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Abstract

This paper presents several theorems about the rectilinearization
of quasi-subanalytic functions and their application to quantifier elim-
ination for the real field with restricted quasianalytic functions.

1. Introduction. This paper is concerned with the rectilinearization of
functions definable in the real field with restricted quasianalytic functions.
We are particularly interested in quasianalytic counterparts of the theorem
on rectilinearization of a continuous subanalytic function due to Bierstone–
Milman [1] and Parusiński [15, 16].

In that classical, real analytic case, Bierstone and Milman employ Hiron-
aka’s major complex-analytic tool, the local flattening theorem (see e.g. [6]).
This method makes it possible to reduce the problem to the case where the
subanalytic function f under study is semianalytic. Via transformation to
normal crossings applied to the functions defining the graph of f , the Weier-
strass preparation theorem can be applied. This leads to the case where the
function f is a root of a polynomial with analytic coefficients.
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Parusiński, in turn, indicates that in the foregoing reduction, instead of
local flattening, a weaker result with equidimensionality can be used. He
applies, however, the technique of complexification too. Transformation to
normal crossings, used once again, reduces the problem to the case where
the function f is a root of a polynomial with analytic coefficients, whose
discriminant is a normal crossing. This allows him to use a real-analytic
version of the Abhyankar–Jung theorem.

Unfortunately, the main tools of the classical analytic geometry, as the
technique of flattening and complexification, or finally, the Weierstrass prepa-
ration theorem, are unavailable in quasianalytic geometry. Nevertheless, we
have at our disposal transformation to normal crossings (cf. [2, 3]), which
can serve as a basic tool for the study of definable sets and functions (cf.
[19, 18, 8, 9]).

Several theorems concerning rectilinearization of quasi-subanalytic func-
tions are provided in Section 2, which is crucial for the whole article. These
results will be needed in the last section for the study of quantifier elimina-
tion for the real field with restricted quasianalytic functions. They will also
be applied in our subsequent paper [12] about arc-quasianalytic functions.

Section 3 gives an affirmative answer to a problem posed in our previous
article [8] concerning the decomposition of a definable (i.e. Q-subanalytic)
set into special cubes. As an immediate consequence, we achieve that the
real field with restricted quasianalytic functions admits quantifier elimination
in the language augmented by the name of the reciprocal function. This
generalizes to the quasianalytic settings a theorem of Denef–van den Dries [4]
from real analytic geometry.

As in our previous papers [8, 9], we shall deal with a family Q(U) of
quasianalytic Q-functions defined on the open subsets U of the affine spaces
Rm, which satisfies the following six conditions:

1. each algebra Q(U) contains the restrictions of polynomials;

2. Q is closed under composition, i.e. the composition of Q-mappings is a
Q-mapping (whenever it is well defined);

3. Q is closed under inverse, i.e. if ϕ : U −→ V is a Q-mapping between
open subsets U, V ⊂ Rm, a ∈ U , b ∈ V and if ∂ϕ/∂x(a) 6= 0, then
there are neighbourhoods Ua and Vb of a and b, respectively, and a Q-
diffeomorphism ψ : Vb −→ Ua such that ϕ ◦ ψ is the identity mapping
on Vb;
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4. Q is closed under differentiation;

5. Q is closed under division by a coordinate, i.e. if f ∈ Q(U) and
f(x1, . . . , xi−1, ai, xi+1, . . . , xm) = 0 as a function in the variables xj,
j 6= i, then f(x) = (xi − ai)g(x) with some g ∈ Q(U);

6. Q is quasianalytic, i.e. if f ∈ Q(U) and the Taylor series f̂a of f at a
point a ∈ U vanishes, then f vanishes in the vicinity of a.

This gives rise to a category Q of Q-manifolds and their Q-mappings,
which admits a transformation to normal crossings and a desingularization
by blowing up (cf. [2, 3]). Transformation to normal crossings enables one
to successfully build the geometry of Q-semianalytic and Q-subanalytic sets
(cf. [19, 8, 9]). In particular, Gabrielov’s complement theorem holds also for
Q-subanalytic sets.

Consider now the expansion RQ of the real field R by restricted Q-
functions, i.e. functions of the form:

f̃(x) =

{
f(x), if x ∈ [−1, 1]m

0, otherwise

where f(x) is a Q-function in the vicinity of the compact cube [−1, 1]m. We
attach to the language of ordered rings (with the symbols =, <, 0, 1,+,−, ·)
the names of all restricted Q-functions.

