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Abstract. Let X = (CN [0, 1], ‖ · ‖), where N ≥ 3 and let V be
a linear subspace of ΠN , where ΠN denotes the space of algebraic
polynomials of degree less than or equal to N .

Denote by PS = PS(X, V ) = {P : X → V | P–linear and
bounded P |V = idV , PS ⊂ S}, where S denotes a cone of multi-
convex functions.

In [25, 26] the multi-convex projections were defined and it was
shown the explicite formula for projection with minimal norm in
PS for V = ΠN .

In this paper we present a generalization of these results in the
case of V being certain, proper subspaces of ΠN .

1. Introduction

Let X be a real Banach space and let V ⊂ X be a finite-dimensional
subspace. A linear and continuous mapping P : X → V is called a
projection if P |V = idV . Denote by P(X, V ) the set of all projections
from X onto V . Moreover let S denote a cone, that is a convex set
closed under nonnegative multiplication. We say that projection P
preserve S-shape if PS ⊂ S (notation P ∈ PS). Particulary, if S
denotes a cone of functions which certain derivatives are nonnegative,
then projection preserving S-shape will be called multi-convex.
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The main problem consider in this paper is to find a minimal multi-
convex projection, that is a projection in PS of minimal norm. Note
the problem of finding projection of minimal norm (so called minimal
projection) or minimal shape preserving projection has been widely
studied by many authors (see e.g. [1]–[38]). Recent papers (ex. [26,
25]) gave answer to this problem in case, where subspace V is entire
space of polynomials of degree less than or equal to N (see [26]) under
assumption that the norm of minimal projection in Ps is not greater
than 2. In this paper we replace the space of polynomials by spaces of
incomplete ones. Also the above mentioned assumption is not needed.

The article is divided into four sections. The first one is an introduc-
tion. The second one consists of notation and important results that
are used in the paper. In third section we describe a basic projection
and its properties. The main results concerning recurrence formula are
enclosed in fourth section.

2. Notation

As it was mentioned before, the main goal of this paper is to define
a minimal multi-convex projection from CN [0, 1] (where N ≥ 3) onto
certain subspaces of space of polynomials of degree less than or equal to
N . To describe these subspaces and norms in CN [0, 1] we use a special
sequence.

For n ≤ N (N ≥ 3), let

{ki}n
i=0 ⊂ {0, 1, . . . , N} (1)

be such that

(K.1) ∀i ∈ {0, . . . n} : ki < ki+1,
(K.2) k0 = 0,
(K.3) kn−1 = N − 1 and kn = N .

Now, set a norm on CN [0, 1] as

‖f‖ = max{‖f (ki)‖∞ : i ∈ {0, . . . , n}}. (2)

By (K.2) such expression defines a norm and the couple (CN [0, 1], ‖ ·‖)
is a Banach space, (for brevity we write X as a (CN [0, 1], ‖ · ‖)).

Also using our sequence {ki} we define

vi(t) =
tki

ki!
, t ∈ [0, 1], i = 0, . . . , n, (3)

and
V = span{vi, i = 0, . . . n} ⊂ X. (4)

Furthermore, we denote

P(X, V ) = {P : X → V : P − linear and bounded P|V = idV }.



MINIMAL MULTI-CONVEX PROJECTIONS ONTO SUBSPACES OF POLYNOMIALS3

Now define

S = {f ∈ X : ∀t ∈ [0; 1], i ∈ {0, 1, . . . , n} f (ki)(t) ≥ 0}. (5)

Then, PS denotes set of all projections preserving S, that is

PS = {P ∈ P(X, V ) : PS ⊂ S}.
Now we present some result which will be use later.
First two are related to the geometry of considered spaces.

Lemma 2.1 (Lemma 4.4 [26]). Let g ∈ X∗ be given by

g =
N−1∑
i=0

δ
(i)
0 + δ

(N−1)
1 ,

where δ
(i)
t (f) = f (i)(t). Set

W1 = {F ∈ X∗∗ | F (g) = N + 1 and ‖F‖ = 1}.
Then W1 6= ∅.

