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Abstract

This paper investigates hyperbolic polynomials with quasianalytic
coefficients. Our main purpose is to prove a factorization theorem
for such polynomials. As an application, we generalize the results of
K. Kurdyka and L. Paunescu about analytic families of symmetric
matrices to the quasianalytic settings.

Hyperbolic polynomials with analytic coefficients in one variable were
studied by Rellich [20, 21]. This was linked with his investigation into the
behaviour of eigenvalues of symmetric matrices under one-parameter ana-
lytic perturbation. This theory, initiated by Rellich, culminated in the work
of Kato [7]. One-parameter families of hyperbolic polynomials were contem-
porarily studied in [2, 8], as well. Very recently, Kurdyka–Paunescu [11]
developed multi-parameter analytic perturbation theory. Our purpose is to
carry over this theory to the quasianalytic settings.

As in our previous papers (cf. [14, 15, 17]), we shall deal with a fam-
ily Q(U) of smooth functions that satisfies certain six conditions introduced
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by Bierstone–Milman [4], which ensure resolution of singularities and trans-
formation to normal crossings by blowing up. In the sequel, by a quasi-
subanalytic function we shall mean a function definable in the real field R
with restricted quasianalytic functions determined by the family Q(U).

In this paper, we are actually interested in the the family Q̃(U) of smooth
quasi-subanalytic functions rather than in the family Q(U) itself. For ab-
breviation, such smooth quasi-subanalytic functions shall be called definable
quasianalytic, or even quasianalytic. Clearly, the new family Q̃(U) satisfies
the above-mentioned six conditions too.

Denote by Qm = A(R;x) the ring of germs at 0 ∈ Rm of smooth quasi-
subanalytic functions, and put

AC(R;x) := A(R;x)⊗R C;

here m ∈ N and x = (x1, . . . , xm). AC(R;x) may be regarded, of course, as
a henselian C[x]-subalgebra of the formal power series algebra C[[x]], which
is closed under reciprocal, power substitution and division by a coordinate.

For any r1, . . . , rm ∈ N, r1, . . . , rm 6= 0, put

A(R;x
1/r1

1 , . . . , x1/rm
m ) := {a(x1/r1

1 , . . . , x1/rm
m ) : a(x) ∈ A(R;x)}

and

AC(R;x
1/r1

1 , . . . , x1/rm
m ) := {a(x1/r1

1 , . . . , x1/rm
m ) : a(x) ∈ AC(R;x)};

when r1 = . . . = rm = r, we shall denote the above algebras by A(R;x1/r)
and AC(R;x1/r), respectively. A special case of the Abhyankar–Jung theo-
rem from our paper [16], is the following quasianalytic one (for the classical
versions for formal or convergent series, we refer the reader to e.g. [6, 22, 1,
12, 13, 19]):

Abhyankar–Jung Theorem. Every quasiordinary polynomial

h(x; t) = tn + an−1(x)t
n−1 + · · ·+ a0(x) ∈ AC(R;x)[t]

has all its roots in AC(R;x1/r), for some r ∈ N; actually one can take r = n!.

Corollary 1. Consider a quasiordinary polynomial

h(x; t) = tn + an−1(x)t
n−1 + · · ·+ a0(x) ∈ AC(R;x)[t].
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Then there exists an r ∈ N such that for each closed orthant Qk in Rm,
k = 1, . . . , 2m, we have in the vicinity of 0 ∈ Rm a factorization of the form

h(x; t) =
n∏

i=1

(t− ϕik(|x1|1/r, . . . , |xm|1/r)) for x ∈ Qk,

where ϕik ∈ AC(R;x); actually one can take r = n!. ♦

Below stated is a real version of the Abhyankar–Jung theorem.

