}=\left\{u_{1} \in[0,1 / \sqrt{3}): M_{u_{1}, 4}=4 / 3\right\}
$$

By Lemma(2.6) and Lemma(2.7), $0 \in U_{4}$. Now we show that U_{4} is an open set. Fix $u_{1} \in U$. First we consider the case $u_{1}=0$. We apply Theorem(4.4) and Theorem(4.5). Assume that $u_{n} \rightarrow 0$ and $u_{n} \notin U$. Let $\left(Z_{u_{n}}, M_{u_{n}}(t)\right)$ be such as in Theorem(4.4) (compare with the proof of Theorem(3.3)). Passing to a subsequence, if necessary, and reasoning as in Theorem(3.3), we can assume that $\left(Z_{u_{n}}, M_{u_{n}}(t)\right) \rightarrow\left(X_{o}, L_{o}\right)$. Let $Z_{u_{n}}=\left(u^{n}, z^{1 n}, z^{2 n}\right)$. Since $Z_{u_{n}} \rightarrow X_{o}$

$$
\operatorname{sgn}<z_{i n}, z_{j n}>_{2}=a_{i j}
$$

for $i, j=2,3,4$ and $n \geq n_{o}$, where the matrix $\left\{a_{i j}\right\}$ is given by (62) for $N=4$. Without loss of generality, passing to a subsequence if necessary we can assume that for $n \geq n_{o}$

$$
\operatorname{sgn}<z_{1 n}, z_{j n}>_{2}=z_{j}
$$

for $j=2,3,4$, where $z_{j}= \pm 1$. By Lemma(2.8) we have to consider two cases:
a) $z_{2}=z_{3}=z_{4}=1$;
b) $z_{2}=z_{3}=1, z_{4}=-1$.

If a) holds true, then by Theorem(4.4), Theorem(4.3) (applied to $u_{N-3}=0$) and Theorem(4.5) we get that

$$
M_{u_{n}, 4}=4\left(1-u_{n}^{2}\right) / 3<2 / 3+2 / 3=4 / 3
$$

for $n \geq n_{o}$, (compare with Theorem(4.1)), which by Theorem(2.1) leads to a contradiction. (Since $u_{1}=0, D_{u_{1}, A, t}^{4}$ is the same for the function $h_{u_{1}, A, t}^{4}$ form Theorem(4.3) like for the function $h_{u_{1}, A, t}$ form Theorem(4.1)). If b) holds true, by Theorem(4.5) and Theorem(4.1), we get a contradiction with

Theorem(4.4). Consequently, there exists an interval $[0, v) \subset U_{4}$.
Now assume that $v=u_{1} \in U$ and $v>0$. Assume $u_{n} \rightarrow v$ and $u_{n} \notin U_{4}$ for $n \in \mathbb{N}$. Let $\left(Z_{u_{n}}, M_{u_{n}}\right)$ be such as in Theorem(4.4). Without loss of generality we can assume that $\left(Z_{u_{n}}, M_{u_{n}}(t)\right) \rightarrow\left(X_{v}, L_{v}(t)\right)$. Let $Z_{u_{n}}=\left(u^{n}, z^{1 n}, z^{2 n}\right)$. Since $Z_{u_{n}} \rightarrow X_{v}$

$$
\operatorname{sgn}<z_{i n}, z_{j n}>_{2}=a_{i j}
$$

for $i, j=1,2,3,4$ for $n \geq n_{o}$, where the matrix $\left\{a_{i j}\right\}$ is as in Theorem(4.1) for $N=4$. Applying Theorem(4.4), we get that $u_{n} \in U$ for $n \geq n_{o}$; a contradiction. Hence the set U_{4} is open. It is easy to see that U_{4} is also closed. Since $0 \in U_{4}$ and $[0,1 / \sqrt{3})$ is connected, $U_{4}=[0,1 / \sqrt{3})$. Observe that by the continuity of the function $u_{N-3} \rightarrow f_{u_{N-3}}^{N}, M(1 / \sqrt{3}, 4)=4 / 3$. Now define

$$
W_{4}=\left\{u_{1} \in[1 / \sqrt{3}, 1): M_{u_{1}, 4}=1+\left(\sqrt{4 u_{1}^{2}-3 u_{1}^{4}}-u_{1}^{2}\right) / 2\right\} .
$$

By the above reasoning $1 / \sqrt{3} \in W_{4}$. Let $v=u_{1} \in W_{4}$. Assume that $u_{n} \rightarrow v$ and $u_{n} \notin W_{4}$. Applying Theorem(4.2) and proceeding as above we get that $\left(Z_{u_{n}}, M_{u_{n}}(t)\right) \rightarrow\left(X_{v}, L_{v}(t)\right)$. Also reasoning as above, passing to a subsequence if necessary, we can assume that

$$
f_{u_{n}}^{4}=f_{u_{n}, A}^{4},
$$

where A is a fixed matrix satisfying (62). By Theorem(4.2), Theorem(4.4) and Theorem(4.5) $u_{n} \in W_{4}$ for $n \geq n_{o}$; a contradiction. Hence W_{4} is an open set. Reasoning as above we get that

$$
W_{4}=[1 / \sqrt{3}, 1),
$$

which completes the proof for $N=4$. (It is easy to see that $M_{1,4}=1$.)
Now assume that our formula for $M_{u_{N-3}, N}$ holds true. We will show that it holds for $M_{u_{N+1-3}, N+1}$. We will proceed in the same way as in $N=4$ case. Define

