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Abstract. We prove a definable/subanalytic version of a
useful lemma, presumably due to John Nash, concerning the
points realizing the Euclidean distance to an analytic sub-
manifold of Rn.

1. Introduction

Among the auxiliary results proved in [N] by J. Nash one encounters
the following interesting lemma:

Lemma 1.1 ([N]). Let M be an analytic submanifold of an open set
Ω ⊂ Rn. Then there exists an arbitrarily small neighbourhood M ⊂
U ⊂ Ω such that

(1) for every point x ∈ U there exists a unique point m = m(x) ∈ M
such that the Euclidean distance dist(x,M) = ||x−m(x)||;

(2) the function m : U 3 x 7→ m(x) ∈ M is analytic.

As this lemma is the starting point of the whole paper, for the con-
venience of the reader we recall the proof, simplifying somewhat its
original version.
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Proof of the Nash Lemma. First, recall that for a point a ∈ M , any
radius r > 0 and any point x in the ball B(a, r), there is a point
y ∈ B(a, 2r) ∩M realizing dist(x,M).

The problem being local we fix a point a ∈ M and an analytic
parametrization f : (V, 0) → (M, a), V ⊂ Rd open, d = dim M .

Observe that if y ∈ M realizes the distance dist(x,M) then the
vector x− y is normal to M at y (2). Consider the analytic function

F : Rn × V 3 (x, t) 7→
(〈

x− f(t),
∂f

∂tj
(t)

〉)d

j=1

∈ Rd

and observe that

det
∂F

∂t
(a, 0) = (−1)d

∑
1≤i1<...<id≤n

(
det

∂(fi1 , . . . , fid)

∂t
(0)

)2

6= 0.

Therefore, by the Implicit Function Theorem, there is a neighbourhood
G×W of (a, 0), with G ∩M ⊂ f(V ), and an analytic function t : G 3
x 7→ t(x) ∈ W ⊂ V such that F−1(0)∩ (G×W ) = Γt where Γt denotes
the graph of t = t(x).

Put m(x) := f(t(x)) for x ∈ G. Clearly, for an r > 0 such that
B(a, 2r) ⊂ G, a point x ∈ B(a, r) and any point y ∈ B(a, 2r) ∩ M
realizing dist(x,M), we obtain F (x, f−1(y)) = 0 and so y = m(x)
which ends the proof. ¤
Remark 1.2. It is obvious from the proof that this lemma holds true
too, when the word ‘analytic’ is replaced by the words ‘of class C∞’,
while in the case of a C k-submanifold, one obtains eventually a function
m which is only of class C k−1 (see also [KP] — I am indebted to Prof.
M. Jarnicki for this reference).

Since this lemma is a very useful tool it is natural to ask what hap-
pens if we let M have singularities. The example of the analytic curve
M = {y2 = x3} ⊂ R2 shows that apart from a semi-analytic curve
F ⊂ R2 one still has (1), F ∩M = SngM (where SngM denotes the
set of singular points), and the function from (2) has a semi-analytic
graph in R4. Moreover, m is analytic in a still smaller set, namely
R2 \ E \ ({0} × R).

A still simpler example suggests that the result for semi-analytic
sets is somewhat more delicate: let M = [0, +∞) × {0} ⊂ R2. Then
(1) holds for U = R2 but the function m from (2) is analytic only in
R2 \ ({0} × R). Still, m is semi-analytic everywhere.

Finally, if we take M to be the analytic cone {x2+y2 = z2} ⊂ R3, we
are able to define m at all points of (R3 \ {x = y = 0}) ∪ {0}. For the
points lying on the z-axis the distance is realized in a circle contained

2Suppose that y ∈ f(V ). Then the differentiable function V 3 t 7→ ||x−f(t)||2 ∈
R has a local minimum at t0 := f−1(y) which means that its differential at t0 is
zero: (〈x− y, ∂f/∂tj(t0)〉)d

j=1 = 0.



3

in the cone, which means that arbitrarily near the singularity there are
points whose distance to M is realized by infinitely many points of M .

In this article we propose to explore a definable/subanalytic version
of the Nash lemma. We refer the reader to [DS] for a concise presenta-
tion of subanalytic geometry, and to [C] for tame geometry.

