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Abstract

Let V be an n-dimensional real Banach space and let A\(V) denote
its absolute projection constant. For any N € N, N > n define

AN = sup{A(V) : dim(V) = n,V c IV}

and
An = sup{A(V) : dim(V') = n}.

A well-known Griinbaum conjecture ([6], p. 465) says that

Ao =4/3.
In this paper we show that
5 5+4V2
A3 = —

and we determine a three-dimensional space V' C lé? satisfying A3 =

A(V). In particular, this shows that Prop. 3.1 from ([11], p. 259)
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is incorrect. Hence the proof of the Griinbaum conjecture given in
([11]) which is based on Prop. 3.1 is incomplete. In the second part
of this paper an alternative proof of the Griinbaum conjecture will be
presented.
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1 Introduction

Let X be areal Banach space and let V' C X be a finite-dimensional subspace.
A linear, continuous mapping P : X — V is called a projection if P|y, = id|y.
Denote by P(X, V') the set of all projections from X onto V. Set

AV, X) = inf{||P|| : P € P(X,V)}

and
AV) =sup{\(V,X):V C X}.

The constant A(V, X) is called the relative projection constant and A(V)
the absolute projection constant. General bounds for absolute projection
constants were studied by many authors (see e.g. [2, 3, 8, 9, 10, 12, 14]). It
is well-known (see e.g [15]) that if V' is a finite-dimensional space then

A(V) = AI(V), o},
where (V') denotes any isometric copy of V' in l,. Denote for any n € N
An = sup{\(V) : dim(V') = n}
and for any N e N, N > n
AN = sup{\(V): vV c 1M},

By the Kadec-Snobar Theorem (see [7]) A(V) < y/n for any n € N. However,
determination of the constant A, seems to be difficult. In ([6], p.465) it was
conjectured by B. Griinbaum that

Ao = 4/3.
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In ([11], Th. 1.1) an attempt has been made to prove the Griibaum conjecture
(and a more general result). The proof presented in this paper is mainly
based on ([11]), Proposition 3.1, p. 259 and ([11], Lemma 5.1, p. 273).
Unfortunately, the proof of Proposition 3.1 is incorrect. In fact the formula
(3.19) from ([11], p. 263) is false. This can be easily checked differentiating
formula (3.12) on page 262 with respect to the proper variable. Because of
this error, the part of the proof of [11], Proposition 3.1 on p. 265 is incorrect
and as a result, the proof of [11], Th. 1.1 is incomplete.

In the first part of this paper we show that

R %)

° 7
and we determine a three-dimensional space V C I$) satisfying A =A(V).In
particular, this shows that not only the proof of Proposition 3.1 from ([11])
is incorrect but also the statement of Proposition 3.1 is incorrect.
In the second part of this paper we present an alternative proof of the
Griinbaum conjecture, which is based on the proof given for A3.
Now we briefly describe the structure of the paper.
In Section 1 we demonstrate some preliminary results useful as well as for
determination of A\j and the proof of the Griinbaum conjecture.
In Section 2 after proving some preliminary lemmas we determine the con-
stant A3.
Section 3 contains a proof of the Griinbaum conjecture based on the proof
given in Section 2.
The main tools applied in both proofs are the Lagrange Multiplier Theorem
and the Implicit Function Theorem.

2 Preliminary results

In this section mainly we consider the following problem. For a fixed u; €
0, 1] maximize a function f,, : R¥N"1 x (RM)" — R defined by:

N
fu ((Ugy ooy un), 2ty ™) = Z wing| < i, x5 >, | (1)
ij=1

under constraints:

<[L’i,$j >N:(5¢j,1§i§j§n; (2)
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N
u? =1—ul (3)

=2

Here for j = 1,...,N, z; = ((z');, ..., (x");), < w,z >p= Y77 w;2; for any

w = (wy,..,wy), 2 = (21,..-,2,) € R" and < p,q >n= Z;V:lquj for any

p=(p1,.,pn)q = (q1,...,qn) € RY. Also we will work with

N

fura((ug, yuy), ot . 2™) = Z WA < Ti, T >, (4)
ij=1

where A = {a;;} is a fixed N x N symmetric matrix.

LEMMA 2.1 Let C' = (¢j)ij=1,..n) be a real n X n orthonormal matriz.
Then for any x',...,2" u € RN satisfying (2, 3),

fur ((ugy oyun), 2ty o 2™) = fu, ((ug, ..., uy), C(zh), ..., C(a™)),
and
fura((ug, oun), oty o 2™) = fuya((ug, ... uy), C(xh), ..., C(a™))
for any N x N matriz A. Here C(x") = Y77 cija’.
Proof. Note that

n n
< Cz', 07 >ny=< Zc,-kxk, Zcﬂxl >N

k=1 =1
n n n
kool
= E CikCjt < X7, T >N= E A0k = E CikCik = 0ij,
k=1 k=1 k=1

which shows that u and Cx' i = 1,...,n satisfy (2, 3). Note that for i =
1,.,Nand j=1,....n

Denote for i = 1,..., N (Cz); = ((Cz');, ..., (Cz");). Notice that for i,7 =
1....N,



kau=1 =1 kau=1 =1
n n
= Z («*)i(2") 0 = Z(xk)Z(xk)J =< Ziy Tj >n
kau=1 k=1

By (1) and (4)
fur ((ug, oy un), 2ty o 2™) = fu, ((ug, ..., uy), C(2), ..., C(z™))
and
fura((ug, un), oty o x™) = fuya((ug, .. uy), C(xh), ..., C(a™))
which shows our claim. W

Now we recall the following well-known

LEMMA 2.2 Let (X, < -,- >) be a finite-dimensional Hilbert space with
an orthonormal basis x',...,2". Let T : X — X be a linear isometry. If C is
an n X n matriz with columns ¢; = (¢1j, ..., ¢nj) defined by

n
j_ i
Ty = E Cjix,
i=1

then C' is an orthonormal matrix.
Proof. Notice that for any 7 =1, ..., n,
n n n
l=<2?,2) >=<T2), Ty’ >=< Zcijxl, chjxl >= Z cijey < 2ttt >
i=1 =1 il=1
n

= Z CijCli0i; = Z(Cij)Q'

il=1 i=1

Also for any ¢,5 € {1,...,n}, i # j
2=<uxz;+ Tj, Xy + T; >=< Tx; + TfL’j,TJ}Z‘ + TﬁL‘j >
=<Tx;,Tw; >+ <Tw;j,Te;>+2 <Tx;,Tew; >=2+2 < Tx;,Tx; > .
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Hence

n n n

k _u

0=<Tux;,Tx; >= g ChiCuj < X", 2" >= E ChiCujOkuy = E CriCkj)
kau=1 kau=1 k=1

which shows our claim. H

LEMMA 2.3 Let 2',...,2" € RY and u € RY satisfy (2, 3). Set V =

spanlx!, ..., x"]. Assume v',...,v™ is an orthonormal basis of V' (with respect
to <-,->n). Then

ful((u27 --~7UN)7'CE17 "'7'27”) = fu1(<u27 "'7uN)7 Ula --'7Un)
and

fur.a((ug, ..., un), zt ") = fup.a((ug, ..., uy), ot v™)

for any N x N matriz A.

Proof. It is well-known that for any =,y € RY, < 2,2 >y=< v,y >n= 1,
there exists a linear isometry (with respect to the Euclidean norm in RY)
T., : RY — RY such that Tx = y. Applying this fact and the induction
argument with respect to n we get that there exists a linear isometry 7T :
RY — RY such that Ta® = v’ for i = 1,...,n. By Lemma (2.2) there exists
an orthonormal matrix C' such that Cz* = 37" | Cy27 = v*. By Lemma (2.1),

fur (U, ooy un), 2ty 2™) = fu, ((ug, ..y un), vt .. 0™),
and
Jur,a((ug, ...y un), z!, s @) = fuy.a((ug, ..., uN),vl, U™,

which completes the proof. B

LEMMA 2.4 Letn,N € N, N > n. Fix u = (uy,...,uy) € RY with non-
negative coordinates. Let us consider a function f : R™ — R given by

N

flzt, ... 2" = Z g < i, x5 > |,

ij=1



where z* € RN fori = 1,...,n, Assume that y*,...,y" € RY are so chosen
that

ft o y™) = max{f(z', ..., 2") : (2%, ..., 2"™) satisfying (2)}

Let A € RV*N be a matriz defined by
a;; = sgn(< yi, y; >n) (5)
fori,j=1,...N. (sgn(0) = 1 by definition). Define B € RV*N py
bij = uwiuja;; (6)

fori,j=1,...,N. Let
by > by > ... > by

denote the eigenvalues of B (Since B is symmetric all of them are real.)

Then there exist orthonormal (with respect to < -,- >y) eigenvectors of B

wl, ..., w" € RN corresponding to by, ..., b, such that

fw', . w™) = fy', ..., y") = ij.
j=1

Set
N
f1($1, ...71’”) = Z bij < Ty XTj >p -

ij=1

Ify*, ...,y" € RN are such that
A y™) = max{fi, under constraint (2) } = max{f, under constraint (2) }
and by, > byy1 then spanly’ ;i =1,....n] = span[w’ :i=1,...,n].
Proof. Since u; are nonnegative,
Azt 2™ < flat, 2™

for any 2!, ..., 2" € RY. Moreover,

fl(yla ’yn) = f(y17 ’yn)



Hence f; attains its maximum under constraints (2) at (y!, ..., ™). We now
apply the Lagrange Multiplier Theorem to the function f;. This is possible
since f; is a C* function. Notice that by ([11], p. 261) rank(G'(y!, ...,y")) =
n(n+1)/2 where G is the n(n+1)/2 x nN matrix associated with conditions
(2). Consequently there exist Lagrange multipliers k;j, 1 < i < j < n such

that
8(fl - Z1§i§j§n kaz)
O(2');
for i = 1,..,n, j = 1,...,N, where G;(z!,..2") =< 2',27 >y . Let us
define for i,j € {1,....n}, 1 = ki;/2 it i < j, vi; = k;/2,if j < i and
Vi = ki;. Hence the system (7) can be rewritten (compare with [11], p.262,
formula(3.14)) as:

(y'ny") =0 (7)

B(y™) = Z Vmiy' (8)

for m =1,...,n. Let I' = {v;;,4,7 = 1,...,n}. Observe that I' is a symmet-
ric n X n matrix . Hence it has real eigenvalues aq, ..., a,. Without loss of
generality we can assume that

a; > as > ... > a,. (9)

Let V' = [v;;] be the n x n orthonormal matrix consisting of eigenvectors of
I'. Then
VITV = D, (10)

where D is a diagonal matrix with d; = a; for i = 1, ..., n. Now we show that

for ¢ = 1,...,n. First we prove that a,,, m = 1,...,n, are also eigenvalues of
B. To do this, fix m € {1,...,n}. Define

n

w™ = Zvjmyj. (12)
j=1
We show that Bw™ = a,,w™. Note that

Bu™ = B(Z Vimy’) = Z vimB(y’) = Z Ujm(z i)



n n n n n

= QO vmr)y’ =D vim i)y’ = Y (CV)imy’

i=1 j=1 i=1 j=1 i=1
(by(10))

n n n

= S Dl = 3 ittt = (3 i) = ™

=1 =1 =1

Hence form = 1, ..., n a,, are eigenvalues of B with the corresponding vectors
w™. By the proof of Lemma(2.1), < w*, w’ >y= §;;. Notice that by (12) and
Lemma(2.3)

fl(y17 0 yn) = fl(w17 S wn)

Since for any m =1,...nand i =1,..., N,
(Bw™); = am(w™);,

multiplying each of the above equations by (w™); and summing them up we
get that

n

Zam = fl(w17 "’7wn) = fl(y1’ "'7yn) = f(y17 ""yn)'

j=1
If a; # b; for some i € {1,...,n}, let v, ...,v™ be the orthonormal eigenvectors
of B corresponding to by, ..., b,. Reasoning as above, we get

N

f(vla "'7Un) > Z uiujsgn(< Yi, Yj >n> <V, Vj >n
ij=1

= sz > Zaz‘ = f(yla ""yn);
=1 =1

a contradiction. The fact that span[y’ : i = 1,...,n|=span[w’ : i = 1,...,n]
follows from (12) and invertibility of the matrix V. ®

Reasoning as in the proof of Lemma(2.4) we can show

THEOREM 2.1 Let A denote the set of all N x N symmetric matrices
(a;;) such that a;; = £1 and a; = 1 fori,5 = 1,...,N. Let f,, be given by
(1). Then

max{ fu, : (uo,...,un), 2", ...,2") satisfying (2,3) }
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n N
= max{z bi(v,A) : Ae Ajv=(vy,..u,) € RN,ZUZ? = 1,01 = u },
i=1

i=1
where by (v, A) > ba(v, A) > ... > b,(v, A) denote the biggest eigenvalues of
an N x N matriz (vv;a;;)N_,. Analogously for any A = (a;;) € A,

ij=1-
N
max{z Wiy < Ti, x5 >q0 (12" satisfying (2)
ij=1

uy= /(L= ud)/(N ~1),j =2,..,N}

= max{z bZ(U,A) A€ .A,U = (u17c(u1)7 -‘-7C(u1))}7

=1

where c(uy) = /(1 —u?)/(N —1). Also

N N
max{z wiy| < T, x5 > | c (2t ., 2" satisfying (2),Zujz =1}
ij=1 j=1

N

=max{» bi(v,A): A€ Av=(v1,..v,) ERV,D 07 =1},

i=1 i=1

Now for n, N € N, N > n define
AN = sup{A(V, 1) - V 1D dim(V) = n}. (13)
LEMMA 2.5 Foranyn,N e N, 2<n <N,
AV=1 < 3N

Proof. Let V C I be an n — 1-dimensional subspace with a basis

wl, ..., w" L. Define

Vi = spanfey, (0,w’) : j=1,..,n—1] C IX.
Let P € P(I$), V1) be such that
1Pl = AV, 187)
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(Since V; is finite-dimensional such a projection exists.). Define Q € £, V)
by
Qz = ((P(0,2)s, ..., (P(0,2),).