Lemma 2.2 (Theorem 4.4 [26]). Let W = {F ∈ X∗∗ : F (ui) = 1, i =
0, . . . , n−1, ‖F‖ = 1}. Assume µ is a probabilistic Borel measure such
that

u(f) =

∫ 1

0

f (N)(t)dµ(t).

Then for any F ∈ W and for any Borel measure µ,

F (u) ≥ 0.

Next two lemmas concern the form of any projection in PS.

Lemma 2.3 (Lemma 5.1 [26]). Let Q ∈ PS. Then there exists u ∈ X∗

such that

Qf =
n−1∑
i=0

ui(f)vi + u(f)vn, (6)

where

u(f) =

∫ 1

0

f (n)(t)dµ(t) (7)

and µ is a probabilistic Borel measure.

Lemma 2.4 (Corollary 5.1 [26]). Let Ql ∈ PSl
. Then there exist ul

i, u ∈
X∗, for i = 0, . . . , l such that

Qlf =
l−1∑
i=0

ul
i(f)v

[l]
i +

n+l−1∑
i=l

ui−l(f
lk1)v

[l]
i + u(f)v

[l]
n+l,

where ui and v
[l]
i are defined in (8), (12). (see page 4 and 8)
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3. Minimal multi-convex projection – basic case

We start with

Theorem 3.1 (Explicite formula for P ). Let X = (CN [0, 1], ‖ · ‖) (for
N ≤ 3) and let {ki}n

i=0 (for n ≥ N) satisfy (K.1)-(K.3). For f ∈ X
and t ∈ [0, 1] define

Pf(t) =
n∑

i=0

ui(f)vi(t),

where

ui(f) = f (ki)(0), i = 0, . . . , n− 1,

un(f) =
(
f (kn−1)(1)− f (kn−1)(0)

)
(8)

vi(t) =
tki

ki!
, t ∈ [0, 1], i = 0, . . . , n.

Then P is multi-convex projection from X onto V , where V is given
by (4).

To prove Theorem 3.1 we need

Observation 3.2. The projection defined above can be written as

Pf(t) = f(0) + f (k1)(0)
tk1

k1!
+ f (k2)(0)

tk2

k2!
+ . . . + f (kn−2)(0)

tkn−2

kn−2!
+

+f (N−1)(0)
tN−1

(N − 1)!
+
(
f (N−1)(1)− f (N−1)(0)

) tN

N !

Note that due to properties of differentiation, P is linear and bounded.
Next observation and two corollaries concern the subspace V .

Observation 3.3. For i = 0, . . . , n and j = 0, . . . , n− 1, ki-th deriva-
tive of vj is expressed by formula

v
(ki)
j (t) =


tkj−ki

(kj−ki)!
, i < j

1, i = j

0, i > j.

Corollary 3.4. For i = 0, . . . , n and j = 0, . . . , n

v
(ki)
j (0) = δij

v
(kn−1)
j (1) = 1 if and only if j = n− 1 or j = n.
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Corollary 3.5. For i = 0, . . . , n− 1 and j = 0, . . . , n− 1

ui(vj) = δij

ui(vn) = 0

un(vj) = 0− 0 = 0,

un(vn) = 1− 0 = 1,

where ui, vi are as in Theorem 3.1.

Proof of Theorem 3.1. We divide this proof into two parts.

(1) By Corollary 3.5, we obtain

Pvj(t) =
n∑

i=0

δijvi(t) = vj(t).

Since P is linear and bounded, P ∈ PS.
(2) Now we show that P is multi-convex.

It is obvious, that for t ∈ [0, 1], vi(t) ≥ 0. Moreover,

(vi−1 − vi)(t) ≥ 0.