Corollary 2. Let

f(x; t) = tn + an−1(x)t
n−1 + · · ·+ a0(x) ∈ A(R;x)[t]

be a quasiordinary polynomial. Then there exists an r ∈ N such that for each
closed orthant Qk in Rm, k = 1, . . . , 2m, we have in the vicinity of 0 ∈ Rm a
factorization of the form

f(x; t) =

p∏
i=1

(t−ϕik(|x|1/r))

q∏
j=1

(t2−αjk(|x|1/r)t+ β2
jk(|x|1/r)) for x ∈ Qk,

where p + 2q = n, ϕik, αjk, βjk ∈ A(R;x) and |x|1/r = (|x1|1/r, . . . , |xm|1/r);
actually one can take r = n!. ♦

Before turning to hyperbolic polynomials, we still need to look more care-
fully to Corollary 1. For any closed subset A ⊂ Rm, let C(A) and D(A) be the
R-algebras of those quasi-subanalytic functions on A which are continuous
and smooth, respectively; put

C(A,C) := C(A)⊗R C and D(A,C) := D(A)⊗R C.

By symmetry, we may confine our considerations to the first closed orthant
Q = Q1 = [0,∞)m. The functions

ϕi(x
1/r) := ϕi1(x

1/r
1 , . . . , x1/r

m )

have representatives which belong to C([0, δ]m,C) with δ > 0 small enough;
denote by ϕ̂i(x

1/r) their Puiseux series. Let ε be a primitive r-th root of
unity. It is easy to check that each algebraic conjugate

ϕ̂i(ε
α1x

1/r
1 , . . . , εαmx1/r

m ), α = (α1, . . . , αm) ∈ Nm,
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of any ϕ̂i(x
1/r) is the Puiseux series ϕ̂j(x

1/r) of some ϕj(|x|1/r). In other
words, the Puiseux series ϕ̂i(x

1/r), i = 1, . . . , n, are preserved under algebraic
conjugacy.

We call a monic polynomial f(x; t) = tn + an−1(x)t
n−1 + · · · + a0(x) ∈

A(R;x)[t] hyperbolic if, for each value of the parameters x, all its roots are
real. This is a shortened name for ”a quasianalytic family of hyperbolic poly-
nomials”. Keeping the foregoing notation, it is clear that the Puiseux series
ϕ̂i(x

1/r), i = 1, . . . , n, of the roots ϕi(x
1/r) of the hyperbolic quasiordinary

polynomial f(x; t) are real series. Since they are preserved under algebraic
conjugacy, we get ϕ̂i(x

1/r) ∈ R[[x]].

The above reasoning about Puiseux series may be repeated at each point
from [0, δ]m. Therefore it follows from Glaeser’s composite function theorem
(see e.g. [5, 3]) that the functions ψi(x) := ϕi(x

1/r) are smooth:

ψi(x) = ϕi(x
1/r) ∈ D([0, δ]m), i = 1, . . . , n.

Note that we applied, in fact, a very special case of Glaeser’s theorem. Denote
by Taψi(x) the Taylor series at a point a ∈ Q1 of the smooth function ψi,
i = 1, . . . , n.

Summing up, for each closed orthant Qk in Rm, k = 1, . . . , 2m, we have
in the vicinity of 0 ∈ Rm a factorization of the form

f(x; t) =
n∏

i=1

(t− ψik(x)) for x ∈ Qk ∩ [−δ, δ]m,

where ψik ∈ D(Qk ∩ [−δ, δ]m) with δ > 0 small enough. But for every
k = 1, . . . , 2m, the roots ψik(x) of the polynomial f(x; v) determine common
Taylor series ϕ̂i(x

1/r) ∈ R[[x]], i = 1, . . . , n. Consequently, those roots can be
glued together to n smooth functions definable in a cube [−δ, δ]m. Indeed,
consider two adjacent orthants Qk, Ql with common face F , and next fix
i = 1, . . . , n and put

Fj := {a ∈ F : Taψi,k(x) = Taψj,l(x)}, j = 1, . . . , n.