It is clear that Q(l(()év_l)) C V and Qu’ = w’ for j=1,..n-1. Hence Q €
P(léév_l), V). Moreover, ||Q]| < ||P||. Taking supremum over V' we get that

N-1 N
)\n—l S >\n )

as required. H

THEOREM 2.2 Letn,N € N, N >n. Then

N N
MV = maX{Z wy| < T x5 > | c (2t ., 2") satisfying (,?),Zu? =1}
1,5=1 j=1

Proof. By ([11], Prop. 2.2 and (3.7), p.260),

N N
MV < max{z wiy| < i > | c (2t ., ™) satisfying (2),2%2 =1}
ij=1 j=1

To prove a converse assume that there exist n, N € N, N > n such that

N N
MV < ol = max{z wug| < g xy > | (2. 2™) satisfying (2),21@ =1}
ij=1 j=1

Without loss of generality we can assume that
n=min{m € N: \M < ¢! for some M > m}
and
N =min{M € N, M >n: \M < ¢

Let us define
N

flu, 2t ... 2") = Z | < xp, x> |y
ij=1

Let 3!, ...,y" € RY satisfying (2) and v° € RY with Zjvzl(ug’)z =1, be such
that
fu gt y™) = oy
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Define as in Lemma(2.4)
aij = sgn(< Yi,Yj >n) (14)
fori,5=1,...,N. Also let B € R¥*¥ be given by
bz‘j = U?U?ai]‘ (15)

for i =1,..., N. By Lemma(2.4) and Theorem(2.1) we can get that
f(uov ?/17 i} yn) = Z bi(uoa A)
i=1

where by (u®, A) > by(u®, A) > ... > b,(u®, A) denote the biggest eigenvalues of
the above defined matrix B. First suppose that u§ = 0 for somej € {1,..., N}.
Without loss of generality we can assume that u{ = 0. Let B; be an

(N —1) x (N — 1) matrix given by

B, = {bz’j}i,j:2 ,,,,, N

(the part of B without the first row and the first column). Let d; > ... >
dy_1 be the eigenvalues of By and 2!, ..., 2V ! the corresponding orthonormal
eigenvectors. Since u$ =0, v/ = (0,27), 7 =1,..., N — 1 are the orthonormal
eigenvectors of B corresponding to d;. Also d, = 0 is an eigenvalue of B with
e1 as an eigenvector. Consequently

b;(u°, A) € {0,dp, k = 1,..N — 1}

for j =1,..,n. If bj(u®, A) > 0 for j = 1,...,n, then b;(u®, A) are also the
eigenvalues of By. By Theorem(2.1),

D bi(u, A) =g =) = AN <Y
i=1

a contradiction with the definition of N. If b;(u®, A) = 0 for some j €
{1,...,n}, then again by Theorem(2.1)

on <> bi(u, A) < o = AN
i#j
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Consequently by Lemma(2.5),

N N-1_  N-1 N
/\n Z)\nfl — ¥Yn—1 = ¥n>

which again leads to a contradiction. Now assume that u§ > 0 for j =1,..., N.
Let w!, ..., w™ be the orthonormal eigenvectors corresponding to b;(u°, A) for
i =1,...,n. By the proof of Lemma(2.4)

fi(ue,wh, . w™) = oY,
Define, for j =1,....n,
2= (w]/uf, . wiy fu)

and let '
V =span[t 1 j=1,..,n] C I,

We show that A(V,I87) = 32" bi(u®, A) = ¢ .. Define, for j =1,....n,

j=1
f] = ( {u?7"‘7w{vu?\[)

and let P € L£(I,V) be given by

n
P:c:Z < flix>y2.

J=1

Since the vectors w’ are orthogonal with respect to < -,- >y, P € P(lgév), V).
Now we show that
1Pl = AV, IE) = o).

Since the function f; attains its conditional maximum at u®, w?!, ..., w™ (com-
pare with the proof of Lemma(2.4)) by the Lagrange Multiplier Theorem
there exist k;; € R, 1 <¢ < j <n and d € R such that

fr — Z1gi§j§n kijGi — d(Z;'V:l ui — 1)) o ny _
o) J (u®, wh, ..., w") =0 (16)

It is easy to see that (16) reduces to (compare with ([11], (3.12), p.262))
N
Z ujaij < w;,wj >p= duy
7=1
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for 7 = 1,..., N. Multiplying the above equalities by u{ and summing them
up, we get that
d= fi(u’,w', ..., w") = ¢Y.

Also since u¢ > 0 for i = 1,..., N, (16) reduces to

N
(Z uja; < wiw; >y)/uf = d.
j=1

Consequently, by definition of < -,- >, we get, fori =1, ..., N,

d= Z(Z aiju§wk)jwf/uf = Z(Z aijff)zf = (P(aj1,...,ain))i- (17)

k=1 j=1 k=1 j=1

Since |[(@i1,...,ain)||oc = 1, ||P]] > d. On the other hand, for any =z =
(z1, s xn) €I |lzflo = T and i € {1,..., N},

N n

(Pa)il =Y < floa>y =1 o> )
j=1 k=1 j=1

N n . ‘ N
= > ae(d whugw! Juf)| < O upl < wi,wi >y [)/u
k=1 =1 k=1

N
= (Z Up Qi < Wg, W; >y)/ui = d,

k=1

since a;; = sgn(< y;, yi >n) = sgn(< wj, w; >,) for i,5 =1,..., N. Hence
1Pl =d= ¢

Now we show that
1P|l = AV, IE0).

To do this set for i = 1,....N a' = (a;1,...,a;y) and define an operator
Ep:léév) — 1 by



We show that E,(V) C V. Note that for any k =1,...,N,and j=1,...,n

N N
(Bp()e = ) _(w9)*(w]/uf)(a' ) = ) ufwlay,
i=1 i=1
= bj(uO’ A>wi/uz = bj(uo> A)Ziv
since w’ is an eigenvector associated to b;(u°, A). Observe that by (17)

(Pa'); =d =||P||

for i = 1,.., N and 32 (u?)?> = 1. By [4] (see also [13], Th. 1.3), P is a
minimal projection in P(lc(,év ), V). Finally

AN > AV = 1P| =d = ¢)

which leads to a contradiction. The proof is complete. B

LEMMA 2.6 For anyn > 2,
N =92 —2/(n41).

Moreover, N\t = )\(ker(f),lc(gﬂ)) if and only if f = c(£1,...,£1), where ¢
18 a positive constant.

Proof. It is clear that
XL = max{\(ker(f), 1D) : f e 170\ {0}, || fh =1}

By ([1]), it f = (fi, s fas1) € ", [[£]1 = Lis so chosen that A(ker(f), 1% *") >
1, then |f]| < 1/2 for anyj =1,...n+1 and

n+1
|fa| -1
Aker(f),18) =1+ () 7o)
2T
Hence it is easy to see that
n+1
>\n+1 _ 1 fj —1
i=1 J
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under constraints

n+1

O fi=11/2>f>0j=1..n+1} (18)

Now we show by induction argument that
ANt =2 —-2/(n+1).

If n = 2, by the Lagrange Multiplier Theorem the only functional f =
(f1, f2, f3) which can maximize the function ¢o(f) = 1+ (335, (1_f—;fj))_1
under constraint (18) is f = (1/3,1/3,1/3) and ¢2(1/3,1/3,1/3) = 4/3.
Now assume that \it? =2 —2/(k + 1) for any k& < n. Then by the Lagrange
Multiplier Theorem the only functional f = (fi, ..., fus1) which can maximize
the function ¢,(f) = 1+ (321 (1_f§fj))_1 under constraint (18) is f =
(1/(n+1),..,1/(n+1)) and ¢,((1/(n+1),....;1/(n+ 1)) =2—=2/(n+1).
Notice that ¢,,41(1/(n +2),...,1/(n +2)) =2 —2/(n+ 2), where ¢,+1(f) =
1+ (X L _)=1 Consequently, by the induction hypothesis,

i=1 (1-2f,)
n+2 f
/\ZJr2 = max{1 + ( 4 )_1}
! ; (1—2f5)

under constraints

n+2

O fi=11/2>f>0j=1..n+2} (19)
j=1

Again by the Lagrange Multiplier Theorem the only f = (f1, ..., fns2) which
can maximize ¢, under constraints (19) is f = (1/(n + 2),...,1/(n + 2)).
Hence A" = 2—2/(n+2), as required. By the above proof, any functional f
satisfying A(ker(f), (5T™) = A+ is of the form c(£1/(n+1), ..., £1/(n+1)).
The proof is complete. H

LEMMA 2.7 Let us consider problem (1) with uy = 0 and fized N > n+ 2.
Assume that A\N=1 > \N=L Then the maximum of f,, under constraints (2,
) is equal to NN 71,
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Proof. By ([11], Th. 1.2) and Theorem(2.2) for any n, N € N, N > n + 1,

N

ANV = max{z wiug| < x, x>, |}

ij=1
under constraints:

< a1l >y=6;;,1<i<j<m

N

5 _
> oui=1.
j=1

Moreover, if u,yt,...,y™ € RY satisfying (21, 22) are such that

N

4,j=1

then by Lemma(2.4) and Theorem(2.1),

(20)

(21)

(22)

(23)

where by > by >,...,> b, are the biggest eigenvalues of the N x N matrix

B = (bz’j)i,jzl ..... N defined by bz’j = u,;ujsgn(< Yir Yj >n)
Now, assume

fu (U2, ooy v0),4h, o y™) = max{ fu, (g, ..., up), 2, . ™)
(U, ..., un), (..., 2™) satisfying (2,3)}
Since u; = 0, by (20), and Theorem(2.2),
Fur (V2o 00), 9" s y™) > 0~ = AT
To prove the opposite inequality, let B be an N x N matrix defined by
bij = vivjsgn(< Yi, Yj >n)-

Let by > by > ... > by be the eigenvalues of B (with multiplicities).
Lemma(2.4),

fu (Vo o vn), 4t o y™) = ij.
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Let C' = {b;j}i j—o,. n and let ¢; > co > ..., > cy_1 be the eigenvalues of C.
Since u; = 0,
fer, o en 1} U0} = {br, b},

If b;, = 0 for some j, € {1,...,n}, then again by ([11], Th. 1.2), (20),
Theorem(2.1) and Lemma(2.6)

A< (2, e vn), 9 o y™)

n

= b <> b <A
J=1 J<Jo

a contradiction with our assumptions. Hence b; = ¢; for i =1, ...,n. Now let

2t ..., 2" € RV~ be the corresponding to by, ..., b, orthonormal eigenvectors

of C. Hence for any j=1,....,nandi=1,...,. N — 1
(C27)i = ¢;(')s.

Multiplying each of the above equations by (27); and summing them up we
get

n N
max{ful} = ZC]‘ = Z bij < Zi—1,%j—1 ~n
=1

4,j=2
N
N-1
o Z VUi SGN(< Yir Yj >n) < Zie1, Zj—1 > A, .
1,j=2

The proof is complete. H

LEMMA 2.8 Letu = (uy,...,uy) € RN andlet z = (23, ..., 2,) € {—1,1}V71.
Let A, be N x N matriz defined by z; = a1 € {£1} forj =2,..,N, a;; = —1
fori,j =2, ,Ni#janda; =1 fori=1,..,N. Let B, = {(b.)j,,] =
1,...,N} where (b,);; = ujuj(A,):;. Hence

UI% Zo9U1U9  Z3U1U3 ... ZNULUN
29U Us Ui —Uguz ... —UgUy
B, = 23U Uy —Usls ui ... —usuy | . (24)
2
ZNUIUN —U2UN Upn
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Let o be a permutation of {1,..., N} such that o(1) = 1 and let for any
r=(z1,..,7n),E RN, x_ = (21, =1, ..., —xn). Then the matrices

BU {Ug(l UU (AO'( ))”,Z,] = 1, ...,N},

B, ={(uu;(A, )ij),i,j=1,...,N}
and B, have the same eigenvalues.

Proof. Let b be an eigenvalue of B, with an eigenvector z = (x1,...,Ty).
Define 2, = (21, Zo(2), -, To(v)) and v = (1, =22, ..., —2y). Notice that

(Bo(:)To(x) = ujTy + Z Lo (j)Uo(j)U1 = uimy + Z xjuu; = bry.
j=2 j=2

Analogously, for i =2, ..., N,

(Ba(z)xcr) = U1Ug () Lo (i) L1 + Z U (5)Uo (i) Lo (5) + U ()xa(z)
J=2,jFi
= bmo(i) = b(ma)i.
Also notice that

(B._x_ ) = uixy + Z(—xj)uluj(—a:j) =br; =b(x_);

Jj=2

and fort=2,.... N

n

(BZ_.CE_)Z' = ului(—mi)xl + Zaijuluj(—xj) = —ba:l = b(l’_)z

j=2

This shows that any eigenvalue of B is an eigenvalue of B,  and B, (,) with
the same multiplicity. By the same reasoning, any eigenvalue of B, and
Bs(.) is also an eigenvalue of B, which completes the proof. ®
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THEOREM 2.3 Let n =3 and N = 5. Let z = (29, 23, 24, 25) be such that
zi = %1, fori=2,..,5 and z; = —1 for exactly one j € {2,3,4,5}. Assume
that A, = (a;j(2)) is a 5 x 5 matriz defined by

1 29 23 24 25
2o 1 -1 -1 -1
A, = z3 —1 1 -1 -1 1. (25)
zg —1 -1 1 -1
zz —1 —1 —1 1

Let
5 5
My = maX{Z wuja;i(2) < w5 >3 (ah 2%, 2%) € (R®)? satisfying (2), Zu? =1}
ij=1 =
Then My = 3/2.

Proof. By Lemma(2.8), we can assume that 2z, = —1. Fix u € R?, 327 u? =
1. Let B, denote the 5 x 5 matrix defined by

(bu)ij = usuja;(2)

fori,j =1,...,5. By Lemma(2.4),
3 5
My = maX{Z bj(u, A) :u € R, Zuf =1},
Jj=1 i=1

where by (u, A) > by(u, A) > bs(u, A) denote the three biggest eigenvalues of
B,. Put for i = 1,...,5, v; = u?. After elementary but tedious calculations
(we advise to check them by the symbolic Mathematica program) we get that

5
det(B, — t1d) = —t> + (> v;) + 16tvsvavs(v1 + v2)
=1

—4t2 (Ug — V4U5 + (Ul + UQ)(U4U5 -+ U3<U4 + U5>>>.

Define w = (wy, ..., ws) by wy = 0, wy = y/u? +u3, w; = u; for i = 3,4,5.
Observe that by the above formula B, and B, have the same eigenvalues.
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Since wy = 0, by Lemma(2.7), Theorem(2.1), Theorem(2.2) and Lemma(2.6)
applied ton =3 and N =5 we get

3

D bi(u, A) < A5 =3/2,

J=1

which completes the proof. B

THEOREM 2.4 Let n = 2 and N = 4. Let z = (23, 23,24) be such that
zi = £1, fori = 2,3,4 and z; = —1 for exactly one j € {2,3,4}. Assume
that A, = (a;j(2)) is a 4 x 4 matriz defined by

1 2z 23 24
z9 1 -1 -1
z3 —1 1 -1
2z —1 —1 1

A, =

Let

4 4
My = maX{Z wua;i(2) < x5 >0 (v, 2%) € (RY)? satisfying (2), Zuf =1}

ij=1
Then My = 4/3.

Proof. By Lemma(2.8), we can assume that 2z = —1. Fix u € R 370 u? =
1. Let B, denote the 4 x 4 matrix defined by

(bu)ij = uiujaij(z)
fori,j =1,...,4. By Lemma(2.4),
5
My = max{b;(u, A) + by(u, A) : u € R, Zuf =1},
=1

where by (u, A) > be(u, A) denote the two biggest eigenvalues of B,. Put for
i=1,...,4, v; = u?. After elementary calculations (we advise to check them
by the symbolic Mathematica program) we get that

4
det(B, — tld) = t* — sz + dtvgvg(vy + vy).
=1
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Define w = (w1, ...,ws) by w1 = 0, wy = Jui +u3, w; = u; for i = 2,3.
Observe that by the above formula B, and B, have the same eigenvalues.
Since wy; = 0 by Lemma(2.7), Theorem(2.1), Theorem(2.2) and Lemma(2.6)
applied to n = 2 and N = 4 we get

bi(u, A) + by(u, A) < X5 = 4/3,

which completes the proof. B

LEMMA 2.9 Let n = 2 and N = 4 and let u € [0,1/V/3). Assume that
B = B(u) is a 4 x 4 matriz defined by

u? u/\/3 u/V/3 —u/1/3 — u?
B u/\/3 1/3 —1/3 —\/1/3 —u%/\/3
B u/\/3 -1/3 1/3 —\/1/3—u?/V3
—u\/1/3 —u? —\/1/3 —u2/V/3 —+/1/3 —u?/V/3 1/(3—)u2

27

Then the eigenvalues of B are 2/3 (with multiplicity 2), —1/3 and 0. More-
over,
w' = (V2u,1/V6,1/V6, —/2(1 - 3u?)/V/3
’LU2 = (07 _1/\/57 1/\/57 0)

are orthonormal eigenvectors corresponding to 2/3 and

w® = (1,0,0,u/(y/1/3 — u?)

s an etgenvector corresponding to 0.

Proof. It can be done by elementary calculations. We advise to check them
by a symbolic Mathematica program. B

LEMMA 2.10 Let n = 2 and N = 4 and let u € [0,1). Assume that
B = B(u) is a 4 x 4 matriz defined by

w? w1 —u2/V2 w1 —u2/V2

uy/1 —u?/v/2 (1 —u?)/2 (u? —1)/2
uy/1 —u?/v/2 (u? —1)/2 (1—u?)/2
0 0 0

(28)

o O O O
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Then the eigenvalues of B are
0, (u* + V4du? — 3u?)/2,1 — u? and (u* — V4u2 — 3ut)/2.

Moreover,

w? = (2/V224+2,1/V22 +2,1/V22 +2,0),

where

z = (u? + V4u? — 3ut) Ju(vV2 — 2u?),
is an eigenvector corresponding to (u* + v4u? — 3u*)/2 and

w? = (0,-1/v2,1/v/2,0)
is an eigenvector corresponding to 1 — u?. Also
M = max{1 —u®+ (u® + V42 — 3u?)/2 : u € [1/V3,1]} = 4/3.

Proof. It can be verified by elementary calculations that the above defined
numbers are the eigenvalues of B. We advise to check them by a symbolic
Mathematica program. Also notice that if

fv)=1—v/2+ Vv — 3v2%/2,
then
f'(v) ==1/2+ (4 — 6v)/(4V4v — 3v?).

Notice that f’(v) = 0 if and only if 3v2 —4v+1 = 0. Hence f'(1) = f'(1/3) =
0. Since f(1) = 1, M = f(1/3) = 4/3. Notice that if u = 1/v/3 then v = 1/3,

which shows our claim. H

LEMMA 2.11 Let n = 2 and N = 4 and let ¢ € [0,1/v/3). Assume that
B = B(c) is a 4 x 4 matriz defined by

1—-32 ev/1—=3c2 V1 —3c2 V1 —3c2
cv' 1 — 3c? 2 —c? —c?
cv'1 — 3c? —c? c? -2 |- (29)
cv' 1 — 3c? —c? —c? c?

Then the eigenvalues of B are 2¢* (with multiplicity 2),

B =

(1 —4c® + V14 8c2 —32c¢1)/2, and (1 —4c* — V1 + 8c2 — 32¢1) /2.
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Moreover,

w' = (0,1/v6,1/v6,—2/V/6),

and

w? = (0,-1/v2,1/v/2,0)
are the orthonormal eigenvectors corresponding to 2c.

Proof. It can be done by elementary calculations. We advise to check them
by a symbolic Mathematica program. B

LEMMA 2.12 Let B be a 5 x 5 matriz defined by

2
Uol 29Up1C  2Z3Up1C Z4Up1C  Z5Ue1C

29U C c? —c? —c? —c?

B=| zunc - I (30)
ZUugrc  —c2 —c? =
Z5Ugre  —c2 =2 —=c? c?

where z; € {1} for j = 2,3,4,5. Then 2¢* is an eigenvalue of B with
multiplicity at least 2.

Proof. Let C' be defined by

0 0 0 0 0
0 2 - = =
C=|0 - & - —-¢ (31)
0 —c2 =2 & =
0 -2 =2 -2 ¢

Since 2¢? is a eigenvalue of C with the multiplicity 3 with the eigenvectors
v/, j = 2,3,4 given by (34), there exist 2 orthonormal vectors w', w? in
span[v?, v3, v*] which are orthogonal to the first row of B, which completes

the proof. ®

THEOREM 2.5 Let n =3 and N = 5. Fiz u, € [0,1]. Assume A = (a;;)
1s a b X b matriz defined by

1 1 1 -1 -1
1 1 -1 -1 -1

A=| 1 -1 1 -1 -1 ]. (32)
-1 -1 -1 1 -1
~1 -1 -1 -1 1
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Let
5

My(uy) = maX{Z wujag; < i, x5 >3 (2, 2% 2%) € (RP)?
ij=1
satisfying (2),uy = o1, u; = /1 —u?/2,i=2,3,4,5}.
Then

14 6c% + 1/(6¢2 — 1)2 4 16(1 — 4c?)c2

MA(Ul) = 9

where ¢ = /1 — u?, /2. Moreover,

My = max{Ma(u) :u € [0,1]} = w = My ( (5—3@)/7) :

Proof. Notice that by Theorem(2.1),

where by(B) > by(B) > ... > bs(B) denote the eigenvalues of the matrix B

given by B

2
Upr UolC Up1C —Ue1C —UplC

Ugc & =& = =

B = ugc —c* * = =2 |, (33)
—Ugic —c  —c? T
—Ugic —c¢ =2 —=c? c?

where ¢ = /1 — 2, /2. Hence we should calculate the eigenvalues of B. To
do this, let C' be given by (31). It is easy to see that the eigenvalues of C
are: 0 (with the eigenvector v* = (1,0,0,0,0), 2¢* (with the orthonormal
eigenvectors

v? =(0,1/v2,-1/+/2,0,0,0),v* = (0,0,0,1/v/2,—1/v/2),  (34)

vt =(0,1/2,1/2,-1/2,—-1/2))

and —2¢? (with the eigenvector v° = (0,1/2,1/2,1/2,1/2)). Hence our theo-
rem is proved for u,; = 0 (in this case ¢ = 1/2). If u, > 0, since the vectors
v?, v® and v® are orthogonal to the first row of B, by Lemma(2.12), 2¢? (with
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multiplicity 2) and —2¢? (with multiplicity 1) are also eigenvalues of B. Now
we find the other 2 eigenvalues of B. To do this, we show that an element
(a,1/2,1/2,—1/2,—1/2) for a properly chosen a is an eigenvector of B. Let
us consider a system of equations:

uZa+ 2ugc = \a (35)

and
Ugrca + ¢ = \/2 (36)

with unknown variables a and . Hence we easily get that
u2,a + 2up ¢ = 2(uyica + c*)a.

The last equation has two solutions. Namely:

— 2% + /(u2; — 2¢2)? + 16u2,c?
4uolc

CL1:

and

u?, — 2% — \/(u?, — 2c2)2 + 16u2, 2

4uyic

a9 —

Since a1, A1 and ag, Ay are the solutions of (35) and (36),) it is easy to check
that (a1,1/2,1/2,—1/2,—1/2) is an eigenvector of B corresponding to the
eigenvalue

—2c2 -2 2 + 16 2 2
A\ = 2uyicaq + 262 = 262 + ¢+ \/ c?) us,c

and (ag,1/2,1/2,—1/2,—1/2) is an eigenvector of B corresponding to the
eigenvalue

u?, —2c% — \/(u2; — 2c2)2 + 16u2, 2
5 :

It is clear that A; > 2¢? and Ay < 2¢%. Hence by Theorem(2.1),

Ny = 2u,icay + 262 = 262 +

My = M\ + 262 + 262

- 2 _ 2
Since u;; = 1 —4c”,

1+ 6¢% +1/(6¢2 — 1) 4 16(1 — 4c2)c2

)\1+402: 9 s
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which completes this part of the proof.
Now define for ¢ € [0,1/2],

C1+6¢2+/(6¢2 — 1)2 +16(1 — 4¢?)c?
— 5 :

Notice that h(0) = 1 and h(1/2) = 3/2. After elementary calculations (sub-
stituting ¢ by x), we get that

h(c)

(24 3v2)/7

Co =

2
is the only point in [0, 1/2] such that h'(¢,) = 0. Since
5+ 4v2
hicy) = +—7\F > 3/2,
D+ 4v2
My = h(c,) = +—\/_
7
Note u; = 1/ (5 — 3v/2)/7 satisfies
uj +4c2 = 1.

The proof is complete. H

REMARK 2.1 Notice that Ay > maz{2c u?}. Indeed if 2¢® > u?,, this
has been proven in Theorem(2.5). If u?, > 2¢2,

N u?, —2¢2 +2(u§1 —2c%) _ 2,

LEMMA 2.13 Let B be defined by (30). Assume that ¢ € (0,1/2) is so
chosen that there exist by(B) > bs(B) eigenvalues of B satisfying, by(B) <
2¢2. Let w!, w?, w? be the orthonormal eigenvectors corresponding to the three
biggest eigenvalues of B. Assume that

5 5

Z bij < wi,w; >3=M = max{z wiug| < zi, 25 > 3 21 2% 2 e R%Y,
i,j=1 i,j=1
(37)
under constraint (2) with u; = V1 —4c? and u; = ¢ for j = 2,3,4,5. Then
the matriz B, determined by 1 = zo = 23 = —z4 = —2z5 satisfies (37).

27



Proof. By Theorem(2.1) we need to calculate the sum of the three biggest
eigenvalues of any matrix B satisfying (30). If z; = z; = 1 for exactly two
indices 7,7 € {2,3,4,5} then applying Theorem(2.5) and Lemma(2.8), we
can show that B has the same eigenvalues as B,. Now assume that z; = —1
for exactly one i € {2,3,4,5.} Then by Theorem(2.3),

bi(B) + by(B) + b3(B) < 3/2

where b1(B) > by(B) > b3(B) denote the three biggest eigenvalues of B.
Notice that by Theorem(2.5),

M > My > 3/2.

By Lemma(2.8) the same conclusion holds true if z; = 1 for exactly one
i€{2,3,4,5}.

Now assume that z; = 1 for i = 2, 3,4, 5. Then, reasoning as in Theorem(2.5),
we get that the eigenvalues of B are: 2¢? with the multiplicity 3,

1/2 =3¢ + V1 +12¢ — 60c¢t/2 and 1/2 — 3¢ — V1 + 12¢2 — 60ct /2.

After elementary calculations we obtain that

1/2 —3c¢® + V1 +12¢2 — 60ct /2 > 2¢2

if and only if 1/2 > ¢ > 1/v/5. If B, satisfies (37), by Theorem(2.1), we
should have:
b1(B) < b1(B,),

which by the above calculations and Theorem(2.5) is equivalent to

V1+12¢2 — 60ct/2 < 2¢2 + V1 + 8¢ — 32¢4/2

or

2¢% < 1/2 — A + V1 + 4c2 — 28¢1)2.

After elementary calculations we get that both inequalities are equivalent to
0<c<1/2,

which shows our claim. If z; = —1 for i = 2,3,4,5, by Lemma(2.8) the
conclusion is the same. Finally, by Theorem(2.1), B, satisfies (37).
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LEMMA 2.14 Let A = {a;j,i,j = 1,...,5} be a b X 5 symmetric matric
such that a;; € {£1} fori,j=1,....5 and a;; =1 fori=1,...,5. Consider a
function

5

fura((ug, .y us), oty 2%, %) = Z U@ < Ti, Tj >3 (38)
ij=1

under constraints (2) and (3). Then there exist x', 2% x° € R® satisfying
(2) and (uq,us, ug, us) satisfying (3) maximizing the function fyu, a such that
ri=23=0,23>0,25=0, 27 >0 and z} > 0.

Proof. Let y', y? y3 and (us, u3, us, us) be any vectors satisfying (2) and (3)
maximizing f,, 4. Let V = span[y',y?, v%]. Since dim(V) = 3, there exist
linearly independent f,g € R® such that V = ker(f) N ker(g). Hence we
can find d® € V '\ {0}, which is orthogonal to e4, e5 such that d3 > 0. Set
z3 = d®/||d?||2. Analogously we can find @ € V' \ {0}, orthogonal to x* and
ey satisfying d% > 0. Define 22 = d?/||d?||s. Finally we can find d' € V'\ {0},
orthogonal to z® and z? with d} > 0. Set 2! = d'/||d"||>. Note that ' € V
for i = 1,2,3 and they are orthonormal. By Lemma(2.3), z!, 2% 23 and
(ug, us, ug, us) maximize the function f,, 4, which completes the proof. B

LEMMA 2.15 Let A= {a;;,i,7 =1,....,N} be an N x N symmetric matriz
such that a;; € {£1} fori,j=1,...,N and a; =1 fori=1,...,N. Consider
a function
N
fﬁ,A((uQ, couy), ot a?) = Z W < Ti) Tj >o (39)
ij=1

under constraints (2) and (3). Then there exist ', x> € RN satisfying (2) and
(ug, ..., un) satisfying (3) mazimizing the function fJ , such that x3%_; > 0,
23 =0, and z,_, > 0.

Proof. Let y',y* and (us, ..., uy) be any vectors satisfying (2) and (3) maxi-
mizing f 4. Let V = span[y',y?]. Since dim(V') = 2, there exist linearly in-
dependent f!,...fN72 € RY such that V = ﬂ;V:_IQ ker(f7). Hence we can find
d? € V\ {0}, which is orthogonal to ey such that d%,_; > 0. Set 2> = d/||d?|».
Analogously, we can find d' € V'\ {0}, orthogonal to 2 with dj_, > 0. Set
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2! = d'/||d*||2. Note that ' € V for i = 1,2 and they are orthonormal.
By Lemma(2.3), x', 2% and (uy, ..., uy) maximize the function fﬁ}A, which
completes the proof. H

LEMMA 2.16 Let A be a fizred 5 x 5 matrix given by

1 Z9 Z3 Z4 Z5
z 1 -1 -1 -1
A= 2z -1 1 -1 -1 |, (40)
o -1 -1 1 -1
s —1 -1 -1 1

where z; € {1} for i =2,3,4,5. Let

gt,u1,A((u27 ...,U5),[E1,$27I’3) - ful,A((UQa ...7U5),CC y L 7'T3)
5
—i—t(z u; + x5 — 1F + 25 — 13)

i=2
where t > 0 is fized and (ug, ..., us), (z', 2%, 23) satisfy (2) and (3). Letuy =0
and let (ug, ...,us) and (z,y, z) € R satisfying (2) (3) mazimize g, a. As-
sume that v > 0. Thenu; = 1//2, fori =2,3,4,5, 2 = (0,1/2,1/2,1/2,1/2),
y=(0,0,0,1/v/2,-1/v/?2), and z = (0,1/v/2,-1/+/2,0,0).

Proof. By Lemma(2.7), the above mentioned x, y, z and (us, ..., u5) maximize

fo,4 and
foalug, ..,us), x', ..., 2%) = 3/2.

; : 5 2_ 24,3 .3 e 5 2 _
Since the maximum of ) ), u;+x5—x:+x5 —x3 under restrictions ) |, , u; =

1 —u?, ijl($;)2 =1 for i = 2,3 is attained only for u; = /(1 — u?)/2 for
i=2,3,4,5 2> =y and 2° = 2),

gt,O,A((u27 ceey U’5)7 ZL‘17 cey :ES) = 3/2 + t<4/\/§ + 2)
Now assume that (vg,...,vs) and (z',y', 2') maximize the function g .
Hence in particular, Zle v; = 4//2, which shows that v; = 1/v/2 = u; for
i=2,...,5. Analogously, y = y' and 2z = z!. By Lemma(2.4),

spcm[a:l,yl, 21] = SPCW[% Y, Z]-
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1 1

Assume that ! = pz + qy + rz. Since y = y', z = 2! and 2',9!, 2! are
orthonormal, we get ¢ = r = 0. Hence p = +1. Since 3 > 0 and z5 > 0,
2! = z, which completes the proof. ®

The next lemma is a simple consequence of the Implicit Function Theorem.

LEMMA 2.17 Let U C R! be an open, non-empty set and let f : U x R* —
R and G; :R* = R fori=1,....k be fized C* functions. Let g : U x R*** —
R be defined by

k
g(u,z,d) = f(u,z) — Zde,(m)

foruw € U xz € R* and d € R¥. Assume that g—i(uo,xo,do) =0 for j =
1,..,n+k and

(9%9)
azlﬁzj

for some (u®,2°,d°) € Ux R"™* andi,j = 1,...,n+k (We do not differentiate
with respect to the coordinates of u.) Assume that (u™,z™,d™) € U x R" ™
and (w™,y™, z™) € U x R"™* are such that (u™, 2™, d™) — (u®,2°,d°) and
( m m m

w™, Y™, 2™) — (u®,x°,d°) with respect to any norm in RETEIf, for any
m € N, %(um,mm,dm) =0 and %(wm,ym,zm) =0 forj=1,..,n+k then
J J

det(

(u®,2°,d%) #0

(um7xm7dm) — (wm’ iy”ﬂl7 Zm)
form > m,.

Proof. It suffices to apply the Implicit Function Theorem to the function

Glu, 2, d) = (g—g(u,x,d), 299 )

21 Zn+k

and (u, z,d) = (u°, z°,d°).

3 Determination of A}

In this section we will work with functions f,, and f,, 4 defined by(1) and
(4). The next two theorems show how look like candidates for maximizing
the function fy, 4.
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THEOREM 3.1 Let A be defined by (32). Fixt € R and uy € [0,1). Let
us consider a function hy, a;: R* X (R®)? x R® x R defined by:

1 .2 3
huhA,t((Ug,Ug,U;;,'Ug,),Z YR, 2 7d1>d27d37d127d137d23ad7) (41)
5 5
= Z a;jvvj < 2, Z; >3 —|—t(z v+ 25 — 28 + 25 — 23)
i,j=1 =2

Zd <22 >5 1) Z dij < 2,27 >5 —d7 < (u1,v), (ug,v) >3,

7=1 1,j=1,1<j
where v = (vq,v3,v4,v5). Define fori=2,...,5 u; = /(1 —u?)/2 =c,

4uqc
\/(u% — 2¢2)% 4+ 16¢%2u? + 2¢? — u%7

w=w(u) =

i =w/V1+w? r = m,z—QB T = m,z—45

= (0,0,0,1/v2,—1/v/2),2% = (0,1/v2,-1/v/2,0,0),

dy = 1/2 — 2+ V1+4c2—-28¢1/2, dy = d3 = 2¢% + (1/V2)t, dij = 0 for
1,7=1,2,3,1 <75 and

dr = 14t/(2¢) + 2(22)* + (zlziul) /c.

Then the above defined x*, 22, a3, us, us, s, us, di, do, ds, di2, di3, das, d7 satisfy
the system of equations:

ahu A
#(%1,372,1'3,Ug,Ug,U4,U5,d1,d2, d3ad12ad137d23ad7) =0
J
for 3 =1,...,26, where
w; € {vg, v3, 04,05, 24, k =1,...,5,i = 1,2, 3}

and

w; € {di,i k € {1,2,3},i < k,d;,i = 1,2,3,7T}.
(We do not differentiate with respect to uy).
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Proof. Notice that the equations
ahuhA,t

1 2 3
aw‘ (‘7; , Ly T ,UQ,U37U4,U5,d1,d2,d3,d127d13,d23,d7) =0
J

for '
wj € {7, k=1,..,51=1,2,3}
follow from the fact that ¢, i = 1,2, 3, are the orthonormal eigenvectors of
the matrix B defined by (33) corresponding to the eigenvalues d;, i = 1,2, 3,
which has been established in the proof of Theorem(2.5). Also the equations
ahul,A,t

1 2 3 _
aw (.CU , Ty T 7u27u37u47u57d17d27d37d127d137d237d7) =0
J

where
wj € {dy,dy, ds, dig, i, k € {1,2,3},i < k,dr}

follows immediately from the fact that < 2,27 >5= d;; for 4,5 = 1,2,3,i < j

and < (ug,u), (u1,u) >5= 1, where u = (ug, ug, us, us). To end the proof, we

show that
ah’uhA,t

1 2 3
aw‘ (I , Ly T ,UQ,U37U4,U5,d1,d2,dg,d127d13,d23,d7) =0
J

for
w] € {v27 VU3, U4, US}'

Notice that for : = 2,3,4,5

ahu A
#(951,%2,$3,u2,u3,u4,u5,d1,d2,d3,d12>d137d23,d7)
5
= QZujaij < Ty, Tj >3 +t — 2u,;dy.
j=1
Since uy < 1, u; = /(1 —u?)/2=1¢> 0 for i =2,3,4,5. Hence

ahu1,A,t
awi

if and only if

1 2 3 _
(.CU , Ty T 7u27u37u47u57d17d27d37d127d137d237d7) =0

5
(Z Uj Qg < Ti, Tj >3)/C+ t/(QC) = d7.

Jj=1

33



Notice that for : = 2,3, 4,5,

5 5
(Z a;uj < x;,x; >3)/c = J:}(Z aijuj:r;;)/c
=1 =1

E aiju;as) /e + xd( E aiju ]

= (wanzyz;) /e + 2(x;)* +4/v6U1/V®C+%—1X—J/V§WNT

= 1+ (wmanzya;)/c+ 2(z;)?
Hence for i = 2,3,4, 5,

dr = 1+t/(2¢) + 2(x})? + (1aziur)/c.

1 1 1

Since T3 = o5 = —T; = —:13%, 1 =a9 = a3 = —aqy1 = —as, and u; = ¢ for

i=2.3.4,5,
dr = 14+1/(2¢) + 2(x3)* + (zw5u1) /c,

as required. W

Reasoning as in Theorem(3.1), we can show

THEOREM 3.2 Let A be defined by

1 1 1 1 1
1 1 -1 -1 -1
A=]1 -1 1 -1 -1
1 -1 -1 1 -1
1 -1 -1 -1 1

Fiz t € R and u; € [0,1). Let us consider a function h,, 4z : R* x
RS x R given by (41) with A defined as above. Define for i = 2, ...,

V (1—U%)/2:C,
' =(0,1/2,1/2,-1/2,-1/2),

2?2 =(0,0,0,1/v2,—1/V/2),2° = (0,1/v/2,-1/v/2,0,0),

(42)

(R?)?

5U,i

dy =2c dy=ds =22+ (1/V/2)t, di; =0 fori,j =1,2,3,i < j and

d7 = SC—l—t/ZC
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Then the above defined x*, 22, a3, us, us, s, us, di, do, ds, dia, di3, das, d7 satisfy
the system of equations:

Ohy, A

1,4,¢ 1 2 3
(.CIT , X, T ,Ug,Ug,U4,U5,d1,d2,d3,d12,d13,d23,d7) =0
8wj

for 3 =1,...,26, where
w; € {vy,v3, 04,05, 24,k = 1,...,5,i = 1,2,3}

and
wj € {dlkvzﬂj S {17273}7i <J d17d27d37d7}'

(We do not differentiate with respect to uy).

