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Abstract

Given an algebraically closed field k of characteristic zero, we
present the Abhyankar–Jung theorem for henselian k[x]-algebras of
formal power series, which are closed under reciprocal, power substi-
tution and division by a coordinate. Examples of such algebras come,
for instance, from polynomially bounded o-minimal structures.

The classical proofs of the Newton–Puiseux theorem (for formal or con-
vergent power series with complex coefficients) applied Newton’s algorithm
to compute term by term the fractional series (called Puiseux series) arising
as t-roots of an algebraic equation f(x, t) = 0. This algorithm had been de-
scribed in [6], ”Methodus fluxionum et serierum infinitorum” (see also [12]).
It consists in computation using the so-called Newton polygon, determined
by the exponents of a given polynomial.
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The Abhyankar–Jung theorem can be regarded as a higher dimensional
generalization of the Newton–Puiseux theorem. It asserts that the roots of
a Weierstrass (formal or convergent) polynomial with discriminant being a
normal crossing are fractional (formal or convergent) series. The first proof
for the case of two variables is due to H.W. Jung [3]. He used topological and
complex analytical methods, the point being that the complex plane with two
lines cut out is topologically the product of two punctured discs, whence its
fundamental group is Z × Z. In the further reasoning, one needs to apply
the Riemann removable singularity theorem. S.S. Abhyankar achieved the
general result by means of purely algebraic methods, namely, some properties
of the Galois group of the polynomial under study. The methods of Jung
and Abhyankar are described in e.g. [4].

I. Luengo [5] observed that a quasiordinary formal Weierstrass polynomial
f(x; t) ∈ k[[x]][t] over an algebraically closed field k of characteristic zero,
with vanishing coefficient in tn−1, n = deg f , is ν-quasiordinary in the sense of
Hironaka [2]; the latter is a certain property of the Newton polyhedron. This
allowed him to give a proof of the Abhyankar–Jung theorem which extends
that of the Newton–Puiseux theorem.

In this paper, we give a proof of the Abhyankar–Jung theorem for henselian
k[x]-algebras A(k; x) of formal power series, which are closed under recipro-
cal, power substitution and division by a coordinate. It is based on Luengo’s
observation and Hensel’s lemma. Important examples of such algebras are
Qm⊗RC, where Qm is the ring of germs of quasianalytic functions at 0 ∈ Rm,
considered in our papers [7, 8]; or, where Qm is the ring of germs at 0 ∈ Rm

of smooth functions definable in the real field with restricted quasianalytic
functions.

In our subsequent papers [9, 10, 11], we shall apply the version of the
Abhyankar–Jung theorem presented here to o-minimal geometry. Now we
begin with precise definitions and statements of the results just described.

We call a polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ k[[x]][t], x = (x1, . . . , xm),

quasiordinary, if its discriminant D(x) is a normal crossing:

D(x) = xγ · u(x) with γ ∈ Nm, u(x) ∈ k[[x]], u(0) 6= 0.
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We say that f(x; t) is a Weierstrass polynomial, if its coefficients ai(x) belong
to the maximal ideal of k[[x]], i.e. ak(0) 6= 0.

Let us write

f(x; t) =
∑

α∈Nm

n∑
k=0

aα,k · xαtk

and put
E(f) := {(α1, . . . , αm, k) ∈ Nm+1 : aα,k 6= 0}.

By the Newton polyhedron N(f) of the polynomial f(x, v) we mean the con-
vex hull of E(f) + Nm+1. We say, after H. Hironaka [2], that the polynomial
f(x; v) is ν-quasiordinary with an exponent δ = (δ1 . . . , δm) ∈ Qm, if

1) N(f) ⊂ S + [0,∞)n+1 and S ∩ E(f) 6= ∅, where S is the segment
joining the points (0, . . . , 0, n) and (δ1, . . . , δm, 0);

2) the polynomial

P (x, t) :=
∑

(α,k)∈S

aα,kx
αtk

is not a power of a linear form.

The first condition means that the projection of the set N(f) ∩ {t < n}
from the point (0, . . . , 0, n) onto the hyperplane t = 0 is exactly δ + [0,∞)m.

Now let us recall a result due to I. Luengo [5].

Proposition 1. Every quasiordinary Weierstrass polynomial

f(x; t) = tn + an−2(x)tn−2 + · · ·+ a0(x) ∈ k[[x]][t], x = (x1, . . . , xm),

with vanishing coefficient in tn−1, is ν-quasiordinary. ♦

Since an−1(x) ≡ 0, only condition 1) from the above definition needs a
verification in the proof of the propositon. By means of the Tschirnhausen
transformation

t′ = t + 1/n · an−1(x),

one can always come to the case of a polynomial with vanishing coefficient
in tn−1 and without changing the discriminant. The converse is not true as
shown in the following example from [5].
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Example. The polynomial

g(x1, x2; t) := t4 − 2x1x
2
2 · t2 + x4

1x
4
2 + x2

1x
7
2

is ν-quasiordinary but not quasiordinary since its discriminant D(x1, x2) is
divisible by x1x2(x

2
1 + x3

2).

Remark 1. Since the discriminant of a monic polynomial is a weighted
polynomial in its coefficients, the discriminant D(x) of the foregoing ν-
quasiordinary polynomial f(x; t) with exponent δ is divisible by x(n−1)δ.
Therefore, if the discriminant D(x) is a normal crossing D(x) = xγ · u(x),
then γ ≥ (n−1)δ, i.e. γi ≥ (n−1)δi for all i = 1, . . . ,m. In particular, δi = 0
whenever γi = 0.

Let k be an algebraically closed field of characteristic zero. Consider a
henselian k[x]-subalgebra A(k; x) of k[[x]], x = (x1, . . . , xm), which is closed
under reciprocal (whence it is a local ring), power substitution and division
by a coordinate. For any r1, . . . , rm ∈ N, r1, . . . , rm 6= 0, put

A(k; x
1/r1

1 , . . . , x1/rm
m ) := {a(x

1/r1

1 , . . . , x1/rm
m ) : a(x) ∈ A(k; x)};

when r1 = . . . = rm = r, we shall denote the above algebra by A(k; x1/r).

Abhyankar–Jung Theorem. With the above notation, every quasi-
ordinary polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ A(k; x)[t]

has all its roots in A(k; x1/r), for some r ∈ N; actually one can take r = n!.

The proof is by induction with respect to the degree of the polynomial
f(x; t). Performing the Tschirnhausen transformation, we may assume that
an−1(x) ≡ 0. If f(x; t) is not a Weierstrass polynomial, then f(0; t) is not a
power of a linear form. Since the ring A(k; x) of coefficients is henselian, the
polynomial f(x; t) is reducible: f(x; t) = f1(x; t)f2(x; t). The theorem thus
follows from the induction hypothesis.

Otherwise f(x; t) is a Weierstrass polynomial, and then, by Proposition 1,
f(x; t) is a ν-quasiordinary polynomial with an exponent δ ∈ Qm. Take any
multi-index (β1, . . . , βm, l) ∈ E(f) that lies on the segment S from the def-
inition of ν-quasiordinarity. This property of the polynomial f(x; t) implies
immediately the inequalities:

(n− l)α ≥ (n− k)δ for all (α, k) ∈ E(f).
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Moreover, for at least one multi-index from E(f) ∩ S, we have equality.
Therefore, in the new coordinates

x1 = yn−l
1 , . . . , xm = yn−l

m , t = w · yδ1
1 · · · yδm

m ,

each ak(x) = ak(y
n−l
1 , . . . , yn−l

m ), k = 0, 1, . . . , n− 2, is divisible by

y
(n−k)δ1
1 · · · y(n−k)δm

m .

Hence
f(x; t) = f(yn−l, . . . , yn−l

m ; t) =

= tn + an−2(y
n−l
1 , . . . , yn−l

m ) · tn−2 + . . . + a0(y
n−l
1 , . . . , yn−l

m ) =

= tn + y2δ1
1 · · · y2δm

m · bn−2(y) · tn−2 + . . . + ynδ1
1 · · · ynδm

m · b0(y),

with bk(y) ∈ A(k; y). Moreover, at least one coefficient from among bk(y),
k = 0, . . . , n− 2, is a unit: bk(0) 6= 0. We thus get

f(x; t) = ynδ1
1 · · · ynδm

m · g(y; w),

where
g(y; w) = wn + bn−2(y)wn−2 + . . . + b0(y) ∈ A(k; y)[w].

Consequently, the polynomial g(0, w) is not a power of a linear form. Since
the ring A(k; y) of coefficients is henselian, the polynomial g(y; w) is re-
ducible: g(y; w) = g1(y; w) · g2(y; w). Therefore the proof is complete again
by the induction hypothesis. ♦

Remark 2. Suppose that the discriminant D(x) of the polynomial f(x; t)
is a normal crossing of the form

D(x) = xγ1

1 · · ·xγp
p · u(x) with u(0) 6= 0, 0 ≤ p ≤ m.

Then δp+1 = . . . = δm = 0 (cf. Remark 1), and thus the inequalities
(n − l)α ≥ (n − k)δ from the above proof are trivially satisfied for all α
and k. It is therefore sufficient to change only the first p from among the
variables x. Consequently, all the roots of the polynomial f(x; v) belong to

A(k; x
1/r
1 , . . . , x

1/r
p , xp+1, . . . , xm).

We conclude this article with the following comment of great importance
for applications in quasianalytic geometry( cf. [9, 10, 11]. Let A be a normal
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domain, K its quotient field and f(t) ∈ A[t] be a monic polynomial. It is well
known from commutative algebra that if f(t) is irreducible over A, then so
it is over K. Consequently, if the field K is of characteristic zero, then every
irreducible monic polynomial f(t) ∈ A[t] is square-free. We cannot directly
apply this assertion to the domain

AC(R, x) := A(R, x)⊗R C, where A(R, x) := Qm;

here Qm is the ring of germs of quasianalytic functions at 0 ∈ Rm, considered
in our papers [7, 8], or is the ring of germs at 0 ∈ Rm of smooth functions
definable in the real field with restricted quasianalytic functions.

However, each quasi-meromorphic germ (i.e. element a(x)/b(x) of the quo-
tient field of the domain A(R, x) or AC(R, x)) that is integral over A(R, x) or
AC(R, x), respectively, can be transformed to a quasianalytic germ by a finite
sequence of blowings-up with smooth centers. Indeed, one can transforme by
blowing up the germs a(x) and b(x) to such normal crossings

yα · u(y) and yβ · v(y), respectively,

that u(y), v(y) are units and either α ≤ β or α ≥ β. In our case, since
the fraction yα−β ·u(y)v−1(y) is integral over the ring of quasianalytic germs,
there must be α ≥ β, which is the desired result.

Therefore, we can adapt the foregoing algebraic assertion to the quasian-
alytic settings in the following form:

Proposition 2 (on square-free factorization). If f(x; t) is a monic poly-
nomial with coefficients in A(R, x) or AC(R, x), then there exists a modifica-
tion σ : W −→ Ω of a neighbourhood Ω of zero, which is a finite composite of
blowings-up with smooth centers, such that the pull-back polynomial fσ(y; t)
factorizes near each point y0 ∈ σ−1(0) ⊂ W into a product of square-free
monic polynomials. ♦

Combining the above with transformation to normal crossings by blowing
up, we immediately obtain

Corollary. Every monic polynomial f(x; t) ∈ A(R, x)[t] or f(x; t) ∈
AC(R, x)[t] factorizes into a product of quasiordinary polynomials after a
suitable transformation of its quasianalytic coefficients by a finite sequence
of blowings-up with smooth centers. ♦
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In this fashion, the version of the Abhyankar–Jung theorem presented
herein applies to arbitrary monic polynomials f(x; t) ∈ AC(R, x)[t].
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