$$
U_{N+1}=\left\{u_{N-2} \in[0,1 / \sqrt{3}): M_{u_{N-2}, N+1}=4 / 3\right\}
$$

By the induction hypothesis and Lemma(2.7), $0 \in U_{N+1}$. Reasoning as in the $N=4$ case and applying Theorem(4.1), Theorem(4.3),Theorem(4.4) and Theorem(4.5), we can show that U_{N+1} is an open set. It is clear that that U_{N+1} is closed. Hence $U_{N+1}=[0,1 / \sqrt{3})$. Again by the continuity of $u_{N+1-3} \rightarrow f_{u_{N+1-3}}^{N+1}$ we get that

$$
M_{1 / \sqrt{3}, N+1}=4 / 3
$$

Define
$W_{N+1}=\left\{u_{N-2} \in[1 / \sqrt{3}, 1): M_{u_{N-2}, N+1}=1+\left(\sqrt{4 u_{N-2}^{2}-3 u_{N-2}^{4}}-u_{N-2}^{2}\right) / 2\right\}$.
By the above reasoning $1 / \sqrt{3} \in W_{N+1}$. Applying Theorem(4.2), Theorem(4.4) and Theorem(4.5) and proceeding as in the case $N=4$, we get that

$$
W_{N+1}=[1 / \sqrt{3}, 1)
$$

It is easy to see that $M_{1, N+1}=1$. The proof is complete.

THEOREM 4.7

$$
\lambda_{2}=4 / 3
$$

Proof. By Theorem(4.6), Theorem(2.2), Lemma(2.6), Lemma(2.7) and Lemma(2.10),

$$
\lambda_{2}^{N}=4 / 3
$$

for any $N \in \mathbb{N}, N \geq 3$. Let $V \subset l_{\infty}$ be so chosen that $\lambda_{2}=\lambda(V)$. For any $\epsilon>0$ we can find $N \in \mathbb{N}$ and $V_{N} \subset l_{\infty}^{(N)}$, such that

$$
\ln \left(d\left(V_{N}, V\right)\right) \leq \epsilon,
$$

where d denotes the Banach-Mazur distance. Since

$$
\left|\ln \left(\lambda\left(V_{N}\right)\right)-\ln (\lambda(V))\right| \leq \ln \left(d\left(V_{n}, V\right)\right)
$$

(see e.g. [15], p. 113)

$$
\lambda_{2}=\lambda(V) \leq \lambda\left(V_{N}\right) e^{\epsilon} \leq \lambda_{2}^{N} e^{\epsilon}
$$

Consequently,

$$
\lim _{N} \lambda_{2}^{N}=\lambda_{2},
$$

which shows that

$$
\lambda_{2}=4 / 3 .
$$

The proof is complete.
REMARK 4.3 Notice that in [5], it has been proven that

$$
\lambda(V) \leq 4 / 3
$$

for any two-dimensional, real, unconditional Banach space. Recall that a two-dimensional, real Banach space V is called unconditional if there exists v^{1}, v^{2} a basis of V such that for any $a_{1}, a_{2} \in \mathbb{R}$ and $\epsilon_{1}, \epsilon_{2} \in\{-1,1\}$

$$
\left\|a_{1} v^{1}+a_{2} v^{2}\right\|=\left\|\epsilon_{1} a_{1} v^{1}+\epsilon_{2} a_{2} v^{2}\right\| .
$$

References

[1] J. Blatter and E. W. Cheney, Minimal projections onto hyperplanes in sequence spaces, Ann. Mat. Pura ed Appl. 101, (1974), 215-227.
[2] B. L. Chalmers and G. Lewicki, Symmetric subspaces of l_{1} with large projection constants, Studia Math., 134 (1999), 119-133.
[3] B. L. Chalmers and G. Lewicki, Symmetric spaces with maximal projection constants, J. Funct. Anal., 200 (2003), 1-22.
[4] B. L. Chalmers and F. Metcalf A characterization and equations for minimal projections and extensions, J. Oper. Theory 32 (1994), 31-46.
[5] B. L. Chalmers and B. Shekhtman, Extension constants of unconditional two-dimensional operators, Linear Algebra and Appl, 240, (1996), 173 - 182.
[6] B. Grünbaum, Projection constants, Trans. Amer. Math. Soc., 95 (1960), 451-465.
[7] I.M. Kadec and M. G. Snobar, Certain functionals on the Minkowski compactum, Math. notes 10, (1971), 694-696. (English Transl.)
[8] H. König Spaces with large projection constants, Israel J. Math.,50, (1985), 181-188.
[9] H. König, D. R. Lewis and P. K. Lin Finite-dimensional projection constants, Studia Math., 75, (1983), 341-358.
[10] H. König and N. Tomczak - Jaegermann, Bounds for projection constants and 1-summing norms, Trans. Amer. Math. Soc. 320, (1990), 799-823.
[11] H. König and N. Tomczak - Jaegermann, Norms of minimal projections, Journ. of Funct. Anal. 119, (1994), 253-280.
[12] H. König, C. Schuett and N. Tomczak - Jaegermann, Projection constants of symmetric spaces and variants of Khinchine's inequality, J. Reine Angew. Math., 511, (1999), 1-42.
[13] G. Lewicki and L. Skrzypek, Chalmers-Metcalf operator and uniqueness of minimal projections, Journ. Approx. Th. 148 (2007), 71 - 91.
[14] D. Rutovitz, Some parameters associated with finite-dimensional Banach spaces, J. London Math. Soc., 40 (1965), 241 - 255.
[15] P. Wojtaszczyk, Banach spaces for Analysts, Cambridge University Press, Cambridge, 1991.

[^0]: ${ }^{1}$ Department of Mathematics, University of California, Riverside, CA 92521, USA
 ${ }^{2}$ Department of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland

