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1 Introduction

Picard-Vessiot theory can be described as Galois theory of linear differ-
ential equations. A derivation of a field K is defined as a map d : K — K
satisfying d(a + b) = d(a) + d(b) and d(ab) = d(a)b + ad(b), for all a,b in
K. A differential field is a field endowed with a derivation. We shall use the
usual notation o, a”, ..., a"™ for the successive derivations of the element a.
We denote by Ck the field of constants of a differential field K. We shall
consider homogeneous linear differential equations over a differential field K
of the form

LY):=Y" 4a, YO 4 a0V +aY =0,

where a; € K fori € {0,1,...,n—1}. If L is a differential field extension of
K i.e. a differential field containing K with derivation extending derivation
in K, the set of solutions of £L(Y) = 0in L is a C-vector space of dimension
< n. A fundamental system of solutions of L(Y) = 0 is a set of n solutions
of the equation in some differential extension L of K, linearly independent
over Cf.

A Picard-Vessiot extension for £(Y) = 0 over K is a differential field
extension of K differentially generated by a fundamental system of solutions
of L(Y) =0, i.e. generated by the elements in the fundamental system and
their derivatives, and not adding constants. Picard-Vessiot theory is due to
E. Picard and E. Vessiot and in rigorous form to E. Kolchin, who built on
the work of J.F. Ritt in differential algebra. It was made more accessible by
the book of I. Kaplansky [5]. We refer the reader also to [4], [6] and [8] for
the results of Picard-Vessiot theory used in this paper.

Picard-Vessiot theory has been built under the hypothesis that the field
of constants C of the differential field K is algebraically closed. In this case,
one obtains existence and uniqueness, up to K-differential isomorphisms, of
the Picard-Vessiot extension of the differential equation and that the dif-
ferential Galois group of the differential equation, defined as the group of
K-differential automorphisms of its Picard-Vessiot extension, is a linear al-
gebraic group of rank n over Ck. It is worth considering whether the con-
dition Ck algebraically closed can be weakened. In particular, the case of
real fields is interesting due to the application of Picard-Vessiot theory to the
integrability of hamiltonian systems (see [7] or [4]).

In this paper we consider homogeneous linear differential equations £(Y') =



0 defined over a real field K with real closed field of constants. We prove
that, in the generic case, there exists a Picard-Vessiot extension for £(Y) =0
over K which moreover is a real field. For the results of the theory of real
fields used in this paper, we refer the reader to [3].
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2 Auxiliary results

We consider a homogeneous linear differential equation of order n over a
real differential field K, with real closed field of constants Cx

LOV)=Y"™ 4a, ;YO 4 a0V +ayY =0, (1)

where a; € K for i € {0,1,...,n —1}.
We recall the definition of Picard-Vessiot extension.

Definition 2.1. A differential field extension K C L is a Picard - Vessiot
extension for L if

1. L is differentially generated over K by the set of solutions of L(Y) =0
in L,

2. L(Y) =0 has in L exactly n solutions lineary independent over Ck,
3. every constant of L lies in K i.e. Cx = Cp.

In the case in which Cx is an algebraically closed field, a Picard-Vessiot
extension for £ over K is obtained by constructing the full universal solution
algebra R (see below) and considering a maximal differential ideal M of R,
i.e. a maximal element in the set of proper differential ideals of R, which
is proved to be prime. Then one can prove that the field of fractions of the
integer domain R/M fulfills the conditions to be a Picard-Vessiot extension
for £ over K.

In this paper we consider the case in which K is a real field and C¥k is
real closed. We are interested in real differential ideals of the full universal



solution algebra R and a crucial point for our construction will be to prove
that a maximal real differential ideal of R, i.e. a maximal element in the set
of proper real differential ideals of R, is prime. To this end we shall use a
theorem of Ritt of which we give the statement for the convenience of the
reader (see [9], chapter 1.16, or [2] 1.3).

Theorem 2.1. (Ritt) Let K be a differential field of characteristic zero. Let
R be a differential K-algebra finitely differentially generated, I a proper rad-

ical differential ideal of R. Then there exists finitely many prime differential
wdeals Py, ..., Py of R, such that

I=PnNn...NF,

Moreover, when P, € P; for all i # j, 4,5 € {1,...,s}, then {P,,..., P}
1S uUNtque.

Proposition 2.1. Let K be a differential field of characteristic zero, R a
noetherian differential K-algebra finitely differentially generated. Let I be a
mazximal real differential ideal of R. Then I is prime.

Proof. I is radical, because it is real (see 3], lemma 4.1.5). Then, by theorem
2.1, I is an intersection of finite number of prime differential ideals, i.e.

I=PnNn...NP,. (2)

Moreover, we can assume that P, ¢ P; for all ¢ # j. Indeed, if some
P, C P, for i # j, we can omit P; and reduce the decomposition. Therefore
(2) is a primary decomposition of the ideal I with

rad(P;) = P, # rad(P;) = P; Vi # j.

Hence, by unicity in theorem 2.1, it is a reduced primary decomposition (see
[1], chap.4). So the P!s are exactly the minimal prime ideals containing I.
Now, minimal prime ideals containing the real ideal I are as well real (see
[3], lemma 4.1.5). But [ is a maximal real differential ideal, so s = 1 and
I = P,. Therefore [ is prime.
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3 Main result

We consider the homogeneous linear differential equation (1) defined over
the real field K. We construct a differential K-algebra containing a full set
of solutions of the equation and prove that it can be ordered.

Let us consider the ring K[Y;;], where 0 < i <n—1and 1 <j <mn. Itis
a polynomial ring in n? indeterminates. We extend the derivation of K to
KY;;] by defining

}/i;':}/i-i-l,j for OSZSTL—2,

Y

n—1,j5 =

We denote W = det(Y;;).We have

_anflynfl,j ... 661Y1j - aoybj-

Yoo ... Yo Yoo ... Yo
W = det Yoo Y = det Yoo Yo
Yin oo Yoi Y L v

So W is the wronskian (determinant) of Yy, ..., Yo,.

Let W = {W"},<¢ be the multiplicative system of the powers of W. Let
R := K|Y}] be the localization of K[Y;;| in W. The derivation of K[Y}]
extends to R in an unique way (see e.g. [4], remark 2.1).

The K-algebra R is called the full universal solution algebra. By construction,
it contains n solutions of equation (1) linearly independent over constants.
Forgetting the differential structure, R is a subring of the field of rational
functions in n? variables over K, so it can be ordered (see |3], example 1.1.2)
and it is an integral domain. Hence 0 is a real differential ideal of R and the
set of real differential ideals of R is not empty.

Let P be a maximal real differential ideal of R. Then, by proposition 2.1, P is
prime. So the quotient ring R/P is an integral domain. The field of fractions
L = Fr(R/P) is a real field, because P is a real differential ideal (see [3],
lemma 4.1.6). By our construction L is a real field differentially generated
over K by a fundamental system of solutions of equation (1). Concerning the
field of constants C'p of the real differential field L, we obtain the following
result.

Lemma 3.1. Let K and L be as above and assume that the constant field
Ck of K is real closed. If c € Cp \ Ck, then c is transcendent over K.
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Proof. If the constant ¢ were algebraic over K, it would be algebraic over
Ck (see e.g. [4] proof of Prop. 3.5). In this case, it would be a real algebraic
element. But Ck is a real closed field, so ¢ € Ck.

Remark 3.1. If the construction above leads to an algebraic extension K C
L, then L is a Picard-Vessiot extension of K.

Let Cx denote the algebraic closure of Ck. Let K=K Rck Cx. We
have Cx = Ck (i) and K = K (i) with i = —1.
We can extend the derivation from K to its complexification K (i) by defining

(a+bi) =d +bi VabeK.

Ck (i) is the field of constants of K (i) and it is algebraically closed. So there
exists a Picard-Vessiot extension for equation (1) over K ().

Let R = K[Y;]w be the full universal solution algebra of equation (1) over
K constructed above. Let R = R ®¢,. Cx. Then R is isomorphic to the full
universal solution algebra of equation (1) over K.

Indeed we have a monomorphism

m:[A(—>R®CKC’K

induced by the inclusion K — K[Y;;]w. Let Z;; be n? independent variables,
0<i<n-—1, 1<j<nandextend derivation of K to K[Z;;] by
Zz(j = Zij41,5 for 0 S 1 S n — 2,

!/

n—1,j = —an_lZn_Lj — ... — G1Z1j — CL()ZOj.

Then m can be extended to a differential morphism K[Z;] — R and the
image by m of the wronskian determinant det(Z;;) of the Z; is an invertible

element in R. So by [1], proposition 3.2, we obtain a differential morphism

~

where €2 is the multiplicative system of the powers of the wronskian deter-
minant det(Z;;).

The inverse of this morphism is induced by the natural bilinear morphism of
Ck-algebras
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For a maximal real differential ideal P of R, the extended ideal P¢ is
clearly a proper differential ideal of R. Let M be a maximal differential ideal
of R containing P¢. We have then an epimorphism R/P — R/P, where ¢
denotes contraction of ideals, inducing an epimorphism

R/P &¢,, Cx — R/P* ®¢, Ck,
and also an epimorphism R/ Pé — f%/M . Let us prove now
R/P* ®¢, Cx =~ R/P°.
Indeed, the kernel of the epimorphism
R=R®¢, Cx — R/P*®¢, Cx

is P°“¢ = P°. We have then the following inequalities

trdeg(L|K) = trdeg(R/P|K) > trdeg(R/P°|K) > trdeg(R/M|K).  (3)
Moreover, by construction, trdeg(L|K) < n?. We obtain

Theorem 3.1. Let K be a real differential field with real closed field of con-
stants Ck. Let L(Y) = 0 be a homogeneous linear differential equation of
order n defined over K. Let K= K ®c,. Cx and assume that the differential
Galois group of L over K is Gl,(Ck). Then there exists a Picard-Vessiot
extension L for L(Y) =0 over K which moreover is a real field.

Proof. In the above construction the fraction field of R /M is a Picard-Vessiot
extension for £ over K. So trdeg(R/M|K) = n? (see e.g. [4], corollary 4.1).
Hence inequalities (3) are all equalities. We want to prove that the real field L
constructed above is a Picard-Vessiot extension for £(Y) = 0 over K. To this
end, it remains to prove C; = Ck. Let us assume the contrary. By lemma
3.1, an element a € Cp \ Ck is transcendent over K. Let S := R/P be the
quotient of the full universal solution algebra by a maximal real differential
ideal constructed above. Let I; (resp. I3) be the ideal of S of denominators
(resp. of numerators) of a, i.e. I := {b € S|ba € S}, I, := {b € S|ba~! € S}.
Then both ideals are differential ideals and at least one of them contains
elements transcendent over K. Let us denote it by I. We assume first that
I; and I, are both proper, so I as well. The extended ideal P¢ will be
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contained strictly in the extension of the differential ideal P + I, which will
be contained in a maximal differential ideal M of R. We would have then
trdeg(R/P¢|K) > trdeg(R/M|K) which gives a contradiction. We assume
now that only one of I; and I, is proper, let say Is. Then a is a non invertible
element in S. The ideal (a) of S is a proper differential ideal containing at
least one transcendent element so we arrive to a contradiction as before. If
the ideals I; and I are both equal to S for all elements a € C,\ Ck, we have
Cp C S. In this case, by applying lemma 3.2 below, for each a € Cp, \ Ck,
there is a constant ¢ € Ck such that a — ¢ is not invertible in S. Hence,
the ideal (a — ¢) of S is a proper differential ideal containing at least one
transcendent element so we arrive again to a contradiction. We have then
obtained that the real field L is a Picard-Vessiot extension for £ over K.

Lemma 3.2. Let K be a real differential field with real closed field of con-
stants Ck. Let A be a finitely generated K -algebra without zero divisors and
let a be an element of A. Then either a is algebraic over K or there is a
constant ¢ € Cg such that a — ¢ is not invertible in A.

Proof. Let K be the algebraic closure of K, A := A®x K. Let us observe that
if the element a ® 1 —c® 1 = (a — ¢) ® 1 is not a unit in A, then the element
a — ¢ will be a nonunit in A. Let V5 be the affine algebraic variety with
coordinate ring A. Then a ® 1 defines a K-valued function f : V4 — K. By
Chevalley’s theorem, f(V%) is a constructible subset of K, hence it is either
finite or cofinite in K. If f(V%) is a finite set, then it is a point because
Vz is irreducible. In this case, f is a constant function then a € K. In the
second case, as the real closed field C is infinite, there exists ¢ € Ck such
that f(w) = ¢, for some w € V. Let us observe that f — (¢ ® 1) vanishes at
w and therefore ¢ ® 1 — ¢ ® 1 is not invertible in A.
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