LEMMA 3.1 Let A be defined by (32). For a fired uy; € (0,1) andt > 0 let
Guy.ae: RY x (R%)? — R defined by

5 5

Gur 4t (V2 05), 4%, 4%, %) = Z ViVjGi; < YisYj >3 +t(z Vit2s— 225 —23)
ij=1 =2

Let M, a+ = max gy, 4 under constraints:
<y y >5=10,1 <i<j<3;

and
5

§ 2 _ 2

=2
Assume that uy € (0,1) is so chosen that
Mu1,A,0 - fu1,A((u2, Us, Ug, U5), ZU17 .T2, Iga dlu d27 d37 d127 d137 d237 d7)7

where Uy, ug, Uy, s, o1, 12, 23 dy, do, d3, dya, d13, da3, d7 are as in Theorem(3.1)

(for ¢ = /1 —u2/2). Set
1

Du1 = {(UQ,U37U4,U5,y1,y2,y3) : yi = Z/g = y% = 07y2 2 O} (43>

Then
Xu1 = (u2,u;),,u4,u5,x1,$2,x3) (44>

is the only point maximizing gu, ax satisfying (2) and (3) belonging to D, .
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Proof. Let
Yul = (’U27U3>U47/057y15y27y3) € Dul

maximize g,, a: and satisfy (2) and (3). Since ¢t > 0, and the maximum of
fuy.4 is attained at X,,,, we have v; = u; = /1 —u?/2 for i = 2,3,4,5, y* =
2? and 23 = 3>, Since x!, 2% 23 are the eigenvectors of A, by Lemma(2.4),

span(y’ : i = 1,2, 3]=span(z’ : i = 1,2, 3]. Note that
<zt al >s=<yt, 2t >5=0

for i = 2,3. Since span[y’ : i = 1,2, 3]=span[z’ : i = 1,2,3], y' = dz'. Since
<yly!>5=1, 9 >0and 2} >0, 2! = y', as required. W

THEOREM 3.3 Let A be defined by (32). For a fixzed uy € [0,1) andt € R
let Guy,ar and My, a4 be as in Lemma(3.1). Assume that vy € [0,1) is so
chosen that

Mul,A,O = gul,A,t(U27 Uz, Uyg, Us, 33'17 5527 5133)

where ug, u3, ug, us, v, 2%, x> are as in Theorem(3.1) (for ¢ = /1 —u}/2).
Let the function hy, oy be defined by (41). Assume furthermore that the
23 x 23 matriz Dy, 4, defined by

. ahul,A,t

1.2 .3
w,At = —(37 y U, T ,UQ,U3,U47u5,d1,d2,d37d12,d13,d23,d?), (45)
8wi,8wj

where

1 _ 2,2 2 2 3 3 . 3
'le‘,wj S {U27U37U47U57ykak - 17 "'75ay17y37y4ay57y17y27y37

diai:1a273777dik71 SZSkS?)}v

(we do not differentiate with respect to uy,ys, ys,y3) is such that

k
Det(Dya) = Y _ aj(u)t!
j=o

and aj(uy) # 0 for some j € {1,....,k}. (Here (dy,ds,ds, dr2,dr3, dos, d7) are
such as in Theorem(3.1) for ¢ = \/1 —u?/2 and t € R.) Then there exists
an open interval U C [0,1), (U = [0,w) if uy = 0) such that u; € U and for
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any w € U the function f, a attains its global maximum under constraints
(2) and (3) at
Xu = <u27 us, g, Us, xla 1'27 xg)a

where u; = ¢, = V1 —u2/2 for i = 2,3,4,5 and z*, 2, 23, are defined in
Theorem(3.1) (with ¢ = ¢,.) The same result holds true if A will be defined
by (42). (In this case

1.2 .3
(x°, 2%, 27, ug, uz, us, us, di, da, d3, dy2, di3, do3, dr)
are such as in Theorem (3.2).)

Proof. Fix u; € [0,1) satisfying our assumptions and let ¢; = /1 — u?/2.
Let j, = min{j € {0, ...,k} : a;(u1) # 0}. Set for (u,t) € [0,1) x R,

ht,u) =Y a;(u)t 7.

J=Jo

Since a;, (u1) # 0, and a; are continuous there exists an open interval U C
[0,1) and ¢ > 0 such that u; € U and

h(t,u) #0
for u € U and |t| < 0. Fix t, € (0,6). Set
U, ={ueU: M,a,, is attained at X, }.

Note that u; € U;,. Now we show that U, is an open set. Let u, € Us,.
Assume on the contrary that there exist {u,} € U\ Uy, such that u, — u,.
Let for any u € U,

Zu,to = Zu = ('U2ua V3w Vdus Usu,s xluy x2u7 $3u)

be a point maximizing g, 4+, under constraints (2) and (3). Since the function
fua — Grua is independent of z' and by Lemma(2.14), the function g, 4
can be considered as a function of 16 variables from R® x R* x R? x R*.
Consequently, can assume that

Z, € D,.
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(see(43)). By (2) and (3), passing to a subsequence, if necessary, we can
assume that 7, — Z. By definition of D, , Z € D, . Also by the continuity
of the function

5 5
(v, X) — (Z VU5 < Yi, Yj >3 —|—to(z Vi + 22— 22+ 2 — 23))
ij=1 i=2

gumAyto (Z) = Mu07A7tO *

By Lemma(2.16) and Lemma(3.1) X,, is the only point in D,,, which maxi-
mizes gy 4+ and Z € D,,. Hence Z = X,,,. Moreover, since X,, € int(D,,),
by the Lagrange Multiplier Theorem, there exists

M,, = M, (t,) = {d",i=1,2,3,7,d}1<i<j<3} CR’

1 y g0

such that
ahu,A,tO

811)1‘
for w; € X UDD. Here h, 4, is defined by (41) and

(Zun7 Mun) =0, (46)

DD = {dﬂz = 17273777dij71 S l S] S 3}
Also by (2), (3),(7),(8) (see the proof of Lemma(2.4)) and (46)
M, — Ly, = Ly, (t,) = (di,ds, d3, d12, di3, do3, d7),

where L, is defined in Theorem(3.1) for ¢ = /1 —u2/2 and t = t,. Now we
apply Lemma(2.17). Let us consider a function G : U x R!2 x R* x R” — R?3
defined by

ahu,A,to
8w1

G(u,z,v,Q) = (

(u,z,v,Q)), ..., 5
for for w; € X U DD. Notice that by (46)
G(un, Zu, , M,,) = 0.

Also G(up, Xy, , Ly, (t,)) = 0, where (X,,, Ly, (t,)) are defined for u, in
Theorem(3.1). Moreover,

(tn, Zuyr Muy,) = (U, Xuy, Lu,)

38



and
(Un, Xun> Lun) - (um Xu07 Luo)

Notice that

Det(%(uo, Xu,s L))
J
det Duo,A, O) k .
= ) =3t = b ) £,
o J=Jo

by definition of j, and ¢,. By Lemma(2.17) applied to the function G, Z,, =
Xy, and M, = L, for n > n,. Hence u, € Uy for n > n,; a contradiction.
This shows that U, is an open set. It is clear that U,, is closed. Since u; € Uy,
and U is connected, U;, = U. Consequently for any n € N, n > n, and
u € U, the functions g, 4,1/, achieve their maximum at us, uz, g, us, z*, 2%, 2%,
where u; = ¢, = V1 —u?/2 for i = 2,3,4,5 and x!', 22 23, are defined in
Theorem(3.1) (with ¢ = ¢,). Since gy 4,1/, tends uniformly to gy a0 = fua,
on the set defined by (2) and (3), with u € U fixed, f, 4 attains its maximum
at us, us, ug, us, v, 2%, 23 for any u € U.

By Theorem(3.2), reasoning exactly in in the same way as above we can
deduce our conclusion for the function f,, 4 determined by A given by (42).
The proof is complete. B

Now we show that the assumptions of Theorem(3.3) concerning D, 4, are
satisfied. This is the most important technical result which permits us to
determine the constant A3.

THEOREM 3.4 Let A be defined by (32) and let Dy a+ be given by (45).
Then for any v € [0,1) and t € R,

7
Det(Dya) = » _ aj(u)t/,
j=0

where the functions a; is continuous for j = 0,...,7 and az(u) # 0 for any
u e [0,1).

Proof. Set
X = (21,0,b—b,—b,0,0,1/V/2,—1//2,0,1/v2,-1//2),
B = (blvda d707070a b7)
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and

v=(c,ccc).

Assume that we will differentiate h,, 4, in the following manner:

(wlg, P wlg) = (

(U}l, ...,U}5) =

(1,

2 .2

2 .3 .3

2 3
L1, X3y Ly, Ly L1, Lo, Ty

Ié)? (w67 ceey wll) = (b17 b27 b37 b127 b137 b23)

)7 (w197 cney w23) = (u27 us, Uq, Us, b?)

(Recall that we do not differentiate with respect to uy, x3, 23 and x3.) Notice
that by elementary but very tedious calculations (which we verified by a
symbolic Mathematica program) we get that the 23 x 23 symmetric matrix

C = Dy 44(X, B,v) is given by

Here

Ay =

and

C = Al Bl
= T .
(B1)" A
2(u? — by) 2cu 2cu —2cu —2cu  —2z;
2cu  2(c? —by) —2c2 —2c2 —2¢2 —2b
2cu —2¢2 2(c? —by) —2c2 —2c2 —2b
—2cu —2c2 —2¢% 2(c? —by) —2¢2 2b
—2cu —2c2 —2c2 —2¢2  2(c? —by) 2b
—2z; —2b —2b 2b 2b 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 —-1/V2 1V2 0
0 —1/v2 1/V2 0 0 0
0 0 0 0 0 0
Ay = (Ara, Agz), where
2(u? — d) 2cu —2cu —2cu 0
2cu  2(c? — d) —2c2 —2c2 0
—2cu —2¢2 2(c? - a) —2c2 0
—2cu —2c2 —2¢2 2(c? —a) 0
0 0 0 0 2w?—d)
Ajp = 0 0 0 0 2cu
0 0 0 0 2cu
0 0 0 0 2u
0 0 0 0 —V2u
—V2u —2¢ 3v2¢ —v2¢ 0
2u 2c V2e —3v2¢ 0
0 0 0 0 0
0 0 —V2u
0 0 —V2¢
0 0 3v2c
0 0 —V2c
2u —V2u 0
A _ 3v2¢ 2c 0
22 = —V/2¢ —3v2¢ 0
262 — 2b7 + 1 1— 22 262
1—-2b62 262 —2b7 + 1 2p2
262 262 262 —2b7 + 1
22 262 1 — 262
—2c —2c —2c

40

[=ReolololeNoleBoBoN ool
[=leolololoBoloBoRol=R=]

1—2b2

262 — 2b7 + 1

—2c

0
0
0
,1/\/5
1/v/2
0
0
0
0
0
0
0
0
0
0
2cu
—2c2
2(c? — d)
—V2c
—3v2¢
0
0
0
0
0
0
0
0
o |.
0 5
—2c
—2c
—2c
—2c
0

-1/v2

=
~
OOOOOOOO&

(47)

[=ReolololeNoleBoBoNeNel

(48)
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0 0 0 0 0 0 0 2bu 2bu 2bu 2bu 0

0 0 0 0 0 0 0  6bc+ 2ux —2be 2be 2bc 0

0 0 0 0 0 0 0 —2bc 6bc + 2uxq 2bc 2bc 0

0 0 0 0 0 0 0 —2bc —2bc —6bc — 2uxq 2bc O

0 0 0 0 0 0 0 —2bc —2bc 2bc  —6bc — 2uxy 0
By = 0 0 0 0 0 0 0 0 0 0 0 o0
0 0 -2 V2 0 0 0 0 0 0 0 0

0 0 0 0 0 —V2 V2 0 0 0 0 0
—x —b b b 0 0 0 0 0 0 0 o
0 0 0 0 -z b  —b 0 0 0 0 o0

0 1/V2 0 0 0 0 0 0 0 0 0 0

(51)

Notice that in 11-st row of C' the only non-zero element is ci113 = ¢13.11 =
1/+/2 and in 23-rd row of A the only elements which could be different from
0 are C23,19 = C2320 = C2321 = (2322 = —2c. Also the OIlly non-zero elements
in 7-th row are c714 = —/2 and Cri5 = V2. Analogously, the only non-zero
elements in 8-th row are cg 17 = —+/2 and C318 = v/2.Consequently, applying
the symmetry of C| subtracting 19-th row from 20, 21 and 22-nd row, 19-th
column from 20, 21 and 22-nd column, adding 15-th row to 14-th row and
15-th column to 14-th column and adding 18-th row to 17-th row and 18-th
column to 17-th column we get that

det(C) = 8c*det(D),

where D is a 15 x 15 symmetric matrix defined by

D= D; B (52)
EY Dy
Here
2(u? — by) 2cu 2cu —2cu —2cu  —2z 0 0
2cu  2(c? —by) —2¢2 —2c2 —2c2 —2b 0 —-1/V2
2cu —2¢2 2(c? —by) —2¢2 —2c2 —2b 0 1/v2
—2cu —2c2 —2¢2 2(c? —by) —2c2 26 —1/V2 0 s
Dy = 2 2 2 2 (53)
—2cu —2¢ —2c —2c 2(c? — b1) 2b 1/7V/2 0
—2z; —2b —2b 2b 20 0 0 0
0 0 0 —1/V2 1V2 0 0 0
0 —1/V2 1/V2 0 0 0 0 0
Dy = (D217 D22), where
2(u? — d) —4cu 0 0
—4cu —4d 0 0
0 0 2w?—d) dcu
Doy = 0 0 dcu —4d (54)
0 0 —2v2u —4/2¢
—V2u 2v/2¢ —V2u —2v/2¢
V2u —2v/2¢ —V2u —2v/2¢
and
0 —2u V2u
0 2v/2¢ —2v/2¢
—212u —V2u —V2u
Doy = —4v/2¢ —2v2¢ —2v2¢ 5 (55)
8b2 — 4by 4b2 — 2by 4b2 — 2by
462 — 2by; 2 —4b; 2 —4b% — 2b7
4b2% — 2b7; 2 — 4b% — 2y 262 — 4by
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0 0 0 0 0 0 0
0 0 0 0 —8bc — 2uxy —4bc — 2uxq —4bc — 2uz
0 0 0 0 8bc + 2uzq 4bc 4bc
0 0 0 0 0 —4bc — 2uxq 4be
B= 0 0 0 0 0 4bc  —4bc — 2uxq (56)

0 0 0 0 0 0

—z; 26 0 0 0 0 0
0 0 —x —2b 0 0 0

Now we calculate the coefficient a;(u). Notice that
Det(C(t)) = Det(D, a4(X, B,v)) = 8c¢*Det(D(t)),

where C(t) and D(t) denote the above written matrices C' and D with by
replaced by b; +t/2c and dy = ds = d replaced by d + (1/+/2)t. By definition
of determinant

det(D(1) = 3 sgn(0)(}_ dioto):

o€lls

where II;5 denotes the set of all permutations of {1,...,15}. Notice that by
the above given formulas the variable ¢ appears only in Ds; and Dgyy. Conse-
quently to calculate a;(u) it is enough to consider

15
> sgn(0)>_ diow),
oeP, i=1
where

P ={oell:o({13,14,15}) = {13,14,15},0(j) = 5,7 = 9,10, 11, 12}.
Consequently, applying the formula on Ds; and Dy we can deduce that

a7(u) = (27 /c)det(F)det(Dy),

where

2 1
F=—|1 2 (57)
11

DO =

Note that det(F) = —4. Also ¢ = /1 —u3/2 > 0 for u; € [0.1). Hence
to end the proof we should demonstrate that Det(D;) # 0 for (X, B,v)
defined in Theorem(3.1). Let E},...Eg denote the rows of D;. We show that
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Ey, ..., Eyg are linearly independent. First assume that « = u; = 0. Then
T :O,C:bl = 1/2 Let

8
ZO[]'EJ' =0. (58)
j=1

Since by = 1/2, oy = 0. Also (a; — ay1)/v/2 = 0 for i = 2,4, which gives
az = a3 and oy = a5. Since 2b(2ay — 2a3) = 0, and b = 1/2, ay = ay.
Consequently,

042(—402 — 2b1) = O[i\/§ = —Oéi\/i

for ¢ = 7,8, which gives, a; = ag = 0. Analogously,
ag(—462 — 2()1) = 2ba6 = —Qb&ﬁ,

which implies ag = 0 and ay = 0. Consequently, Det(D;) # 0. Now assume
that v = u; € (0,1). Reasoning as in the previous case we can show that
oy = a3 and oy = a5. Also

a12cuy — ae2b; — aydc? — 2bag = ozg\/§ = —ozg\/§

and
—a2cuy — asdc® — ay2by + 2bag = 047\/5 = —047\/5,

which implies a7y = ag = 0. By the above equations
—p2b; — aydc? = 2bag — aq2cuy

and
—d? — 20 = —2bag + o 2cu;.