Let f ∈ S. Thus ui(f) ≥ 0, f (N−1)(0) ≥ 0 and f (N−1)(1) ≥ 0.
Hence

Pf(t) =
n∑

i=0

ui(f)vi(t)

=
n−2∑
i=0

ui(f)vi(t) + f (N−1)(0)vn−1(t)

+
(
f (N−1)(1)− f (N−1)(0)

)
vn(t)

=
n−2∑
i=0

ui(f)vi(t) + f (N−1)(0) (vn−1(t)− vn(t))

+f (N−1)(1)vn(t) ≥ 0

By Observation 3.3 for j < n− 1, we get:

(Pf)(kj)(t) =
n∑

i=j

ui(f)vi−j(t)

=
n−2∑
i=j

ui(f)vi−j(t) + f (N−1)(0)(vn−1−j(t)

−vn−j(t)) + f (N−1)(1)vn−j(t) ≥ 0.
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Also

(Pf)(kn−1)(t) = f (N−1)(0) (v0(t)− v1(t)) + f (N−1)(1)v0(t) ≥ 0

and

(Pf)(kn)(t) =
(
f (N−1)(1)− f (N−1)(0)

)
v0(t)

=
(
f (N−1)(1)− f (N−1)(0)

)
=

∫ 1

0

f (N)(s)ds ≥ 0.

This shows that Pf ∈ S and consequently P ∈ PS.

�

Theorem 3.6. Let X = (CN [0, 1], ‖ · ‖) (for N ≤ 3) and {ki}n
i=0 (for

n ≥ N) satisfies (K.1)-(K.2). Let P be as in Theorem 3.1.
Then P has minimal norm in PS and

‖P‖ =
n−1∑
i=0

1

ki!
.

Proof. Note that

‖Pf‖ ≤ ‖Pf‖∞

= sup
t∈[0,1]

∣∣∣∣∣
n−2∑
i=0

ui(f)vi(t) + f (n−1)(0) (vn−1(t)− vn(t)) + f (n−1)(1)vn(t)

∣∣∣∣∣
≤ sup

t∈[0,1]

{
n−2∑
i=0

|ui(f)vi(t)|+
∣∣f (n−1)(0) (vn−1(t)− vn(t))

∣∣+ ∣∣f (n−1)(1)vn(t)
∣∣}

≤ sup
t∈[0,1]

{
n−2∑
i=0

‖f‖ |vi(t)|+ ‖f‖ |vn−1(t)− vn(t)|+ ‖f‖ |vn(t)|

}

= ‖f‖ sup
t∈[0,1]

{
n−2∑
i=0

|vi(t)|+ |vn−1(t)− vn(t)|+ |vn(t)|

}

= ‖f‖ sup
t∈[0,1]

{
n−2∑
i=0

vi(t) + vn−1(t)− vn(t) + vn(t)

}
= ‖f‖

n−1∑
i=0

1

ki!
,

which shows that

‖P‖ ≤
n−1∑
i=0

1

ki!

Before proving next inequality we need

Lemma 3.7. X = CN [0, 1]. There exists {fk}∞k=1 ⊂ X such that:
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(1) ∀i = 0, . . . , N − 1 : limk→∞ f
(i)
k (0) = 1,

(2) limk→∞ f
(N−1)
k (1) = 1,

(3) ∀i = 0, . . . , N : ‖f (i)
k ‖∞ = 1.

Proof. It follows from Lemma 4.4 in [26] (see Lemma 2.1) and the
Goldstine Theorem. �

Now applying sequence {fk}∞k=1 ⊂ X we obtain

lim
k→∞

Pfk(t) =
n−1∑
i=0

vi(t) =
n−1∑
i=0

tki

ki!
.

Hence

sup
t∈[0,1]

| lim
k→∞

Pfk(t)| = sup
t∈[0,1]

∣∣∣∣∣
n−1∑
i=0

tki

ki!

∣∣∣∣∣ =
n−1∑
i=0

1

ki!
.

As a result
n−1∑
i=0

1

ki!
≤ ‖P‖.

The last part concerns minimality of P in PS.
Let Q ∈ Ps. By Lemma 2.3

Qf =
n−1∑
i=0

ui(f)vi + u(f)vn,

where u(f) is given by 7. By Lemma 2.2 for every F ∈ W

‖Q‖ ≥
n−1∑
i=0

1

ki!
+ F (u) ≥

n−1∑
i=0

1

ki!
,

Hence
‖Q‖ ≥ ‖P‖

and P is minimal.
�

4. The construction of projections for other
multi-convex shape

Due to a special construction, we can obtain by recursive formula
projections preserving others shapes from our projection P defined in
previous section.

