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1 Introduction

Picard-Vessiot theory can be described as Galois theory of linear di�er-
ential equations. A derivation of a �eld K is de�ned as a map d : K → K
satisfying d(a + b) = d(a) + d(b) and d(ab) = d(a)b + ad(b), for all a, b in
K. A di�erential �eld is a �eld endowed with a derivation. We shall use the
usual notation a′, a′′, . . . , a(n) for the successive derivations of the element a.
We denote by CK the �eld of constants of a di�erential �eld K. We shall
consider homogeneous linear di�erential equations over a di�erential �eld K
of the form

L(Y ) := Y (n) + an−1Y
(n−1) + . . . + a1Y

′ + a0Y = 0,

where ai ∈ K for i ∈ {0, 1, . . . , n− 1}. If L is a di�erential �eld extension of
K, i.e. a di�erential �eld containing K with derivation extending derivation
in K, the set of solutions of L(Y ) = 0 in L is a CL-vector space of dimension
≤ n. A fundamental system of solutions of L(Y ) = 0 is a set of n solutions
of the equation in some di�erential extension L of K, linearly independent
over CL.

A Picard-Vessiot extension for L(Y ) = 0 over K is a di�erential �eld
extension of K di�erentially generated by a fundamental system of solutions
of L(Y ) = 0, i.e. generated by the elements in the fundamental system and
their derivatives, and not adding constants. Picard-Vessiot theory is due to
E. Picard and E. Vessiot and in rigorous form to E. Kolchin, who built on
the work of J.F. Ritt in di�erential algebra. It was made more accessible by
the book of I. Kaplansky [5]. We refer the reader also to [4], [6] and [8] for
the results of Picard-Vessiot theory used in this paper.

Picard-Vessiot theory has been built under the hypothesis that the �eld
of constants CK of the di�erential �eld K is algebraically closed. In this case,
one obtains existence and uniqueness, up to K-di�erential isomorphisms, of
the Picard-Vessiot extension of the di�erential equation and that the dif-
ferential Galois group of the di�erential equation, de�ned as the group of
K-di�erential automorphisms of its Picard-Vessiot extension, is a linear al-
gebraic group of rank n over CK . It is worth considering whether the con-
dition CK algebraically closed can be weakened. In particular, the case of
real �elds is interesting due to the application of Picard-Vessiot theory to the
integrability of hamiltonian systems (see [7] or [4]).

In this paper we consider homogeneous linear di�erential equations L(Y ) =
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0 de�ned over a real �eld K with real closed �eld of constants. We prove
that, in the generic case, there exists a Picard-Vessiot extension for L(Y ) = 0
over K which moreover is a real �eld. For the results of the theory of real
�elds used in this paper, we refer the reader to [3].
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2 Auxiliary results

We consider a homogeneous linear di�erential equation of order n over a
real di�erential �eld K, with real closed �eld of constants CK

L(Y ) := Y (n) + an−1Y
(n−1) + . . . + a1Y

′ + a0Y = 0, (1)

where ai ∈ K for i ∈ {0, 1, . . . , n− 1}.
We recall the de�nition of Picard-Vessiot extension.

De�nition 2.1. A di�erential �eld extension K ⊂ L is a Picard - Vessiot
extension for L if

1. L is di�erentially generated over K by the set of solutions of L(Y ) = 0
in L,

2. L(Y ) = 0 has in L exactly n solutions lineary independent over CK,

3. every constant of L lies in K,i.e. CK = CL.

In the case in which CK is an algebraically closed �eld, a Picard-Vessiot
extension for L over K is obtained by constructing the full universal solution
algebra R (see below) and considering a maximal di�erential ideal M of R,
i.e. a maximal element in the set of proper di�erential ideals of R, which
is proved to be prime. Then one can prove that the �eld of fractions of the
integer domain R/M ful�lls the conditions to be a Picard-Vessiot extension
for L over K.

In this paper we consider the case in which K is a real �eld and CK is
real closed. We are interested in real di�erential ideals of the full universal
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solution algebra R and a crucial point for our construction will be to prove
that a maximal real di�erential ideal of R, i.e. a maximal element in the set
of proper real di�erential ideals of R, is prime. To this end we shall use a
theorem of Ritt of which we give the statement for the convenience of the
reader (see [9], chapter I.16, or [2] 1.3).

Theorem 2.1. (Ritt) Let K be a di�erential �eld of characteristic zero. Let
R be a di�erential K-algebra �nitely di�erentially generated, I a proper rad-
ical di�erential ideal of R. Then there exists �nitely many prime di�erential
ideals P1, . . . , Ps of R, such that

I = P1 ∩ . . . ∩ Ps.

Moreover, when Pi * Pj for all i 6= j, i, j ∈ {1, . . . , s}, then {P1, . . . , Ps}
is unique.

Proposition 2.1. Let K be a di�erential �eld of characteristic zero, R a
noetherian di�erential K-algebra �nitely di�erentially generated. Let I be a
maximal real di�erential ideal of R. Then I is prime.

Proof. I is radical, because it is real (see [3], lemma 4.1.5). Then, by theorem
2.1, I is an intersection of �nite number of prime di�erential ideals, i.e.

I = P1 ∩ . . . ∩ Ps. (2)

Moreover, we can assume that Pi * Pj for all i 6= j. Indeed, if some
Pi ⊂ Pj for i 6= j, we can omit Pj and reduce the decomposition. Therefore
(2) is a primary decomposition of the ideal I with

rad(Pi) = Pi 6= rad(Pj) = Pj ∀ i 6= j.

Hence, by unicity in theorem 2.1, it is a reduced primary decomposition (see
[1], chap.4). So the P ′

is are exactly the minimal prime ideals containing I.
Now, minimal prime ideals containing the real ideal I are as well real (see
[3], lemma 4.1.5). But I is a maximal real di�erential ideal, so s = 1 and
I = P1. Therefore I is prime.

�
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3 Main result

We consider the homogeneous linear di�erential equation (1) de�ned over
the real �eld K. We construct a di�erential K-algebra containing a full set
of solutions of the equation and prove that it can be ordered.
Let us consider the ring K[Yij], where 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n. It is
a polynomial ring in n2 indeterminates. We extend the derivation of K to
K[Yij] by de�ning

Y ,
ij = Yi+1,j for 0 ≤ i ≤ n− 2,

Y ,
n−1,j = −an−1Yn−1,j − . . .− a1Y1j − a0Y0j.

We denote W = det(Yij).We have

W = det


Y01 . . . Y0n

Y11 . . . Y1n

. . . . . . . . .
Yn−1,1 . . . Yn−1,n

 = det


Y01 . . . Y0n

Y ,
01 . . . Y ,

0n

. . . . . . . . .

Y
(n−1)
01 . . . Y n−1

0n

 .

So W is the wronskian (determinant) of Y01, . . . , Y0n.
Let W = {W n}n>0 be the multiplicative system of the powers of W . Let
R := K[Yij]W be the localization of K[Yij] in W . The derivation of K[Yij]
extends to R in an unique way (see e.g. [4], remark 2.1).
The K-algebra R is called the full universal solution algebra. By construction,
it contains n solutions of equation (1) linearly independent over constants.
Forgetting the di�erential structure, R is a subring of the �eld of rational
functions in n2 variables over K, so it can be ordered (see [3], example 1.1.2)
and it is an integral domain. Hence 0 is a real di�erential ideal of R and the
set of real di�erential ideals of R is not empty.
Let P be a maximal real di�erential ideal of R. Then, by proposition 2.1, P is
prime. So the quotient ring R/P is an integral domain. The �eld of fractions
L = Fr(R/P ) is a real �eld, because P is a real di�erential ideal (see [3],
lemma 4.1.6). By our construction L is a real �eld di�erentially generated
over K by a fundamental system of solutions of equation (1). Concerning the
�eld of constants CL of the real di�erential �eld L, we obtain the following
result.

Lemma 3.1. Let K and L be as above and assume that the constant �eld
CK of K is real closed. If c ∈ CL \ CK, then c is transcendent over K.
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Proof. If the constant c were algebraic over K, it would be algebraic over
CK (see e.g. [4] proof of Prop. 3.5). In this case, it would be a real algebraic
element. But CK is a real closed �eld, so c ∈ CK .

Remark 3.1. If the construction above leads to an algebraic extension K ⊂
L, then L is a Picard-Vessiot extension of K.

Let C̄K denote the algebraic closure of CK . Let K̂ := K ⊗CK
C̄K . We

have C̄K = CK(i) and K̂ = K(i) with i2 = −1.
We can extend the derivation from K to its complexi�cation K(i) by de�ning

(a + bi)′ = a′ + b′i ∀a, b ∈ K.

CK(i) is the �eld of constants of K(i) and it is algebraically closed. So there
exists a Picard-Vessiot extension for equation (1) over K(i).
Let R = K[Yij]W be the full universal solution algebra of equation (1) over

K constructed above. Let R̂ = R⊗CK
C̄K . Then R̂ is isomorphic to the full

universal solution algebra of equation (1) over K̂.
Indeed we have a monomorphism

m : K̂ → R⊗CK
C̄K

induced by the inclusion K → K[Yij]W . Let Zij be n2 independent variables,

0 ≤ i ≤ n− 1, 1 ≤ j ≤ n and extend derivation of K̂ to K̂[Zij] by

Z ′
ij = Zi+1,j for 0 ≤ 1 ≤ n− 2,

Z ′
n−1,j = −an−1Zn−1,j − . . .− a1Z1j − a0Z0j.