Hence
—p(2b + 4c?) = ay(2by + 4c?).

Since by > 0, oy = —an. Consequently, applying (58) to 1-st, 5-th and 6-th
column of D; we get

oy (2(u? — by), —2cuy, —221) + ap(8cuy, 2d; — 4c*, —8b) + ag(—2x1,2b,0) = 0.

Let
2(u? —by) —2cuy  —2x;
G = 8cu; 2b; —4c*  —8b | . (59)
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Note that
Det(G) = —8(4b*(by — u3) + 8bcuyzy + (by — 2¢%)a?).

By Theorem(2.5) and Remark(2.1), by = Ay > 2¢* and by = \; > ul.
Hence Det(G) < 0, which means that a; = a2 = ag = 0. This shows
that Det(D;) # 0 and consequently az(u) # 0, for any u € [0,1). The proof
is complete. W

REMARK 3.1 Applying a symbolic Mathematica program we can show that
Det(Dyy) = —64(b; — 2¢%)*(2¢% + by ) (4b% (by — u?) + 8bcuyxy + (by — 2¢*)a?).
Now we will prove one of the main results of this section

THEOREM 3.5 Let f,, be defined by (1), i.e.

5

fu1(U2,U3,U4,U5,$1,$2,$3) = Z ulu]| < .177;,33']' > |3‘
1,7=1

Let M,, = max(f,) under constraints (2) and (3). Then for any u € [0, 1]

1462+ /(6¢2 — 1)+ 16(1 — 4c?)c?

Mu )
2

where ¢ = c(u) = V1 — u?/2.
Proof. Define

1466+ 4/(6c2 —1)2+16(1 — 402)62}

U={uel0,1): M, 5

By Lemma(2.6) and Lemma(2.7), 0 € U, since M, = 3/2. Now we show that
U is an open set. Fix u € U. First we consider the case u = 0. We apply
Theorem(3.3) and Theorem(3.4). Let (X,, L,) where

X, = (xla -1'2’ :L_3’ C(U)a C(U>7 C(U), C(U))a

(¢(0) =1/2) and
L,(t) = (dy,ds,ds, d1a, dy3, das, dr)
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are given by Theorem(3.1) for for fixed v € [0,1) and ¢t € R. Assume that
u, — 0 and u, ¢ U. Let (X, Ly, (t)) be such as in Theorem(3.3). Passing
to a subsequence, if necessary, and reasoning as in Theorem(3.3), we can
assume that (X, , Ly, (1)) — (X,, Lo(t)). Let

X, = (:cln, 2" 2%, c(uy), c(uy), c(uy), c(uy,)).

Since X,, — X,, we can assume that sgn < x;,,2;, >3= —1 for i,j =
2,3,4,5, 1 # 5. Without loss of generality, passing to a subsequence if neces-
sary we can assume that for n > n,

sgn < Tin, Tjn >3= Zj

for j = 2,3,4,5, where z; = £1. By Lemma(2.8) we have to consider three
cases:

a) zog = —1,23 = 24 = 25 = 1;
b) 29 = 23 = 24 = 25 = 1;
C) 290 =23 =—24 = —25 = L.

By Theorem(2.3) and Theorem(2.5) a) can be excluded. If b) holds true,
then by Theorem(3.3), Theorem(3.2) and Theorem(3.4) applied to u; = 0
and ht 40, where A is given by (42), we get that

M,, =6c < 3/2,

which by Theorem(2.5) leads to a contradiction. (Since uy =0, D, 4. is the
same for the function h, 4., determined by A given by (42). This permits us
to apply Theorem(3.4) in this case.) If ¢) holds true, we get a contradiction
with Theorem(3.3). Consequently, there exists an interval [0,v) C U.

Now assume that v € U and v > 0. Assume u,, — u and u,, ¢ U for n € N.
Let (Xu,, Ly, (t)) be such as in Theorem(3.3). Without loss of generality we
can assume that (X, , Ly, (t)) — (Xu, L.(t)), where (X, L,(t)) is defined in
Theorem(3.3). Since X, — X,

SgN < Tip, Tjp >3= Qjj

for i,j = 1,2,3,4,5 for n > n,, where the matrix {a;;} is given by (32).
Applying Theorem(3.3), we get that u, € U for n > n,; a contradiction.
Hence the set U is open. It is easy to see that U is also closed. Since 0 € U
and [0, 1) is connected, U = [0, 1). Since M (1,0) = 1 the proof is complete.
|
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THEOREM 3.6

)\5:5+4\/§
3 7 °

Moreover, \j = A(V'), where V C 1) s spanned by
ot = (a/uy,b/co,b/co, —b/co, —b/c,),
2? =(0,0,0,1/v2,—-1/V2)/c,

and
2® = (0,1/v2,-1/+/2,0,0)/c,
where
ur =/ (5—3v2)/7, cyg = @ +;\/§)/7.
and

a=1/(2V2-1)/7, b=+1-d?/2,
Proof. Let f35:R° x (R%)® — R be defined by

5
fas((v1, 02, 05), 4%, 4%, %) = Z viv;| < i, Yj >3 |
ij=1
Let M;5 = max f35 under constraints:

<yi’yj >5:5ij,1 <i1<5<3;

and

j=1
By Theorem(2.2),
)\g — M375.
By Theorem(3.5),
1+ 6¢2 6¢2 —1)2 +16(1 — 4¢?)c?
Mss = maz{h(c) = + 6+ /(6 — 1) + 16( Dy e 0,1/},

2
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By Theorem(2.5), ¢, = —W and

54 44/2
Ms5 = h(c,) = —

By the proof of Theorem(2.2), and Theorem(2.5), the function f;5 attains
its maximum at z' = (a,b,b, —b, —b), 2> = (0,0,0,1/v/2, —=1/1/2) and 2* =
(0,1/v/2,-1/4/2,0,0), u = (w1, Co, Co, Co, Co ), Where

—— \/ (2+3v2)/7
Uy = (5—3\/5)/7, Co = 5
a=1/(2vV2-1)/7,b=+1—-a2/2.

By the proof of Theorem(2.2), 2!, 2% and 23, defined in the statement of our
theorem, form a basis of a space V satisfying A(V) = \]. ®

and

REMARK 3.2 Note that (compare with [11], p. 259) 3/2 = Ay < ).
Also A3 = 4/3 and by the Kadec-Snobar Theorem ([7]) X3 < V2 < 3/2. If

x' 2% 23, u are such as in Theorem(5.6), then after elementary calculations
we get
2v2 -1
[z1]ls = m
and
_[22-2V2
[22ls = ma
where 1 = (21,23, 23), 1o = (23,22, 23) and || - |3 is the Euclidean norm in

R3. Hence it is easy to see that

213 = ||72][3

if and only if
77V2 = 112,

which is false. Consequently, by the above calculations and Theorem/(5.6)
Proposition 3.1 from [11] is incorrect.
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4 A proof of the Griinbaum conjecture

Our proof of the Griinbaum conjecture will be given by the induction ar-
gument. First we show that A3 = A} = 4/3. The proof of this fact goes
exactly in the same way as the proof presented in the previous section for
determination A\j. Then assuming that A\) = 4/3, we show that \) "' = 4/3.
In this section we will work with a function fJ _ instead of f,, (uy—_s € [0, 1]
will be fixed). The next three theorems show how look like candidates for
maximizing the function fJ  given by

N
f%73(vl,vg, ...'UN_4,UN_2,UN_1,UN),21,2’2) = Z U¢Uj| < %, %5 >2 | (60)
ij=1

Also define for any N x N matrix A, as in Section 1

N

N 1.2
fuN_&A(UlaU% . UN—4, UN—2, UN—1,VUN), 2, 2") = E V05 < Zi, Zj >2 -
3,j=1
(61)
THEOREM 4.1 Let A be an N x N symmetric matriz defined by
1 a2 ... QA1 N-3 Q1 N-2 QA1 N-1 a1,N
A— | av-s1 an-3p 1 1 1 an_3n (62)
- 9
aN—21 AN-272 1 1 -1 an_2nN
aN-11 AaN-12 1 -1 1 an-1n
an,1 ang2 ... AGNN-3 OGNN-2 AN N-1 1

where a;; € {—1,1} for i # j. Assume additionally that

ajN = an; = —1

forj=N—-3 N—2 N—1. Firt € R and uy_3 € [0,1/V/3). Let us consider

a function hY . 4, RN71x (RV)? x R? x R defined by:
huy_g.44((01, V2, . UN_4, UN—2, UN—1,UN), 2, 2%, b1, by, bro, by)  (63)

= fuN,S,A((Uh V2, ...UN—4,UN—-2,UN—1, UN); Zl> 22)

+t((on—1+vn-2)/4/1 —3u% 53+ vy + 212\,,1 — 212\[72)

48



—(bl(< Zl,Zl >N —1) + b2(< 2’2,22 >N —1))
—b1a < 21,2’2 >N —b4(< (UN_3,U), (uN_g,’U) >N —1),

where v = (V1, Vg, ..., UN_4, UN—2, UN—1,UN ). Let us define for fited N € N,
N
u' =u=1(0,...,0n_q, un_2,UN_1,UN),

ol 1 1 1 1
e =2 =(0,...,08-4,Ty_3, Ty_9, Ty_1, Ty),
22 2 2 2 2
™ =" = (0,...,0n—4, Ty _3, TN _2; Ty_1, L)

and

dN =d= (dlaand127d4)-
Here uy o = uy_1 = 1/V3, uy = (/1/3 —u% 5, 15 _5 = V2uy_3, 2k, =
‘Ijl\ffl = 1/\/6, x}v = _\/2(1 _37«@\/73)/\/5» -77?\/73 =0, 33?\/72 = _x?\ffl =
—1/vV2, 2% =0, dy = 2/3, dy = 2/3 +t(/V/2), dia = 0 and dy = 4/3 +

t/(24/1/3 —u3_3). Then the above defined z*,x* u,d satisfy the system of
equations:

N
6hu1\1737147t

810]‘
for j=1,...,3N + 3 where

(', 2% v,d) =0

w; € {v1, Vg, oo UN_4, UN_2, UN_1,UN, 24y i = 1,2,k =1,..,N}, j=1,....,3N -1

and
w; € {blg,bl,bg,b4}, j=3N,...,3N + 3.

(We do not differentiate with respect to uy_3).
Proof. Notice that the equations

OhN
—uaN_s’A’t (z', 2% u,d) =0
Wj

for A
wj €{z,i=1,2k=1,..,N}
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follow from the fact that (for N =4,) 2t = 2%, i = 1,2, are the orthonormal
eigenvectors of the matrix B defined by (27) corresponding to the eigenvalues
d;, i = 1,2 which has been established in Lemma(2.9). Also the equations

OhN
—uaNfs’A’t (:L‘l, 2, u, d) =0
Wy

for
w] S {b127 bla b27 b4}
follows immediately from the fact that < a*,27 >y=¢;; for i,7 =1,2,1 < j

and < (un_3,u), (uy_3,u) >y= 1. To end the proof, we show that

OhN
un_3,A,t
— Bt 2? u,d) = 0
@U}j
for
wj € {v1,v2, ..., UN_4, UN—2, UN—1, UN }

Notice that, for i =1,..., N — 4,

UN-3,4, 1 2
awg (.’L‘ y & 7u7d) =2 g UjQi < Ti, XLy >9 —2uzd4 =0
i -
J=1

since x; = 0 and u; = 0 for ¢ = 1,..., N — 4. Now assume that w; = uy_o.
Then

2 Z UjaN—25 < TN-2,Tj >3 +t/ 1-— 311%7_3 — 2Uupn_ody
j=1

— 2wy /V3+ 1/VB + (1/3V3)(1 — 3ud_y) + 1/20/1 — Bud_, — wy_odly)

= 2((4/3)/V3+1/24/1 — 3u3_s— (4/3)un_2—1/(21/1/3 — u3 _3)un_2) = 0.