Define
Tm : C[0, 1] → C[0, 1], m = k1 − 1,

by

Tmf(s) =

∫ s

0

∫ sm−1

0

. . .

∫ s1

0

f(s0)ds0ds1 . . . dsm−1. (9)
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Observation 4.1. For any f ∈ C[0, 1] and m ∈ N

(Tmf)(m) = f.

The operator Tm will be used in our recurrence formula.

Now we need some additional notation.
In CN+lk1 [0, 1] we consider a norm:

‖f‖l = max
i∈{0,...,n},j∈{0,...,l−1}

{‖f jk1‖∞, ‖f (ki+lk1)‖∞}. (10)

It is clear that, the norm ‖ · ‖ defined in section 2 is our ‖ · ‖0 norm.
Let Xl = (CN+lk1 [0, 1], ‖ · ‖l), so X = X0.

Moreover, put

Vl = span{v[l]
0 , v

[l]
1 , . . . , v

[l]
n+l}, (11)

where

v
[l]
0 (t) = 1,

v
[l]
i (t) =

∫ t

0

Tmv
[l−1]
i−1 (s)ds, i = 1, . . . , n + l. (12)

(13)

Let

Pl = Pl(Xl, Vl)

= {P : Xl → Vl : P − linear and bounded, P|Vl
= idVl

}.(14)

Now we wille define a cone Sl.

Sl = {f ∈ Xl : ∀t ∈ [0; 1], i ∈ {0, 1, . . . , n} f (ki+lk1)(t) ≥ 0}. (15)

We denote shape-preserving projection with respect to Sl as

PSl
= {P ∈ Pl : PSl ⊂ Sl}.

Theorem 4.2 (Recurrence formula). For fixed N ≥ 3 and n ≤ N
suppose {ki}n

i=0 satisfies (K.1)–(K.3). For given l ∈ N, let Xl, Vl and
Sl be as above. Suppose Pl ∈ PSl

.
Then an operator defined by

Pl+1f(t) =
f(0) + f(1)

2
+

∫ t

0

TmPlf
(k1)(s)ds− 1

2

∫ 1

0

TmPlf
(k1)(s)ds

(16)
belongs to Pl+1 ∈ PSl+1

.

Proof. First we show that Pl+1 is a projection.
Note that (

v
[l+1]
0

)(k1)

(t) = 0
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and for j = 1, . . . , n + l + 1,

(v
[l+1]
j )(k1)(t) = (v

[l+1]
j )(1+m)(t)

=

((
v

[l+1]
j

)′)(m)

(t)

=

((∫ t

0

Tmv
[l]
j−1(s)ds

)′)(m)

=
(
Tmv

[l]
j−1

)(m)

(t) = v
[l]
j−1(t).

Consequently

Pl+1v
[l+1]
0 (t) =

v
[l+1]
0 (0) + v

[l+1]
0 (1)

2
+

∫ t

0

TmPl

(
v

[l+1]
0

)(k1)

(s)ds

−1

2

∫ 1

0

TmPl

(
v

[l+1]
0

)(k1)

(s)ds

=
1 + 1

2
+

∫ t

0

TmPl0ds− 1

2

∫ 1

0

TmPl0ds

= 1 + 0− 1

2
· 0

= 1 = v
[l+1]
0 (t)

Also for i = 1, . . . , n + l

Pl+1v
[l+1]
i (t) =

v
[l+1]
i (0) + v

[l+1]
i (1)

2
+

∫ t

0

TmPl

(
v

[l+1]
i

)(k1)

(s)ds

−1

2

∫ 1

0

TmPl

(
v

[l+1]
i

)(k1)

(s)ds

=
v

[l+1]
i (0) + v

[l+1]
i (1)