RQ is a polynomially bounded o-minimal structure which admits Q-cell
decomposition and, moreover, has a universal axiomatization in the language
of restricted Q-functions augmented by the names of rational powers (cf.
[8, 9, 18]); the latter result being a generalization to the quasianalytic settings
of a classical theorem by [5] from real analytic geometry. Our establishing
of this result relies, however, on a certain problem of the decomposition of
quasianalytic germs with respect to their Taylor series, posed by us in [9, 10].
Although evident in the classical real analytic case, it is very delicate in the
general quasianalytic settings, and seems to be unsolved as yet.

We describe the reciprocal function 1/x and roots n
√
x in the ordinary

fashion by stipulating that:

x · 1/x = 1 if x 6= 0 and 1/x = 0 if x = 0,

( n
√
x)n = x if x ≥ 0 and n

√
x = 0 if x < 0.
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2. Rectilinearization of quasi-subanalytic functions. We begin
with terminology suitable for the rectilinearization of definable functions.
By a quadrant in Rm in we mean a subset of Rm of the form:

{x = (x1, . . . , xm) ∈ Rm : xi = 0, xj > 0, xk < 0 for i ∈ I0, j ∈ I+, k ∈ I−},

where {I0, I+, I−} is a disjoint partition of {1, . . . ,m}; its trace Q on the
cube [−1, 1]m shall be called a bounded quadrant; put

Q+ := {x ∈ [0, 1]m : xi = 0, xj > 0 for i ∈ I0, j ∈ I+ ∪ I−}.

The interior Int (Q) of the quadrant Q is its trace on the open cube (−1, 1)m.
A bounded closed quadrant is the closure Q of a bounded quadrant Q, i.e. a
subset of Rm of the form:

Q := {x ∈ [−1, 1]m : xi = 0, xj ≥ 0, xk ≤ 0 for i ∈ I0, j ∈ I+, k ∈ I−}.

We say that a function g on a bounded quadrant Q in Rm is a fractional
normal crossing on Q if it is the superposition of a normal crossing f in the
vicinity of the closure Q+ of Q+ and a rational power substitution ψ given
by the equality:

ψ : Rm −→ Rm, ψ(x1, . . . , xm) = (|x1|α1 , . . . , |xm|αm),

where α1, . . . , αm are non-negative rational numbers. In other words, a frac-
tional normal crossing g on Q is a function of the form

g(x1, . . . , xm) = |x1|
n1
N · . . . · |xm|

nm
N · u(|x1|

1
N , . . . , |xm|

1
N ),

where N is a positive integer, n1, . . . , nm are non-negative integers such that
ni = 0 for i ∈ I0, and u is a Q-function near Q+ which vanishes nowhere on
Q+.

Before proving the main result of this section, we make a key observation.
Consider an o-minimal structure R in a language L. Since every o-minimal
structure has definable Skolem (choice) functions, the following two condi-
tions are equivalent:

• every definable function f in R is piecewise given by a finite number
of terms in the language L;

• the structure R has a universal axiomatization which admits quantifier
elimination in the language L.
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In the case of the structure RQ, every definable function is actually given
by one term in the language of restricted Q-functions augmented by the
names of rational powers. Indeed, every such function is piecewise given
by a finite number of terms in this augmented language, and therefore it
is sufficient to show that the characteristic function of any definable subset
E ⊂ Rm is given by one term.

Further, due to quantifier elimination, we are reduced to sets described
by atomic formulae, and next, since our language contains only two relation
symbols = and <, to the sets given by the formulae t(x) = 0 or t(x) > 0 with
any term t(x). Consequently, we have only to know that the characteristic
functions f and g of the subsets A := {0} and B := (0,∞) of the real line R
are given by one term. But this follows from the obvious equalities below:

f(x) = 1− x · 1

x
and g(x) = x · 1

(
√
x)2

.

Theorem 1 (on simultaneous rectilinearization of definable functions).
If f1, . . . , fs : Rm −→ R are definable functions and K is a compact subset
of Rm, then there exist a finite collection of modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,

such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the cube

[−1, 1]m, which is a composite of finitely many local blowings-up with smooth
centers and power substitutions;

2) the union of the images ϕi((−1, 1)m), i = 1, . . . , p, is a neighbourhood
of K.