By B(a, r) we denote the open Euclidean ball and by B(a, r) the
closed one; [a, b] denotes the segment {tb + (1 − t)a | t ∈ [0, 1]} for
a, b ∈ Rn. For a set M ⊂ Rn and k ∈ N ∪ {ω,∞} let

RegkM := {x ∈ M | M is a C k− submanifold in a neighbourhood of x},
where C ω means analycity (in that case we will also write RegM :=
RegωM and put SngM := M \ RegM for the singular locus.)

We shall use the following theorem due to J.-B. Poly and G. Raby:

Theorem 1.3 ([PR]). Let M ⊂ Rn be a closed, nonempty set and
δ(x) := dist(x, M)2. Then for any k ≥ 2 or k ∈ {ω,∞},

RegkM = {x ∈ Rn | δ is of class C k at x} ∩M.

Although we have already used the following elementary fact, it
seems reasonable — as it is widely used hereafter — to stress that
for any closed set M ⊂ Rn, a point a ∈ M , a radius r > 0, and any
x ∈ B(a, r), one has the implication

y ∈ M is such that ||x− y|| = dist(x,M) ⇒ y ∈ B(a, 2r).

2. Points realizing the distance to a subanalytic set

The general ‘singular’ counterpart of the Nash Lemma is our follow-
ing theorem:

Theorem 2.1. Let M ⊂ Rn be a subanalytic set. Then there exist
a subanalytic neighbourhood W ⊃ M in which M is closed and two
subanalytic nowheredense sets E, F ⊂ Rn such that

(1) E ⊂ W and x ∈ W \E iff there exists a unique m(x) ∈ M such
that dist(x,M) = ||x−m(x)||;

(2) the function m : W \ E → M is subanalytic;
(3) E ⊂ F ⊂ W , F is closed in W , F ∩M = SngM and x ∈ W \E

is a point of analycity of m iff x ∈ W \ F .

Proof. We may assume that M is closed (3). All the properties of
subanalytic sets used hereafter can be found in [DS].

The function

φ : Rn × Rn 3 (x, y) 7→ ||x− y|| − dist(x,M) ∈ R
3The set M being locally closed, it is closed in the subanalytic open set ΩM :=

Rn \ (M \M) and so after proving the result for M , one needs only to take W ∩ΩM

instead of W and intersect E, F with ΩM as well.
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is continuous and subanalytic, whence X = φ−1(0) is subanalytic and
closed. Put Y := X ∩ (Rn ×M) and consider the function

µY : Rn 3 x 7→ #π−1(x) ∩ Y ∈ P1,

where π(x, y) = x and µY (x) = ∞, whenever #π−1(x)∩Y = +∞. The
set π−1(x) ∩ Y consists of all points of M realizing dist(x,M). Since
M is closed, µY (x) 6= 0.

Obviously, for any % > 0 and any point a ∈ M , there is

π−1(B(a, %)) ⊂ B(a, %)× (B(a, 2%) ∩M) =: M (a).

Fix a radius and let W := M + B(0, %). It is a subanalytic neighbour-
hood of M (4). Now we put Z := (W × M) ∩ Y and consider the
function µZ instead of µY , restricted to W .

The function µZ is locally bounded on W . Indeed, for x ∈ W , there
is x ∈ B(a, %) with some a ∈ M , but then π−1(B(a, %)) is contained in
the subanalytic bounded set B(a, 2%) ∩ M . This implies that π|B(a,%)

admits a local uniform bound on the number of connected components
of its fibres, which in turn means that there exists an N such that

µZ(B(a, %)) ⊂ {1, 2, . . . , N,∞}.
Thanks to that, µZ is locally bounded.

The set of values of µZ is discrete, hence showing that µZ is suban-
alytic is equivalent to showing all its fibres are. Observe that

{µZ = k} = {µZ > k} \ {µZ > k − 1}
and {µZ = ∞} =

⋂{µZ > k}. It suffices to prove that the sets
{µZ > k} are subanalytic (then the intersection is locally finite and so
it defines a subanalytic set, too).

Fix a point x ∈ W and take B(a, %) be a ball containing x. We
consider µZ on this ball, which mean there is a bound on the values. On
this ball µZ coincides with the bounded function µZ̃ defined (as earlier

was µY ) by the bounded subanalytic set Z̃ := M (a) ∩ Z. Consider the
fibred product

Z̃{N} := {z = (z1, . . . , zN) ∈ Z̃N | π(zi) = π(zj), i < j},
which is a subanalytic set as the pre-image on Z̃N by π × . . . × π (N
times) of the diagonal of B(a, %)N .