2
+

∫ t

0

TmPl

(
v

[l]
i−1

)
(s)ds

−1

2

∫ 1

0

TmPl

(
v

[l]
i−1

)
(s)ds
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=
v

[l+1]
i (0) + v

[l+1]
i (1)

2
+

∫ t

0

Tm

(
v

[l]
i−1

)
(s)ds

−1

2

∫ 1

0

Tm

(
v

[l]
i−1

)
(s)ds

=
1

2

(
v

[l+1]
i (0) + v

[l+1]
i (1)

)
+ v

[l+1]
i (t)

−1

2

(
v

[l+1]
i (1)− v

[l+1]
i (0)

)
= v

[l+1]
i (t) + v

[l+1]
i (0) = v

[l+1]
i (t),

what ends this part of the proof.
Now assume that we have proved

∀j ∈ {0, . . . , l − 1} : (Pl+1f)(jk1) =
(
Plf

(k1)
)((j−1)k1)

(17)

and

∀i ∈ {0, . . . , n} : (Pl+1f)(ki+lk1) =
(
Plf

(k1)
)(ki+(l−1)k1)

.(18)

Let f ∈ Sl+1. Hence f (kj+(l+1)k1)(t) ≥ 0 for t ∈ [0, 1] and j =
0, 1, . . . , n.

By (17–18) and definition of Pl

(Pl+1f)(kj+lk1) =
(
Plf

(k1)
)(kj+(l−1)k1)

=
(
Pl−1f

(2k1)
)(kj+(l−2)k1)

= . . .

=
(
Pf (lk1)

)(kj)
.

Hence for j = 0, . . . , n− 2(
Pf (lk1)

)(kj)
(t) =

n∑
i=j

ui(f
(lk1))vi−j(t)

=
n−2∑
i=j

ui(f
(lk1))vi−j(t) +

(
f (lk1)

)(N−1)
(1)vn−j(t)

+
(
f (lk1)

)(N−1)
(0) (vn−1−j(t)− vn−j(t))

=
n−2∑
i=j

f (ki+lk1)(0)vi−j(t) + f (lk1+N−1)(1)vn−j(t)

+f (lk1+N−1)(0) (vn−1−j(t)− vn−j(t)) ≥ 0.

Also(
Pf (lk1)

)(kn−1)
(t) = f (lk1+N−1)(0) (1− t) + f (lk1+N−1)(1)t ≥ 0
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and (
Pf (lk1)

)(kn)
(t) =

(
f (lk1+N−1)(1)− f (lk1+N−1)(0)

)
≥ 0.

To end the proof, we need to show (17) and (18)
Note that

(Pl+1f)(jk1) (t) =

(
f(0) + f(1)

2
+

∫ t

0

TmPlf
(k1)(s)ds

− 1

2

∫ 1

0

TmPlf
(k1)(s)ds

)(jk1)

=

(
f(0) + f(1)

2
− 1

2

∫ 1

0

TmPlf
(k1)(s)ds

)(jk1)

+

(∫ t

0

TmPlf
(k1)(s)ds

)(jk1)

=

(∫ t

0

TmPlf
(k1)(s)ds

)(k1+(j−1)k1)

=

(∫ t

0

TmPlf
(k1)(s)ds

)(1+m+(j−1)k1)

=
(
TmPlf

(k1)(t)
)(m+(j−1)k1)

=
(
Plf

(k1)
)((j−1)k1)

(t),

which shows (17).
Also

(Pl+1f)(ki+lk1) (t) =

(
f(0) + f(1)

2
+

∫ t

0

TmPlf
(k1)(s)ds

− 1

2

∫ 1

0

TmPlf
(k1)(s)ds

)(ki+lk1)

=

(∫ t

0

TmPlf
(k1)(s)ds

)(ki+lk1)

=

(∫ t

0

TmPlf
(k1)(s)ds

)(k1+ki+(l−1)k1)

=
(
TmPlf

(k1)(t)
)(m+ki+(l−1)k1)

=
(
Plf

(k1)
)(ki+(l−1)k1)

(t),

which shows (18)
The proof is complete �
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As we know, the recurrence formula given in Theorem 4.2 builds a
multiconvex projection. Now we show that if Pl is minimal in PSl

, then
Pl+1 is minimal in PSl+1

, which is the main result of this paper.
First we need two lemmas.