3) for every bounded quadrant Qj, j = 1, . . . , 3m, the restriction to Qj

of each function fk ◦ ϕi, k = 1, . . . , s, i = 1, . . . , p, either vanishes or is a
normal crossing or a reciprocal normal crossing on Qj.

The proof is based on the fact that every definable function fk : Rm −→ R
is piecewise given by one term tk in the language of restricted Q-functions
augmented by the names of rational powers. We shall proceed by induction
on the complexity of the terms tk; obviously, terms of complexity zero are
variables and constants. We wish to explain the induction process more
precisely.
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For any finite collection (ψi) of modifications described in Theorem 1,
denote by ψ the modification being the disjoint gluing of the mappings ψi.
We shall, in fact, prove by a double induction, with respect to the maximum
n = 0, 1, 2, . . . of the complexities of the terms tk and the number s = 1, 2, . . .
of these terms, that the theorem holds for the superpositions tk of the terms
tk with any modification ψ as above.

When n = 0 and s is an arbitrary positive integer, the foregoing theo-
rem can be established directly via a simultaneous transformation to normal
crossings of the components of the mapping ψ. We encounter two distinct
induction steps, described by the following two schemes:

I. assuming the theorem to hold for n and s, we will prove it for n and
s+ 1;

II. assuming the theorem to hold for n and all s, we will prove it for n+1
and 1.

We first outline how to cope with induction scheme I. Suppose we have
terms t1, . . . , ts, ts+1. By induction hypothesis, we are able to find a finite
collection ϕ of modifications such that the requirements of the theorem are
fulfilled for the superpositions t1 ◦ ψ ◦ ϕ, . . . , ts ◦ ψ ◦ ϕ. We shall have estab-
lished this induction scheme if we find a collection χ of modifications that
improves ts+1 ◦ψ ◦ϕ without spoiling the superpositions already achieved in
an appropriate form. We shall explain below how to find such an appropriate
collection χ.

Take a collection ω of modifications suitable for ts+1 ◦ ψ ◦ ϕ(x); let x =
ω(x′). Next, via simultaneous transformation to normal crossings, one can
find a collection σ of modifications x′ = σ(x′′) such that each

xj = ωj(x
′) = (ωj ◦ σ)(x′′) and x′j = σj(x

′′), j = 1, . . . ,m

is a normal crossing in the variables x′′. Then the superposition ψ ◦ϕ ◦ω ◦ σ
is the desired collection of modifications.

In the proof of induction scheme II, we must analyze a term t of com-
plexity n+ 1, and thus encounter the following cases:

t = p
√
t1, t = t1 · t2, t =

t1
t2
, t = t1 + t2 and t = g(t1, . . . , tr),

where t1, . . . , tr are terms of complexity ≤ n and g is a restricted Q-function.
The verification of these five cases is routine, and needs again the use of simul-
taneous transformation to normal crossings of a finite number of Q-functions
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in the following strengthened form: one can require that the exponents of
the normal crossings achieved in the process be totally ordered with respect
to the induced partial ordering from Nm. This finishes the proof, the details
being left to the reader. ♦

Remark. In the above proof we use the obvious fact that normal cross-
ings are preserved under substitution of powers, and thus under substitutions
of normal crossings. Similarly, fractional normal crossings are preserved un-
der substitution of fractional normal crossings.

We could repeat mutatis mutandis the above proof in order to get mod-
ifications ϕi that are finite composites of local blowings-up and of power
substitution only at the last step, as stated below.

Theorem 1∗ (on simultaneous rectilinearization of definable functions).
If f1, . . . , fs : Rm −→ R are definable functions and K is a compact subset
of Rm, then there exist a finite collection of modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,

such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the cube

[−1, 1]m, which is a composite of finitely many local blowings-up with smooth
centers;

2) the union of the images ϕi((−1, 1)m), i = 1, . . . , p, is a neighbourhood
of K.

3) for every bounded quadrant Qj, j = 1, . . . , 3m, the restriction to Qj

of each function fk ◦ ϕi, k = 1, . . . , s, i = 1, . . . , p, either vanishes or is a
fractional normal crossing or a reciprocal fractional normal crossing on Qj.