Let ρ(z) := z1 and fij(z) := zi − zj, i < j, for z ∈ Z̃{N}. Then

{µZ̃ > k − 1} = ρ

( ⋃
1≤i1<...<ik≤N

⋂

1≤s<t≤k

{fisjt 6= 0}
)

,

whence this set is subanalytic for all k ∈ {1, . . . , N − 1} (5).

4Since it is exactly the set {x ∈ Rn | dist(x,M) < %} and the distance is a
continuous subanalytic function in Rn.

5One could take for a fixed k the fibred product Z{k} to obtain a simpler de-
scription (without the intersection).
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Put E := {x ∈ W | µZ(x) 6= 1}. This is a subanalytic set satisfying

x ∈ W \ E ⇔ ∃! m(x) ∈ M : dist(x,M) = ||x−m(x)||.
To prove that intE = ∅, suppose on the contrary that there is a ball
B(b, ρ) ⊂ E. Let ρb := dist(b,M) (ρb > ρ since B(b, ρ) ∩M = ∅) and
observe that

B(b, ρb) ∩M = ∂B(b, ρb) ∩M ⊃ {b1, b2}
with b1 6= b2. Consider any point c ∈ B(b, ρ) ∩ [b, b1] different from b
(obviously c 6= b1) and put ρ′ := ||b − c||. Then dist(c,M) = ρb − ρ′,
but clearly B(c, ρb − ρ′) ∩M = {b1} which contradicts c ∈ E.

We obtained thus a well-defined function m : W \E → M . Its graph
Γm is subanalytic as it coincides with

Z ∩ ((W \ E)× Rn).

Of course E is nowheredense too and one can ask about the analycity
of m in the open, nonempty set W \E. Note that E ⊂ SngM (6). This
follows from the fact that for any a ∈ RegM there is (by the Nash
Lemma) a ball B(a, r) in which m is uniquely determined.

Since m is subanalytic and locally bounded, then (it is a classical
result due to Tamm and used to prove that the singularities of a sub-
analytic set form a subanalytic set) the set

N (m) := {x ∈ W \ E | m is not analytic at x}
is subanalytic (and closed, obviously). Moreover, it is nowheredense (7)
Now let F := E ∪N (m). It is a closed, nowheredense, subanalytic set
apart from which m is analytic. Clearly, by virtue of the Nash Lemma,
there must be F ∩M ⊂ SngM . In order to prove the converse inclusion
fix a point a ∈ W \ F . The function m is well-defined at this point
and we have the relation δ(x) = ||x − m(x)||2 (δ is the square of the
distance function as in Theorem 1.3) which means that δ(x) is analytic
in a neighbourhood of a. If we picked a ∈ M , we obtain a ∈ RegM ,
thanks to Theorem [PR]. This achieves the proof. ¤

Observe that there is no direct relation at all between dim F , dim E
and dim M (the dimension of E depends rather on n than on dim M
cf. M = {y2 = x3, z = 0} ⊂ R3)). However, one can conjecture the
following:
For any x ∈ W let M(x) ⊂ M denote the section of Z at x (we keep

6The set E could be empty as shown in the examples in the introduction.
7This follows from two observations: first, by a result of Tamm (cf. [DS]), there

is a k ∈ N such that W \N (m) is exactly the set of points at which m is of class C k,
and then one proves that the complement of the latter is nowheredense — e.g. as in
the definable setting from [C]. Note that N (m) may not correspond to π(SngΓm)
(just think of the function t1/3 on R.)



6

the notations from the proof above). It is a subanalytic compact set.
Let kx := dim M(x). Put

Hx := {x′ ∈ W | dim M(x′) = kx}.
It is a subanalytic set (it follows from Lemma ?? in [DDP], for instance;
in the definable setting see [C] Theorem 3.18). Note that for x ∈ W \E,
kx = 0 and Hx ⊃ W \ E, i.e. dim Hx = n in this case.

Conjecture. If x ∈ E, then kx + dim Hx = n− 1.