The same calculation works for ¢ = N — 1. If : = N, then

N
QZUJ‘CLN,]' < ZIN,T; >2 +t — QUNd4

7=1
= 2(2u%_51/1 — 3ud_4/V3 + 24 /1 = 3u%_4/3V3 4+ /2
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+(2/3)(1 = 3uy_3)\/(1/3) — u}_5 — unda)

= 202 57/ (1/3) — w6y + (4/3)1/(1/3) — ey + /2
~2 1 /(1/3) — ey — dyuw) =0,

which completes the proof. B

THEOREM 4.2 Let A be an N x N symmetric matriz defined by (62.)
Fir t € R and uy_3 € [1/v/3,1). Let us consider a function hy oag
RV x (RY)? x R3 x R defined by:

hiVN_&A,t((Ul’ Vg, ..UN—4, UN—2, UN—1, UN ), 217 2’27 by, b2, b12,by)

N

2 2
= E ;05 < Ziy 25 >o Ft(un_2 +un_1 + 2y — ZN_2)
ij=1

—(b1(< Zl,Zl >N —]_) + b2(< 22,22 >N —1))
—b12 < 21,2’2 >N —b4(< (UN_g,U), (UN_g,U) >N —1)

where v = (V1, Vg, ..., UN_4, UN—2, UN—1,UN ). Let us define for fited N € N,

N
U =u= (0, ceey 0N747UN72>UN717 UN),
IN _ .1 _ 1 1 1 1
a =T = (077ON7471‘N—37$N—27$N—1’:'EN)7
ON __ 2 _ 2 2 2 2
™ =17 = (0,...,08 4, TN 3, TN _2, TN_1, TN)
and
N
d’ =d= (dlad27d127d4)‘
_ _ 2 _ 1 _ 1 _ 1 _
Here uy_o =un_1 = /(1 —u%_5)/2, un =0, 2y_3 =0, 2y_y = —Ty_; =

_1/\/57 lev =0, x?\PQ = m%\/'fl = 1/V2+w27 x?\f{’, = w/VQ_'_wz)a x?\f =0,

— 2
dl — 1 - UN_37

dy = (u_s + \/471?\[—3 —3uy_3)/2+ t/v2
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d12 =0 and d4 =1+ uuN—_dw) + t/(QUN_l). Here

N—2(24w?

2 2 3
Uy_3 + \/4UN—3 — 3uy_3

UN_34/2 — ZU?V_?)

Then the above defined x', x%,uy,d satisfy the system of equations:

OhlY

un_3,A,t

(9wj

w =

(¢!, 2% u,d) = 0

for 3 =1,...,3N + 3 where
w; € {v1, Vg, ooy UN_4, UN_2, UN_1,UN, 24y i = 1,2,k =1,..,N}, j=1,..,3N -1

and
w; € {blg,bl,bg,b4}, j=3N,...,3N + 3.

(We do not differentiate with respect to uy_3).
Proof. Notice that the equations
ah’l]nyg,A,t

8U)j

(2% u,d) =0

for '
wj € {z,i=1,2k=1,..,N}

follow from the fact that (for N = 4) 2 = 2, i = 1,2, are the orthonormal
eigenvectors of the matrix B defined by (28) corresponding to the eigenvalues
d;, i = 1,2 which has been established in the proof of Lemma(2.10). Also
the equations
ohl
uN-—3,4,t 1 2
_ d) =0
8'11)] ('z‘ 73;. ,/U/, )
for
w; € {b12, b1, b, ba}.

follows immediately from the fact that < 2*,27 >y=§;; for 7,5 =1,2,i < j
and < (uy_3,u), (un_3,u) >y= 1. To end the proof, we show that

OhN
—uaNfg”A’t (:pl, 2, u, d) =0
Wy
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for
w; € {v1,v9, ..., UN_4, UN—2, UN_1, UN }.
Notice that fort =1,.... N —4, N
oh

Nt (xl, 2, u, d) =

8wi
N

= QZUjCLi]’ < Ty, Tj >2 +t — 2U7,d4 =0
j=1

since r; = 0 and u; =0 for i =1,..., N — 4, N. Now assume that w; = uy_o.

Then
N

Q(Z UjAN—25 < TN-2,Tj >2 +t/2 — UN,2d4)
j=1

= 2((UN,3’LU)/(2 —+ ’LU2) +uny_o + t/2 — UN,2d4> =0

Since uy_o = uy_1, the same calculations work for : = N —1 which completes
the proof. H

Reasoning as in Theorem(4.1) and Theorem(4.2) and applying Lemma(2.11)
we can show

THEOREM 4.3 Let A be an N x N symmetric matriz defined by (62).
Assume additionally that

1= AN N-3 = —AN,N-2 = —AN N-1-
Fixt € R and uy_3 € [0,1). Let us consider a function hijﬂ’A’t RN x
(RM)? x R* x R defined by:
hy 2% by, by, big, b
uN_37A,t((7117U2;-~-UN747UN727UN71;UN)>Z , 27,01, by, b12, by)

N
2 2
= E a0V < 2, 25 >9 +t(un + un—2 + un—1 + 2y_1 — Zy_2)
ij=1

—(b1(< Zl,Zl >N —]_) + b2(< 2’2,22 >N —1))

—bix < 2172’2 >y —bi(< (un—3,), (un—3,v) >n —1),
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where v = (vy, V2, ..., UN_4, UN_2,UN_1, UNn ). Let us define for fired N € N,
N
u' =u=(0,..,0N_4,Un_2,UN_1,UN),

o™ =2t =(0,...,08 4, Th 5, TN 0, TN 1, TN),
2N =22 = (0, ..., 054, % 5, T 0, Th_ 1, T)
and

dY = d = (di,ds, d12, dy).
Here uy_o = un_1 = uy = /(1 —u%_3)/3, th o = vk, = 1/V6, 2} =
—2/V6, 2%y = 1%, = —1/V/2, 2%, =0d; = 2¢%, dy = 23 +1/V/2 d1s = 0

and dy = 4c* + t/(2un), where ¢ = /(1 —u%_3)/3. Then the above defined

xt, 2%, u, d satisfy the system of equations:

ohY
gNu_}?ﬁ’Avt ($1,$2,u,d) =0
j
for 3 =1,...,3N + 3 where

w; € {v1, Vg, ooy UN_4, UN_2, UN_1,UN, 2y i = 1,2,k =1,.., N}, j=1,...,3N -1

and
w; € {blg, b1, bo, b4}7 j=3N,...,3N + 3.
(We do not differentiate with respect to uy_3).

LEMMA 4.1 Let A be such as in Theorem(4.1). For a fivzed un_3 €
[0,1/v3) and t > 0 let g} . 4, : R¥N"1 x (RV)? — R defined by

N

N 1,2
guN,g,A,t((Ul, - “UN-4, UN-2, UN-1,UN ), Y ,Y") = E ViVjai5 < Yis Yj >2
i,j=1

+t95}${_3((711, UN—14, UN—2, ON—1,UN ), Y, Y)

where

gi}V]\CS((Uh -.UN—4, UN—2,UN-1, UN), yl, y2)

= (o§ + (vy_2 +on_1)/y/1 =30} o+ Y% 1 — Ux_a),
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N _ N ot
Let M, , 4y =maxg,, . ., under constraints:

<yi7yj >N= 57;]',1 SZS] §27

and
N

2 _
> vi=1.
j=1
Assume that uy_s € [0,1/+/3) is so chosen that
Mlji\zfvfg,A,O = Gun_3,A0 (uv Il? :L‘2),
where u,x', 2 are as in Theorem(4.1). Set

DiVN_S = {(v1, -, U4, UN 2, ON -1, O, YY) Ty = 0,y > 0F. (64)

Then

XfXViS = (u,z', 2%)

is the only point mazimizing gy . 4, satisfying (2) and (3) belonging to
DN

UN-3"

Proof. Let
Yu]YV73 = ((Uly -"aUN—47UN—27UN—17UN)7y17y2) € D1]1VN73

maximizes g, . ,, and satisfies (2) and (3). Notice that g}V (as a func-
tion of v = (vy,..., UN_4,UN_2, ..., V) and y?) attains its maximum under
constraints (2) and (3) only at

v=1(0,...,0n_4,1/V3,1/V/3,1/1/3 — u2,_,)

y2 = <Oa ceey 0N737 _1/\/§> 1/\/57 0)
Since Qi}é\ig does not depend on y', t > 0, and the maximum of giVNi&A,O is
attained at XY wehavev; =0fori=1,... N —4, vy_y = vy_1 = 1//3,

UN -3’
vy = uy and y? = z%. Since z', x? are the eigenvectors of A, by Lemma(2.4),

span[y’ : 1 = 1,2]=span[z’ : i = 1,2]. Note that

and

< a:l,xQ >y=< yl,a:2 >y=0

Hence y' = dx'. Since < y',y' >y=1and yy_, >0 and z},_, > 0, 2! = ¢!,
as required. M

95



REMARK 4.1 Lemma(4.]) remains true (with the same proof) if we re-
place the function guN , by

gzjév 3((01, - UN—4, UN—2, UN-1,UN), ylv y2) = UN-2 +UN-1T yz2\/—2 - y]2\7—17
and X[ A from Theorem(4.1) by X[ and A from Theorem(4.2).Also
the statement Lemma(4.1) remains true if we replace g}”é\’_s by
gf”iv (U1, VN4, UN 2, UN -1, UN), YY) = un_a+UN-1HUN F YN0 — YN

XN and A from Theorem(4.1) by X

UN-3

and A from Theorem(4.3).

UN3

THEOREM 4.4 Fiz N >4 and uy_s € [0,1/v/3). Let A,
u, 2, 2%, d = d(t)

be as in Theorem(4.1). Let M) . ., = maxgy _ ,,, where gl ., has
been defined in Lemma(4.1), under constraints:

<yl >ny=06,1<i<j<2

and
N

§ 2 _ 2

j=1,j#N-3

Assume that uy_3 € [0,1/+/3) is so chosen that

fqi\lf\,,3,A<u> $17 552)'

MN

un—3,0 —

Denote by DQJZA’t a 3N + 2 x 3N + 2 matrix defined by

OhlY

Dllay = 55 (! o da (), dy(1), dia(h). (). (65)
79 7

where
wi,wj € {Ul, ...,UN_4,UN_2,UN_1,’UN,yJI-,j = ]_, ...,N, yJQ,] = ]_, ...7N—1,b1,b2,b172,b4},
(we do not differentiate with respect to un_3 and y%). Assume that
k
det D,L]LVAt :ZCJN
j=o
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and cjn(un—3) # 0 for some j € {1,....,k}. Then there exists an open in-
terval Uy C |0, 1/\/_) (Uy = [0,w) if un_g = 0) such that un_3 € Uy
and for any u € Uy the functzon Iy ‘4 attains its global mazimum under con-
straints (2) and (3) at (u,x', z?) deﬁned in Theorem(4.1). The same result
holds true if we replace the functwn gwA’t from Theorem(4.1)by the function

934y from Theorem (4.2) and we assume that uy_3 € [1/v/3,1). In this case
(x, 2% u, dy(t), do(t), dio(t), ds(t)) are as in Theorem (4.2).

Proof. The proof goes in exactly the same way as the proof of Theorem(3.3),
so we omit it. W

Now we prove the crucial technical result of this section, which shows that
the assumptions of Theorem(4.4) concerning Dfx A are satisfied.

THEOREM 4.5 Let A, d(t) = (di(t),da(t), dia(t), ds(t)), and (u,zt, 2%) be
as in Theorem(4.1). Let D)), , be defined by (65). Then for anyu € [0, 1/v/3)

and t € R,
2(N—4)+4

det(DY, )= Y cin(u)t,

=0

where the functions cjn are continuous for j =0,...,2(N —4) +4 and

con—an(u) #0

for anyu € [0,1/v/3). The same result holds true if we replace A, (d(t),u, z*, x*)
from Theorem(4.1) by A, (d(t),u,x', 2%) from Theorem(4.2) and assume that

u € [1/4/3,1).

Proof. First we assume that N = 4. Let gﬁl,A’t be as in Theorem(3.1). We
will differentiate our function hy, ,, in the following way:

(wla ceny U}g) - (ZE%, I%a xé? xélh bl; b27 b127 b4)

and
(U)g, cey w14) - (l’%, "L‘; ZE§7 V2, Vs, 04)-

Set

X = (21,0,b, 24,0, —1/3/2,1/3/2,0),
BB = (by,bs,0, 2)
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and
v = (u1,¢,c,uy).