It is clear that F1, . . . , Fn are closed, pairwise disjoint subsets of F such that
F = F1 ∪ . . . ∪ Fn. Since F is a connected set, we get F = Fj(i) for a unique
j(i) = 1, . . . , n. This means that the functions ψi,k(x) and ψj(i),l can be glued
together, as asserted.
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In this manner, we have thus proved the main result of this paper,
which concerns the factorization of quasiordinary hyperbolic polynomials
with quasianalytic coefficients in several variables.

Factorization Theorem for Hyperbolic Polynomials. Every hy-
perbolic quasiordinary polynomial

f(x; t) = tn + an−1(x)t
n−1 + · · ·+ a0(x) ∈ A(R;x)[t]

can be factorized in the following form

f(x; t) =
n∏

i=1

(t− ψi(x)) for all x ∈ [−δ, δ]m,

where ψi(x) ∈ D([−δ, δ]m) and δ > 0 is small enough. ♦

By virtue of Proposition 2 from our previous paper [16], every monic
polynomial with quasianalytic coefficients factorizes into a product of qua-
siordinary polynomials after a suitable transformation of its coefficients by a
finite sequence of blowings-up with smooth centers. Hence and via transfor-
mation of the discriminant of a given hyperbolic polynomial with quasiana-
lytic coefficients to normal crossings by blowing up, we immediately obtain
the following

Corollary 1. Consider a hyperbolic polynomial

f(x; t) = tn + an−1(x)t
n−1 + · · ·+ a0(x), ai(x) ∈ Q̃(Ω),

with quasianalytic coefficients on an open subset Ω ⊂ Rm. Then one can find
a modification σ : W −→ Ω, which is a locally finite composite of blowings-up
with smooth centers, such that at each point y0 ∈ W the pull-back polynomial

fσ(y; t) = f(σ(y); t) = tn + an−1(σ(y))tn−1 + · · ·+ a0(σ(y))

has a factorization of the form

fσ(y; t) =
n∏

i=1

(t− ψi(y)),

where ψi(y), i = 0, . . . , n − 1, are the germs of some definable quasianalytic
functions at y0. ♦
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Corollary 2. Given a hyperbolic polynomial

f(x; t) = tn + an−1(x)t
n−1 + · · ·+ a0(x), ai(x) ∈ Q̃(Ω),

as above, there exists a quasi-subanalytic subset Σ ⊂ Ω of codimension at
least 2 such that at each point x0 ∈ Ω \Σ we have a factorization of the form

f(x; t) =
n∏

i=1

(t− ψi(x)),

where ψi(x), i = 0, . . . , n− 1, are the germs of some definable quasianalytic
functions at x0. ♦

Before deducing next results, we introduce some terminology. Denote by
M(R;x) the field of quasi-meromorphic germs at 0 ∈ Rm, i.e. the quotient
field of the domain A(x). Similarly, Mx0(R;x) stands for the field of quasi-
meromorphic germs at a point x0 ∈ Rm. We consider in the vector spaces
Rn and M(R;x)n over the fields R and M(R;x), respectively, the standard
inner products given by the formula

v •w = v1w1 + · · ·+ vnwn and f(x) • g(x) = f1(x)g1(x) + · · ·+ fn(x)gn(x).

The spectral theorem for symmetric matrices is valid for any real closed
field. The assumption of real closedness is necessary to ensure that the
characteristic polynomial of a given symmetric matrix, which always is hy-
perbolic, factorizes into linear factors. We are able to dispense with it, but
instead we must use the foregoing Corollary 1, i.e. transform the discriminant
of that characteristic polynomial, and next factorize it into linear factors.
Therefore, repeating mutatis mutandis the proof of the spectral theorem
from linear algebra, we obtain the following counterpart over the field of
quasi-meromorphic functions.