♦

What supervenes in the proof of Theorem 1∗ is only an additional diffi-
culty in showing induction scheme II for the terms

t = t1 + t2 and t = g(t1, . . . , tr).

This could be easily established, once the following conjecture on fractional
normal crossings holds true for the general quasianalytic settings.

Conjecture. Given a Q-function f : U −→ R near zero and n ∈ N,
there exist a finite number of modifications σi : [0, 1]m −→ R such that:
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i) each σi extends to a Q-analytic mapping in a neighbourhood of the cube
[0, 1]m, which is a composite of finitely many local blowings-up with smooth
centers;

ii) σi([0, 1]m) ⊂ U and the union of the images σi((0, 1)m) is the trace of
a neighbourhood of zero on the orthant (0,∞)m;

iii) each superposition f(x
1/n
1 , . . . , x

1/n
m )◦σi is a fractional normal crossing

on the orthant (0, 1)m.

In the classical case of real analytic functions, this conjecture follows from
the Abhyankar–Jung theorem and the fact that the germ f(x

1/n
1 , . . . , x

1/n
m )

is integral over the ring of germs of analytic functions. The former can be
carried over to the quasianalytic settings, as proven in our paper [11]. The
latter result, however, is still open. In our paper [14], we link it with a cer-
tain delicate problem of decomposition of quasianalytic germs with respect
to their Taylor series. It is evident in the classical real analytic case, but —
although discussed with numerous specialists in the theory of ultradifferen-
tiable and quasianalytic functions — in the quasianalytic settings, it seems
to remain unsolved as yet.

We now recall the generalization of the classical Abhyankar–Jung theorem
to certain henselian k[x]-algebras from our paper [11]. Here it will be applied
to the C-algebra

AC(R;x) := A(R;x)⊗R C,

where A(R;x) denotes the local R-algebra of germs at 0 ∈ Rm of Q-functions.
For any r ∈ N, r 6= 0, put

A(R;x1/r) := {a(x1/r1

1 , . . . , x1/rm
m ) : a(x) ∈ A(R;x)}

and
AC(R;x1/r) := {a(x1/r1

1 , . . . , x1/rm
m ) : a(x) ∈ AC(R;x)}.

Abhyankar–Jung Theorem. Every quasiordinary polynomial

P (x; v) = vn + an−1(x)v
n−1 + · · ·+ a0(x) ∈ AC(R;x)[v]

has all its roots in AC(R;x1/r), for some r ∈ N; actually, one can take r = n!.
♦
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As an immediate consequence, we obtain the aforementioned real version
of the Abhyankar–Jung theorem:

Corollary. Every quasiordinary polynomial

P (x; v) = vn + an−1(x)v
n−1 + · · ·+ a0(x) ∈ A(R;x)[v]

is a product of linear factors and irreducible square trinomials with coeffi-
cients in A(R;x1/r), for some r ∈ N; actually, one can take r = n!. Here,
the roots x1/r are regarded as germs on the first orthant in Rm. Moreover,
if the first non-zero coefficient ai(x) 6≡ 0 is a normal crossing, then every
non-zero root is a fractional normal crossing. ♦

We are now in a position to outline a proof of the conjecture on frac-
tional normal crossings. Once we know that the germ f(x

1/n
1 , x

1/n
2 , . . . , x

1/n
m )

is integral over A(R;x), it is a root of a monic polynomial with Q-analytic co-
efficients. Hence and by Proposition 2 from [11], this germ is, after a suitable
transformation σ to normal crossings by blowing up, a root of a quasiordi-
nary polynomial which satisfies the assumption of the above corollary, and
thus it is a fractional normal crossing. Furthermore, we must require that the
coordinate functions transform to normal crossings so as to ensure condition
ii) of the conjecture.

Now let us proceed with some consequences of Theorem 1. Let U be
a definable bounded open subset in Rm, ∂U be its frontier and ρ1, ρ2 be
the distance functions from the sets U , ∂U , respectively. Given a definable
function f : U −→ R, we can deduce directly from Theorem 1 applied to the
functions f, ρ1, ρ2, the following consequence:

Theorem 2 (on rectilinearization of a definable function). Let U ⊂ Rm

be a bounded open subset and f : U −→ R be a definable function. Then
there exists a finite collection of modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,

such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the cube

[−1, 1]m, which is a composite of finitely many local blowings-up with smooth
centers and power substitutions;