Lemma 4.3. Let p ∈ ΠN , p(s) =
∑N

i=0 ai
si

i!
and let Cp be a constant

such that

sup
s∈[0,1]

{
N∑

i=0

|ai|
si

i!

}
≤ Cp.

Then ∣∣∣∣∫ t

0

Tmp(s)ds− 1

2

∫ 1

0

Tmp(s)ds

∣∣∣∣ ≤ 1

2k1!
Cp.

Proof. Set

p(s) =
n∑

i=0

ai
si

i!
, Tmp(s) =

N∑
i=0

ai
si+m

(i + m)!
, p̃(t) =

∫ t

0

Tmp(s)ds.

Then ∫ t

0

Tmp(s)ds− 1

2

∫ 1

0

Tmp(s)ds = p̃(t)− 1

2
p̃(1).

Note that

p̃(t) =
N∑

i=0

ai
ti+m+1

(i + m + 1)!

=
N∑

i=0

ai
ti+k1

(i + k1)!

=
1

k1!

N∑
i=0

aik1!i!

(i + k1)!

ti+k1

i!

=
1

k1!

N∑
i=0

ai(
i+k1

k1

) ti+k1

i!
.
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Hence

sup
t∈[0,1]

∣∣∣∣p̃(t)− 1

2
p̃(1)

∣∣∣∣ = sup
t∈[0,1]

∣∣∣∣∣ 1

k1!

N∑
i=0

ai(
i+k1

k1

) ti+k1 − 1
2

i!

∣∣∣∣∣
=

1

k1!
sup

t∈[0,1]

∣∣∣∣∣
N∑

i=0

ai(
i+k1

k1

) ti+k1 − 1
2

i!

∣∣∣∣∣
≤ 1

k1!
sup

t∈[0,1]

{
N∑

i=0

∣∣∣∣∣ ai(
i+k1

k1

)∣∣∣∣∣
∣∣∣∣ti+k1 − 1

2

i!

∣∣∣∣
}

≤ 1

k1!
sup

t∈[0,1]

{
N∑

i=0

|ai|
∣∣∣∣ti+k1 − 1

2

i!

∣∣∣∣
}

≤ 1

k1!

N∑
i=0

|ai|
1
2

i!
=

1

2k1!

n∑
i=0

|ai|
1

i!
≤ 1

2k1!
Cp,

as required. �

It is worth to notice that above Lemma plays crucial role in this
paper. It permits to generalize [[26], Theorem 2.4] without assumption
that ‖Pl‖ ≥ 2.

Lemma 4.4. If ‖Pl‖ ≥ 1 + 1
k1!

, then

‖Pl+1f‖∞ ≤ ‖Pl‖.

Proof. Let ‖f‖l+1 = 1. By definition of ‖ · ‖l and ‖ · ‖l+1, we obtain
that ‖f (k1)‖l = 1. Hence

‖Pl+1f‖∞ = sup
t∈[0,1]

∣∣∣∣f(0) + f(1)

2
+

∫ t

0

TmPlf
(k1)(s)ds− 1

2

∫ 1

0

TmPlf
(k1)(s)ds

∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣‖f‖+ ‖f‖
2

+

∫ t

0

TmPlf
(k1)(s)ds− 1

2

∫ 1

0

TmPlf
(k1)(s)ds

∣∣∣∣
= ‖f‖+ sup

t∈[0,1]

∣∣∣∣∫ t

0

TmPlf
(k1)(s)ds− 1

2

∫ 1

0

TmPlf
(k1)(s)ds

∣∣∣∣
= 1 + sup

t∈[0,1]

∣∣∣∣∫ t

0

TmPlf
(k1)(s)ds− 1

2

∫ 1

0

TmPlf
(k1)(s)ds

∣∣∣∣
=

1 + 1
k1!