Then m can be extended to a di�erential morphism K̂[Zij] → R̂ and the
image by m of the wronskian determinant det(Zij) of the Z0j is an invertible

element in R̂. So by [1], proposition 3.2, we obtain a di�erential morphism

K̂[Zij]Ω → R̂,

where Ω is the multiplicative system of the powers of the wronskian deter-
minant det(Zij).
The inverse of this morphism is induced by the natural bilinear morphism of
CK-algebras

R× C̄K → K̂[Zij]Ω.
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For a maximal real di�erential ideal P of R, the extended ideal P e is
clearly a proper di�erential ideal of R̂. Let M be a maximal di�erential ideal
of R̂ containing P e. We have then an epimorphism R/P → R/P ec, where c
denotes contraction of ideals, inducing an epimorphism

R/P ⊗CK
C̄K → R/P ec ⊗CK

C̄K ,

and also an epimorphism R̂/P e → R̂/M . Let us prove now

R/P ec ⊗CK
C̄K ' R̂/P e.

Indeed, the kernel of the epimorphism

R̂ = R⊗CK
C̄K → R/P ec ⊗CK

C̄K

is P ece = P e. We have then the following inequalities

trdeg(L|K) = trdeg(R/P |K) ≥ trdeg(R̂/P e|K̂) ≥ trdeg(R̂/M |K̂). (3)

Moreover, by construction, trdeg(L|K) ≤ n2. We obtain

Theorem 3.1. Let K be a real di�erential �eld with real closed �eld of con-
stants CK. Let L(Y ) = 0 be a homogeneous linear di�erential equation of
order n de�ned over K. Let K̂ = K⊗CK

C̄K and assume that the di�erential

Galois group of L over K̂ is Gln(C̄K). Then there exists a Picard-Vessiot
extension L for L(Y ) = 0 over K which moreover is a real �eld.

Proof. In the above construction the fraction �eld of R̂/M is a Picard-Vessiot
extension for L over K̂. So trdeg(R̂/M |K̂) = n2 (see e.g. [4], corollary 4.1).
Hence inequalities (3) are all equalities. We want to prove that the real �eld L
constructed above is a Picard-Vessiot extension for L(Y ) = 0 over K. To this
end, it remains to prove CL = CK . Let us assume the contrary. By lemma
3.1, an element a ∈ CL \ CK is transcendent over K. Let S := R/P be the
quotient of the full universal solution algebra by a maximal real di�erential
ideal constructed above. Let I1 (resp. I2) be the ideal of S of denominators
(resp. of numerators) of a, i.e. I1 := {b ∈ S|ba ∈ S}, I2 := {b ∈ S|ba−1 ∈ S}.
Then both ideals are di�erential ideals and at least one of them contains
elements transcendent over K. Let us denote it by I. We assume �rst that
I1 and I2 are both proper, so I as well. The extended ideal P e will be

7



contained strictly in the extension of the di�erential ideal P + I, which will
be contained in a maximal di�erential ideal M of R̂. We would have then
trdeg(R̂/P e|K̂) > trdeg(R̂/M |K̂) which gives a contradiction. We assume
now that only one of I1 and I2 is proper, let say I2. Then a is a non invertible
element in S. The ideal (a) of S is a proper di�erential ideal containing at
least one transcendent element so we arrive to a contradiction as before. If
the ideals I1 and I2 are both equal to S for all elements a ∈ CL \CK , we have
CL ⊂ S. In this case, by applying lemma 3.2 below, for each a ∈ CL \ CK ,
there is a constant c ∈ CK such that a − c is not invertible in S. Hence,
the ideal (a − c) of S is a proper di�erential ideal containing at least one
transcendent element so we arrive again to a contradiction. We have then
obtained that the real �eld L is a Picard-Vessiot extension for L over K.

Lemma 3.2. Let K be a real di�erential �eld with real closed �eld of con-
stants CK. Let A be a �nitely generated K-algebra without zero divisors and
let a be an element of A. Then either a is algebraic over K or there is a
constant c ∈ CK such that a− c is not invertible in A.

Proof. Let K be the algebraic closure of K, A := A⊗KK. Let us observe that
if the element a⊗ 1− c⊗ 1 = (a− c)⊗ 1 is not a unit in A, then the element
a − c will be a nonunit in A. Let VK be the a�ne algebraic variety with
coordinate ring A. Then a⊗ 1 de�nes a K-valued function f : VK → K. By
Chevalley's theorem, f(VK) is a constructible subset of K, hence it is either
�nite or co�nite in K. If f(VK) is a �nite set, then it is a point because
VK is irreducible. In this case, f is a constant function then a ∈ K. In the
second case, as the real closed �eld CK is in�nite, there exists c ∈ CK such
that f(ω) = c, for some ω ∈ VK . Let us observe that f − (c⊗ 1) vanishes at
ω and therefore a⊗ 1− c⊗ 1 is not invertible in A.
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