3. The semialgebraic and the definable cases

If we change the word subanalytic to semialgebraic, respectively de-
finable, in the previous theorem, the theorem still holds true with some
due changes. In particular, the neighbourhood W can be taken to be
ΩM = Rn \ (M \M).

Theorem 3.1. Let M ⊂ Rn be a semialgebraic set. Then there exist
a semialgebraic neighbourhood W ⊃ M in which M is closed and two
semialgebraic nowheredense sets E, F ⊂ Rn such that

(1) E ⊂ W and x ∈ W \E iff there exists a unique m(x) ∈ M such
that dist(x,M) = ||x−m(x)||;

(2) the function m : W \ E → M is semialgebraic;
(3) E ⊂ F ⊂ W , F is closed in W , F ∩M = SngM and x ∈ W \E

is a point of analycity of m iff x ∈ W \ F . In particular m is
Nash-analytic in W \ F .

Recall that ‘Nash-analytic’ in the real setting means exactly the same
as ‘semialgebraic and C∞’.

Proof. The proof follows the same lines as the proof of the main the-
orem 2.1. Actually, since semialgebraic sets form an o-minimal struc-
ture, the first two points follow from the next theorem. We only need
to justify the third point. The set F = E ∪N (m) is constructed as in
the proof of Theorem 2.1 (semialgebraic sets are subanalytic) but now
it is semialgebraic, since N (m) is semialgebraic (8). Then m is clearly
Nash-analytic in W \F . Note that one can take W = ΩM (see the next
proof). ¤

The main difference in the general definable setting is that there may
be no possibility of considering neither analycity, nor C∞-class.

Theorem 3.2. Let M ⊂ Rn be a definable (in some o-minimal struc-
ture) set. Then there exist a definable neighbourhood W ⊃ M in which
M is closed, a definable nowheredense set E ⊂ Rn and for any k ≥ 2
another definable, nowheredense set Fk ⊂ Rn such that

8Indeed, since as in the subanalytic case the complement of N (m) coincides
with the set of points at which m is of class C k for some appropriate k, and the
partial derivatives of a semialgebraic function are semialgebraic, the latter set is
semialgebraic. Therefore, so is N (m).
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(1) E ⊂ W and x ∈ W \E iff there exists a unique m(x) ∈ M such
that dist(x,M) = ||x−m(x)||;

(2) the function m : W \ E → M is definable;
(3) E ⊂ Fk ⊂ W , Fk is closed in W , M \ Fk = RegkM and the

function m is of class C k−1 at x ∈ W \ E iff x ∈ W \ Fk.

Proof. We give here only an outline. The set ΩM is definable, whence
one can assume that M is closed. The function φ is definable and so
are the sets X, Y, W,Z and Z̃. Actually the whole thing now is sort of
‘global’,

It is a classical fact (see [C]) that the set

Nk−1(m) := {x ∈ W \ E | m is not of class C k−1 at x}
is definable and nowheredense.

Let Fk := E ∪Nk−1(m). It is definable, closed and intFk = ∅.
By the Nash Lemma (cf. Remark 1.2), if a ∈ RegkM , then a ∈ W \F .

On the other hand, if a ∈ M \ F , then m is defined and of class C k−1

(Remark 1.2) at a. Therefore, δ(x) = ||x−m(x)||2 is of class C k−1 at
a, too, and so by Theorem 1.3, a ∈ Regk−1M . But if we differentiate
δ(x) for x in a neighbourhood B(a, r) such that B(a, 2r)∩M is a C k−1-
submanifold, then (we write m(x) = (m1(x), . . . , mn(x)))

∂δ

∂xj

(x) = 2(xj −mj(x))− 2
n∑

i=1

(xj −mi(x))
∂mi(x)

∂xj

=

= 2(xj −mj(x))− 2

〈
x−m(x),

∂m

∂xj

(x)

〉
.

Since ∂m/∂xj(x) ∈ Tm(x)M , by the very definition of m(x), the vector
x−m(x) is normal to M at m(x) (cf. the first footnote). Therefore,

gradδ(x) = 2(x−m(x))

which means that δ is of class C k in B(a, r) and so a ∈ RegkM by
Theorem 1.3, as wanted. ¤
Remark 3.3. In a forthcoming paper we shall prove a parameter version
of the main theorem.
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