2) each set ϕ−1
i (U) is a finite union of bounded quadrants in Rm;
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3) each set ϕ−1
i (∂U) is a finite union of bounded closed quadrants in Rm

of dimension m− 1;
4) U is the union of the images ϕi(Int (Q)) with Q ranging over the

bounded quadrants contained in ϕ−1
i (U), i = 1, . . . , p;

5) for every bounded quadrant Q, the restriction to Q of each function
f ◦ϕi either vanishes or is a normal crossing or a reciprocal normal crossing
on Q, unless ϕ−1

i (U) ∩Q = ∅. ♦

Remarks. 1) It follows from points 1) and 2) that every bounded quad-
rant of dimension < m contained in ϕ−1

i (U) is adjacent to a bounded quad-
rant of dimension m (a bounded orthant) contained in ϕ−1

i (U). Hence

ϕ−1
i (U) = ϕ−1

i (U),

and therefore point 4) implies that U is the union of the images ϕi(Q) of the
closures of those bounded quadrants of dimension m (bounded orthants) Q
for which ϕi(Q) ⊂ U , i = 1, . . . , p.

2) One can formulate Theorem 2, similarly as Theorem 1, for several
definable functions f1, . . . , fs.

Under the above notation, consider a bounded orthant Q contained in
ϕ−1

i (U). Denote by domi (Q) the union of Q and all those bounded quad-
rants that are adjacent to Q and disjoint with ϕ−1

i (∂U); it is, of course,
an open subset of the closure Q. Moreover, the open subset ϕ−1

i (U) of the
cube [−1, 1]m coincides with the union of domi (Q), where Q range over the
bounded orthants that are contained in ϕ−1

i (U), and with the union of those
bounded quadrants that are contained in ϕ−1

i (U).
Consequently, the union of the images ϕi(Int (Q)), where Q range over the

bounded quadrants that are contained in ϕ−1
i (U), coincides with the union

of the images
ϕi(domi (Q) ∩ (−1, 1)m),

where Q range over the bounded orthants Q that are contained in ϕ−1
i (U).

Corollary (on rectilinearization of a continuous definable function). Let
U be a bounded open subset in Rm and f : U −→ R be a continuous definable
function. Then there exists a finite collection of modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,
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such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the cube

[−1, 1]m, which is a composite of finitely many local blowings-up with smooth
centers and power substitutions;

2) each set ϕ−1
i (U) is a finite union of bounded quadrants in Rm;

3) each set ϕ−1
i (∂U) is a finite union of bounded closed quadrants in Rm

of dimension m− 1;
4) U is the union of the images ϕi(domi (Q) ∩ (−1, 1)m) with Q ranging

over the bounded orthants Q contained in ϕ−1
i (U), i = 1, . . . , p;

5) for every bounded orthant Q, the restriction to domi (Q) of each func-
tion f ◦ ϕi either vanishes or is a normal crossing or a reciprocal normal
crossing on Q, unless ϕ−1

i (U) ∩Q = ∅. ♦

Similarly, Theorem 1∗ implies the results stated below, which are thus
valid provided that the foregoing conjecture holds true for the general quasi-
analytic settings. We return to this conjecture in our paper [14], where it is
linked in more detail with a certain delicate problem of the decomposition
of quasianalytic germs with respect to their Taylor series. This problem is
evident in the case of real analytic germs.

Theorem 2∗ (on rectilinearization of a definable function). Let U ⊂ Rm

be a bounded open subset and f : U −→ R be a definable function. Then there
exists a finite collection of modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,

such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the cube

[−1, 1]m, which is a composite of finitely many local blowings-up with smooth
centers;

2) each set ϕ−1
i (U) is a finite union of bounded quadrants in Rm;

3) each set ϕ−1
i (∂U) is a finite union of bounded closed quadrants in Rm

of dimension m− 1;
4) U is the union of the images ϕi(Int (Q)) with Q ranging over the

bounded quadrants contained in ϕ−1
i (U), i = 1, . . . , p;

5) for every bounded quadrant Q, the restriction to Q of each function
f ◦ ϕi either vanishes or is a fractional normal crossing or a reciprocal frac-
tional normal crossing on Q, unless ϕ−1

i (U) ∩Q = ∅. ♦
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Corollary∗ (on rectilinearization of a continuous definable function).
Let U be a bounded open subset in Rm and f : U −→ R be a continuous
definable function. Then there exists a finite collection of modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,

such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the cube

[−1, 1]m, which is a composite of finitely many local blowings-up with smooth
centers;