1 + 1
k1!

+ sup
t∈[0,1]

∣∣∣∣∫ t

0

TmPlf
(k1)(s)ds− 1

2

∫ 1

0

TmPlf
(k1)(s)ds

∣∣∣∣
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By Lemma 4.3, applied to p(s) = Plf
(k1)(s) ∈ ΠN+lk1 and Cp = ‖Pl‖,

we obtain:

‖Pl+1f‖∞ ≤
1 + 1

k1!

1 + 1
k1!

+
1

2k1!
‖Pl‖

≤ 1

1 + 1
k1!

‖Pl‖+
1

2k1!
‖Pl‖

≤
2k1! + 1 + 1

k1!

2k1! + 2
‖Pl‖

≤ ‖Pl‖ (cause k1 ≥ 1).

�

First, we show that our recurrence formula keeps the norm of pro-
jection Pl constant.

Theorem 4.5. For fixed Pl such that Pl ∈ Pl with ‖Pl‖ ≥ 1 + 1
k1!

and
Pl+1 received by the recurrence formula 4.2 we have

‖Pl+1‖ = ‖Pl‖.

Proof. Note that

‖Pl+1f‖l+1 = max{‖(Pl+1f)jk1‖∞, ‖(Pl+1f)(ki+lk1)‖∞ :

i ∈ {0, . . . , n}, j ∈ {0, . . . , l − 1}}
Assume that ‖f‖l+1 = 1.

Then by Lemma 4.4

(1) ‖Pl+1f‖∞ ≤ ‖Pl‖.
By (17)

(2) ‖ (Pl+1)
(jk1) f‖∞ ≤ ‖ (Pl)

(j−1)k1) (f (k1)
)
‖∞ ≤ ‖Pl‖.

By (18)

(3) ‖ (Pl+1)
(ki+lk1) f‖∞ ≤ ‖ (Pl)

(ki+(l−1)k1) (f (k1))
)
‖∞ ≤ ‖Pl‖.

Consequently,

‖Pl+1‖ ≤ ‖Pl‖.
�

By to Lemma 2.4, any Ql ∈ PSl
may be represented as

Qlf =
l−1∑
i=0

ul
i(f)v

[l]
i +

n+l−1∑
i=l

ui−l(f
lk1)v

[l]
i + u(f)v

[l]
n+l.

It is obvious that

‖Qlf‖l ≥ ‖(Qlf)(lk1)‖∞.
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Lemma 4.6. If Ql ∈ PSl
and ‖f‖l = 1, f ∈ Xl, then

‖(Qlf)(lk1)‖∞ ≥ ‖Q‖,
where Q is a corresponding projection in PS.

Proof. By direct calculation (see page 9), we obtain

(Qlf)(lk1) =

(
l−1∑
i=0

ul
i(f)v

[l]
i +

n+l−1∑
i=l

ui−l(f
lk1)v

[l]
i + u(f)v

[l]
n+l

)(lk1)

=

(
n+l−1∑

i=l

ui−l(f
lk1)v

[l]
i + u(f)v

[l]
n+l

)(lk1)

=
n−1∑
i=0

ui(f
lk1)vi + u(f)vn.

What implies
‖(Qlf)(lk1)‖∞ ≥ ‖Q‖.

�

Now we show the main result of this paper.

Theorem 4.7 (Minimality of Pl). Let P be a minimal multiconvex
projection (P ∈ PS) and let Pl be projection created by applying l-times
recurrence formula (16) (see Theorem 4.2).

Then for any projection Ql ∈ PSl

‖Ql‖l ≥ ‖Pl‖l.

Proof. By Lemma 4.6, for f ∈ X, ‖f‖l = 1,

‖Q‖l ≥ ‖Qlf‖l ≥ ‖(Qlf)(lk1)‖∞ ≥ ‖Q‖ ≥ ‖P‖ ≥ ‖Pl‖l,

which proofs the minimality of Pl in PSl
. �

Remark. If V = ΠN then Theorem 4.7 reduces to Theorem 2.4 in
[26].
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