Spectral Theorem with Quasianalytic Parameters. Let M be a
symmetric n × n matrix with quasianalytic entries from A(R;x). Then we
can find a modification σ : W −→ Ω of a neighbourhood Ω of zero, which is a
finite composite of blowings-up with smooth centers, such that for each point
y0 ∈ σ−1(0) ⊂ W the vector space My0(R; y)n over the field My0(R; y) has
an orthogonal basis

w1(y), . . . , wn(y) ∈ Ay0(R; y)n
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that consists of eigenvectors of the pull-back matrix Mσ. ♦

A matrix with entries from the R-algebra A(R;x) may be regarded as a
quasianalytic family of real matrices parametrized by x. Our next objective
is to achieve a simultaneous quasianalytic diagonalization of the pull-back
matrix Mσ after performing a suitable modification σ which is a finite com-
posite of blowings-up with smooth centers. Let

λ1(y), . . . , λn(y) ∈ Ay0(R; y)

be the eigenvalues of Mσ, which may not be pairwise distinct. The above
theorem yields a quasianalytic family

w1(y), . . . , wn(y) ∈ Rn

of orthogonal eigenvectors which form a basis of Rn generically near y0 ∈ W ;
say over a set W0 = W \ Σ where Σ ⊂ W is a closed definable subset of
codimension at least one. Fix a vector w(x) = wj(x), j = 1, . . . , n, and its
eigenvalue λ(x) = λl(x). Take any sequence (yk) ⊂ W0 which tends to y0:
yk → y0, and such that the limit

v(y0) = lim
k→∞

v(yk), where v(yk) =
w(yk)

‖w(yk)‖
,

exists. We obviously have

(Mσ(y0)− λ(y0)) · v(y0) = lim
k→∞

(Mσ(yk)− λ(yk)) · v(yk) = 0.

Since the vectors wj(y) are pairwise orthogonal, we obtain in this fashion an
orthonormal basis

v1(y0), . . . , v
n(y0) ∈ Rn

that consists of eigenvectors of the matrix Mσ(y0).

We wish to construct a quasianalytic family

v1(y), . . . , vn(y) ∈ Rn

of orthonormal bases that consist of eigenvectors of the matrices Mσ(y).
Clearly, this will be possible once we know that all the components of each
vector wj(y), j = 1, . . . , n, are divisible in Ay0(R; y) by one of them. It is
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well known that the last condition can be ensured by means of a successive
transformation to normal crossings by blowing up. Consequently, we achieved
the theorem stated below, which generalizes to the quasianalytic settings the
result of Kurdyka–Paunescu [11] from real analytic perturbation theory.

Theorem on Quasianalytic Diagonalization. Consider a symmetric
n × n matrix M with quasianalytic entries from A(R;x). Then there exists
a modification σ : W −→ Ω of a neighbourhood Ω of zero, which is a finite
composite of blowings-up with smooth centers, such that the pull-back matrix
Mσ admits a simultaneous quasianalytic diagonalization near each point y0 ∈
σ−1(0) ⊂ W . This diagonalization can be performed through a quasianalytic
choice of orthonormal bases that consist of eigenvectors of Mσ. ♦

Remark 1. Both the spectral theorem with quasianalytic parameters
and Proposition 1 remain valid, with the same proof, in the case of quasian-
alytic families of hermitian matrices.

Remark 2. All the above results can be, as shown by Kurdyka–Paunescu,
carried over to the case of polynomials with purely imaginary roots, and
thence to that of antisymmetric matrices. Indeed, a polynomial

f(x; t) = tn + an−1(x)t
n−1 + · · ·+ a0(x) ∈ A(R;x)[t]

has purely imaginary roots iff the polynomial i−nf(x; it) is hyperbolic (cf. [11]
for details).

Remark 3. It is well known that, in general, one cannot find bases
of eigenvectors even in a continuous way. This is caused by that the an-
gle between linearly independent eigenvectors, which correspond to distinct
eigenvalues, may tend to zero when approaching a given point y0.
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