2) each set ϕ−1
i (U) is a finite union of bounded quadrants in Rm;

3) each set ϕ−1
i (∂U) is a finite union of bounded closed quadrants in Rm

of dimension m− 1;
4) U is the union of the images ϕi(domi (Q) ∩ (−1, 1)m) with Q ranging

over the bounded orthants Q contained in ϕ−1
i (U), i = 1, . . . , p;

5) for every bounded orthant Q, the restriction to domi (Q) of each func-
tion f ◦ ϕi either vanishes or is a fractional normal crossing or a reciprocal
fractional normal crossing on Q, unless ϕ−1

i (U) ∩Q = ∅. ♦

Theorem 2∗ will be used in the next section in connection with quantifier
elimination in the language of restricted quasianalytic functions augmented
by the name of the reciprocal function. The significance of the foregoing
corollary lies in its application to the theory of arc-quasianalytic functions,
presented in our subsequent paper [12]. Finally, let us mention that the above
theorems on rectilinearization imply the classical results of E. Bierstone,
P.D. Milman [1] and A. Parusiński [15, 16].

3. Application to quantifier elimination. We begin this section with
an affirmative answer to a question posed in our previous paper [8] (Open
Problem 1):

Theorem 3 (on decomposition into special cubes). Every bounded Q-
subanalytic subset F in Rm is a finite union of special cubes Si, i.e. subsets
in Rm of the form

Si = ϕi((−1, 1)di),

where ϕi(x) is a special modification, i.e. a diffeomorphism from (−1, 1)di

onto Si that extends to a Q-mapping in the vicinity of into [−1, 1]di.
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Moreover, each ϕi is a composite of finitely many local blowings-up with
smooth centers, and therefore each special cube Si and each inverse mapping

ψi : Si −→ (−1, 1)di

to the special modification ϕi is described by terms in the language of re-
stricted Q-functions augmented by the name of the reciprocal function.

Remarks. 1) Each inverse mapping ψj is given piecewise by terms in the
language of restricted Q-functions augmented by the name of the reciprocal
function 1/x, because — roughly speaking — it has been locally built in the
process of blowing up as a successive superposition of restricted Q-functions
and of the reciprocal function 1/x off the zero argument.

2) One can formulate Theorem 3 for relatively compact Q-subanalytic
subsets of a Q-manifold too. Such a version would even be more suitable
for our proof which is lead by induction with respect to the dimension of
the ambient space. Actually, the ambient spaces involved in the induction
process are the smooth centers of the successive blowings-up.

For the proof, apply Theorem 2∗ to the function f := 1 − χF , where χE

is the characteristic function of the set F , so as to find a finite collection of
modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,

such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the

cube [−1, 1]m, which is a composite of finitely many local blowings-up with
smooth centers;

2) F is a finite union of the images under the ϕi’s of the interiors of some
bounded quadrants.

Now, in order to present F as a finite union of special cubes of the form
specified in the theorem, we can just repeat the proof of the theorem on
covering with special cubes from our paper [8]. In this manner, we are able
to construct special cubes that are compatible with the coordinate functions
and the exceptional divisors of the modifications ϕi, and hence the theorem
follows. Recall that the aforementioned proof is by induction with respect
to the dimension of the ambient space, and is based on transformation to
normal crossings by local blowing up such that the final exceptional divisors
have only normal crossings. For more details we refer the reader to [8]. ♦
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As an immediate consequence, we obtain the result below, which gener-
alizes to the quasianalytic settings a theorem of Denef–van den Dries [4] on
quantifier elimination for restricted real analytic function. Their proof works
with convergent power series, and makes use, in particular, of the Weierstrass
preparation theorem and the fact that the ring of convergent power series is
noetherian.

Corollary. The expansion RQ of the real field R admits quantifier
elimination in the language of restricted Q-functions augmented by the name
of the reciprocal function. ♦

Finally, let us emphasize once again that the results presented in this
paper rely on a certain delicate issue concerning the decomposition of quasi-
analytic germs with respect to their Taylor series (cf. [9, 10, 14]). Whereas
it is evident in the classical real analytic case, it seems to remain unsolved
in the general quasianalytic settings.
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