Notice that by elementary but very tedious calculations (which we have
checked applying a symbolic Mathematica program) we get that the 14 x 14
symmetric matrix C' = Dy , (X, BB,v) is given by

c—( 4 B (66)
BT A, |-
Here
2(u% —b1) 2cuq 2cuq —2uiuy —2x 0 0
2cu;  2(c? —by) —2¢2 —2cuy —2b 0 1/V2
2cuq —2¢2 2(c? —by) —2cuy —2b 0 —1/V2
A = —2ujug —2cuy —2cuy 2(ui —b1) —2zy O 0 (67)
—22, —2b —2b —2zy 0 0 0
0 0 0 0 0 0 0
0 1/V/2 —1/v2 0 0 0 0
0 0 0 0 —2c —2c —2uy
0 2(u% — b2) 2cuq 2cuq —V2uq V2uq 0
0 2cuq 2((:2 — ba) —2c2 —3v2¢ —/2¢ 0
Ay = 0 2cuq —2¢2 2(c? —by) V2e 3v2¢ 0 (68)
—2¢ —V2u1 —3v2¢c V2e 142012 —2) 1 — 22 —2bay
—2c V2uq —V2c 3v2¢c 1-26% 1420b% —2) —2bxy
—2uy 0 0 0 —2bxy —2bxy  2(z3 — 2)
and
0 0 0 0 o0 0 0
0 0 0 0 0 0 —az
0 0 0 0o 0 V2 —b
BT = 0 0 0 0 0 —v2 —b
2buy 2(cb + uiz] — ugzy) —2cb —2buy O 0 0
2buy —2cb  2(cb+uizT] — ugy) —2buy O 0 0
—2uqjxTy —2cxy —2czy  4(ugzg —ujz1/2 —cb) O 0 0
(69)
Notice that in 6-th row of C' the only non-zero elements are cg 10 = —cg,11 =
V2 and in 8-th row of C' the only elements which could be different from 0 are
cs12 = Cg13 = —2c and cg14 = —2uy. Consequently, applying the symmetry

of C; adding 10-th row to 11-th, 10-th column to 11-th column, subtracting
14-th row multiplied by ¢/uy from 12-th and 13-row and subtracting 14-th
column multiplied by ¢/u4 from 12-th and 13-th column

det(C) = 8(uy)?det(D),

where D is a 10 x 10 symmetric matrix defined by

D:(%,é). (70)
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Here

2(uf —b1) 2cuq 2cuy —2ujug —2z1 0

2cu;  2(c? —by) —2¢2 —2cuy —2b 1/v2

Dy = 2cuy —2¢2 2(c? —by) —2cuy —2b —1/V2 1)
—2uquy —2cugq —2cuy 2(u421 —b1) —2xy 0
—2x —2b —2b —2x4 0 0
0 1/V2 -1/V2 0 0 0
2(11,% — b2) 4euq —V2uy V2u1q

Do — 4cuq —4bgy —2v2¢ 2v/2¢ (72)
2 —V2u1  —V2c  dsz — (2+2¢/(us)?)z d3 s — 2(c/(us)?)z
V2uq V2e daz —2(c/(ua)?)z  daa — (2+ 2¢/(us)?)z

where ds 4 = dy 3 and ds 3 = dys 4 do not depend on by and z. Also observe that
the coefficients of BT do not depend on by and z, hence the same is holds
true for £. Now we calculate the coefficient cy4(uy) of Det(Dy, 4,). Notice
that

det(C(t)) = Det(D;, 4,(X, BB,v)) = 8ujdet(D(t)),

where C(t) and D(t) denote the above written matrices C' and D with z
replaced by z 4 t/(2uy4) and by = by + t/+/2. By definition of determinant

det(D(t) = Y sgn(a)(z di o(i));

o€llio

where I1;y denotes the set of all permutations of {1, ..., 10}. Notice that by the
above given formulas the variable ¢ appears only in D; and Ds. Consequently
to calculate ¢4 4(u;) it is enough to consider

> sgn(U)(Z dioi)s

ogeP;

where

P ={ocell:0({9,10}) ={9,10},0(j) = 4,5 = 7,8}.
Consequently, applying the formula on D; and D; we can deduce that

ca4(uy) = 32det(F)det(D)

where

e/ (ua?) e/
F‘( /() —(Hc/(ui)))' (73)

Note that det(F) = 1+ 2¢/(u3) > 0. (In the case of Theorem(4.1) applied
to N =4, u; € [0,1/V/3), ¢ = 1/V/3 and uy = /1/3 —u? > 0.) Hence
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to end the proof we should demonstrate that Det(D;) # 0 for (X, BB,v)
defined in Theorem(4.1). But this can be done as in Theorem(3.4) (see also
Remark(4.2)).

Now assume that N = 4 and let A, (2',2% u,d) be as in Theorem(4.2). In
this case we have that us = 0 and z; = 0. Reasoning in a similar way as
above we get that

Det(C) = 8c%det(D),

where D is a 10 x 10 symmetric matrix defined by

p-( D E (74)
ET D, )’
such that D, is as in the previous case and
2(u§ — ba) 4cuq V2uq 0
_ 4c —4b 4V/2¢ 0
D2 = ( 2\/%:1 3o 33 Y 0 ) ’ (75)
0 0 0 —2z

Also, as in the previous case, the coefficients of £ do not depend on z
and by. Moreover, the coefficients of D; and D, do not depend on ay; for
j=N—=3N—2 N —1, which are not fixed, for A given by (62), as in
Theorem(4.1). Hence, reasoning as above we can show that

C4,4(U1) = 26(62)/(U3)2D6t(D1).

Since u; < 1, uz = /(1 —u?)/2 > 0 (compare with Theorem(4.2)). Hence
to end the proof we should demonstrate that Det(D;) # 0 for (X, BB,v)
defined in Theorem(4.2). But this can be done as in Theorem(3.4) (see also
Remark(4.2)).

Now take any N > 4. We show that the proof of this case practically reduces
to the proof given for N = 4. First assume that A, (z', 22, u,d(t)) are such
as in Theorem(4.1). We will differentiate in the following way:

_ 1,2 1 2
(w17 "'7w3(N—4)> - <x17x17u17 "'7xN747:CN747uN74>7

(w3(N—4)+17 e w3N+2)
_ (] 1 1 1,2 2 2
= (TN_3: TN, TN_1, TN, TN_3s TN_2, Tiv_1, U1, b, D12, ba, Un—2, un—1, UN)-
(We do not differentiate with respect to x4 and uy_3.) Now we show that

(since u; = a:jl = :135 =0 for j = 1,..., N — 4) the matrix Cy corresponding
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to our case has a form

Wh 0 . 0 0
0 W, 0 0
On=| o o, (76)
0 0 ... Wy O
0 0 0 Cy

where C; denotes the matrix obtained for

! 1 1 1 .2 2 2 2
X = (xN—saxN—2>35N—1a$NaxN—saxN—mﬂ?N—pr)

u = (Un_3,UN—2,UN—1,UN), b = (di(t), d2(t), d12(t), du(t))
in the case N = 4. Here, fort=1,..., N — 4, W; is a 3 x 3 matrix given by
—2b1 0 W; 1
W; = 0 —2by w2 |, (77)

wi,l w,-,g —2z

where
N

§ k
U}iJg = (IZ]U].IJ

j=N-3

for k = 1,2. Indeed for any j =1,.... N

MY ai, 1 . 2 !
xgl 2 (2t 2% u, d(t)) = 2(; agryuguy — dig(t)ay — di(t)z;).
and N N
ahulfA,t (z', 22 u,d(t) = 2(2 ajpuy < Tj, T >o —dg(t)uy).
U, k=1
Hence for any j=1,.... N — 4
O 4,

(2", 2% u,d(t)) =0

1
xjawl

for w; # 33]1 and w; # u;. The same reasoning applies if we differentiate with
respect to 7, j = 1,..., N — 4. Analogously, for j =1,...,N — 4,

N
ahul,A,t

Uyj, Wy

(z*, 2%, u,d(t)) =0
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for w; # xé-, i =1,2 and w; # u;. Also for

1 1 1 1 2 2 2
W, Wy € {(xN—37'rN—27xN—17xN7xN—37IN—anN_DUN—%uN—IauN7b17b27b127b4}
onY oht
u ,A,t u 7A7t
— 2 (2t 2%, d) = L2 (2 22 0, d),
Wy, Wi Wy, W

where hy, 4, is the function from Theorem(4.1) corresponding to N = 4 and

1

1 1 1 1 2
2= (TN 3TN 9, TN _1,TN), 2

= (ﬁvfs?x?\ffwx?vfl)?“ = (un—2,UN_1,UN).

This shows our claim concerning the matrix Cy.
Since w;y for k = 1,2 and ¢ = 1,..., N — 4 do not depend on by and z,
by =2/3, by =2/3+t/\/2 2 =4/3+1t/2u,

Cato(N—a),n(un—3) # 0

for any uy_3 € [0,1/4/3), which completes the proof for N > 4 in the case
of A from Theorem(4.1). The case of A from Theorem(4.2) and N > 4 is
exactly the same, so we omit it.

REMARK 4.2 Ifz' 2% u,d(t) are as in Theorem(4.1) for N = 4, applying
a symbolic Mathematica program we can show that

Det(D;) = 64/27(2 + 6vV/2u 23 4 3(x3)?) > 0.

If ', 2% u,d(t) are as in Theorem(4.2) for N = 4, applying a symbolic Math-
ematica program we can show that

Det(D,) = 8u1(4x%u1(1 — u%) + 4u1x§(u% + 4/ 4u? — Su%)xi

+up (2 — uf + \/4u? — 3uf)(x7)?) > 0.

Now we will prove the main results of this section.

THEOREM 4.6 Fix N € N, N >4 and uy_3 € [0,1]. Let

N

N 1.2
fuN,s(Ula-~,UN—47UN—2,UN—1,UN7$ ,T7) = E Uiujl < Xy, X5 >2 |
ij=1
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Let M, x = max(fY) under constrains (2) and (3). Then for any uy_3 €
0.1/v/3)
My _,n =4/3,

and for any uy_3 € [1/v/3,1]

Myy_sn=1+ (\/414?\[—3 - 3“?\7—3 - u?\,_s)/Q.

Proof. We will proceed by the induction argument with respect to N. First
assume N = 4. Define

Uy = {uy €[0,1/V3) : My, 4 =4/3}.

By Lemma(2.6) and Lemma(2.7), 0 € Uy. Now we show that Uy is an open set.
Fix u; € U. First we consider the case u; = 0. We apply Theorem(4.4) and
Theorem(4.5). Assume that u,, — 0 and w,, ¢ U. Let (Z,,, M, (t)) be such
as in Theorem(4.4) (compare with the proof of Theorem(3.3)). Passing to a
subsequence, if necessary, and reasoning as in Theorem(3.3), we can assume
that (Z,,, My, (t)) — (X,, Lo). Let Z,, = (u™, z'", 2?"). Since Z,, — X,

Sgn < Zin, Zjn 2= Qi

for i,j = 2,3,4 and n > n,, where the matrix {a;;} is given by (62) for
N = 4. Without loss of generality, passing to a subsequence if necessary we
can assume that for n > n,

Sgn < Zin, Zjn >2= Zj

for j = 2,3, 4, where z; = £1. By Lemma(2.8) we have to consider two cases:
a) 27y =23 =24 = 1;
b) Z9 — Z3 — 1,24 = —1.
If a) holds true, then by Theorem(4.4), Theorem(4.3) (applied to uy_3 = 0)
and Theorem(4.5) we get that

My, 4=41—-u2)/3<2/3+2/3=4/3

for n > n,, (compare with Theorem(4.1)), which by Theorem(2.1) leads to
a contradiction. (Since uy = 0, Dy, ,, is the same for the function hj ,,
form Theorem(4.3) like for the function h,, 4; form Theorem(4.1)). If b)
holds true, by Theorem(4.5) and Theorem(4.1), we get a contradiction with
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Theorem(4.4). Consequently, there exists an interval [0, v) C U,.
Now assume that v = u; € U and v > 0. Assume u,, — v and u,, ¢ U, for
n € N. Let (Z,,,, M,,) be such as in Theorem(4.4). Without loss of generality
we can assume that (Z,,, M,, (t)) — (X,, Ly(t)). Let Z,, = (u",2'",2%").
Since Z,, — X,

SgN < Zip, Zjn >2= Qjj

for 4,5 = 1,2,3,4 for n > n,, where the matrix {a;;} is as in Theorem(4.1)
for N = 4. Applying Theorem(4.4), we get that w, € U for n > n,; a
contradiction. Hence the set U, is open. It is easy to see that U, is also
closed. Since 0 € U, and [0,1/4/3) is connected, U, = [0,1/4/3). Observe
that by the continuity of the function uy_s — fi . M(1/+/3,4) = 4/3.
Now define

Wy ={uy € [1/V3,1) : My, 4 =1+ (y/4u2 — 3ut —u?)/2}.

By the above reasoning 1/\/§ € Wy. Let v = u; € Wy. Assume that u, — v
and wu,, ¢ W,. Applying Theorem(4.2) and proceeding as above we get that
(Zu,, My, (1)) — (X, Ly(t)). Also reasoning as above, passing to a subse-
quence if necessary, we can assume that

4 4

Up S up,A

where A is a fixed matrix satisfying (62). By Theorem(4.2), Theorem(4.4)
and Theorem(4.5) u,, € W, for n > n,; a contradiction. Hence W} is an open
set. Reasoning as above we get that

W, =[1/V3,1),

which completes the proof for N = 4. (It is easy to see that M; 4 = 1.)

Now assume that our formula for M, , y holds true. We will show that it
holds for M, , n+1. We will proceed in the same way as in N = 4 case.
Define

UN-H = {UN—2 € [07 1/\/5) : MuN—z,N-H = 4/3}
By the induction hypothesis and Lemma(2.7), 0 € Uyy1. Reasoning as in
the N = 4 case and applying Theorem(4.1), Theorem(4.3),Theorem(4.4)

and Theorem(4.5), we can show that Uy,; is an open set. It is clear that

that Uyyq is closed. Hence Uy.; = [0, 1/\/5) Again by the continuity of

N+1
UNt1-3 = fuyiy , WE get that
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Define
Wiir = {un—2 € [1/V3,1): Myy_, vi1 = 1+(\/4U?v_2 — 3uj_p—uy_5)/2}.

By the above reasoning 1/v/3 € Wy ,. Applying Theorem(4.2), Theorem (4.4)
and Theorem(4.5) and proceeding as in the case N = 4, we get that
Wy = [1/V3,1).

It is easy to see that M; y41 = 1. The proof is complete. W

THEOREM 4.7

Ay =4/3.
Proof. By Theorem(4.6), Theorem(2.2), Lemma(2.6), Lemma(2.7) and Lemma(2.10),
A =4/3

for any N € N, N > 3. Let V' C [ be so chosen that Ay = A(V). For any
€ >0 we can find N € N and Vy C lEf.Y), such that

In(d(Vy,V)) <,
where d denotes the Banach-Mazur distance. Since
[In(A(Vy)) = In(A(V)] < In(d(Va, V),
(see e.g. [15], p. 113)

Consequently,

which shows that

The proof is complete. H

REMARK 4.3 Notice that in [5], it has been proven that
A(V) <4/3

for any two-dimensional, real, unconditional Banach space. Recall that a
two-dimensional, real Banach space V is called unconditional if there exists
vt v? a basis of V such that for any ai,as € R and €,¢5 € {—1,1}

larvt 4+ agv?|| = ||erarv® + ezazv?|].
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