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Abstract

In this paper we demonstrate that the Lojasiewicz theorem on the
division of distributions by analytic functions carries over to the case
of division by quasianalytic functions locally definable in an arbitrary
polynomially bounded, o-minimal structure which admits smooth cell
decomposition. Hence, in particular, the principal ideal generated by
a locally definable quasianalytic function is closed in the Fréchet space
of smooth functions.

In his famous paper [9], S. Lojasiewicz solved the problem of the division
of distributions by analytic functions, posed by L. Schwartz [18]. The first
part of his paper was devoted to distributions D(U) and smooth functions
E(U), i.e. of class C* on U. In the theorem from Section 10, he achieved the
division of distributions by a smooth function ®, provided that its zero locus
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Z :={® = 0} admits a certain finite smooth stratification which enjoys some
properties of growth and regular separation. In part two, he established an
inequality for analytic functions, being a special case of that for subanalytic
functions, now called the Lojasiewicz inequality. It was a crucial point in the
proof of that every analytic function ® fulfils the assumptions of the above
theorem.

Let us emphasize that the regular separation of any two closed subanalytic
subsets is a direct consequence of the Lojasiewicz inequality applied to the
distance functions from those two sets. Sometimes the condition of regular
separation itself is called Lojasiewicz’s inequality too.

We wish to recall Lojasiewicz’s theorem under study, and next to prove
that its assumptions are fulfilled — after a suitable, generic, linear change of
coordinates — by every quasianalytic function definable in a polynomially
bounded, o-minimal structure R which admits smooth cell decomposition.
Note that examples of such structures are the expansions of the real field by
restricted quasianalytic functions (including some classical Denjoy—Carleman
classes) which satisfy certain natural conditions (cf. [17, 13, 14]).

For a bounded open subset U C R", let us introduce, after Lojasiewicz,
the following notation:

D'(U), E'(U) and P'(U) stand for the spaces of distributions, distributions
with compact supports and distributions prolongable onto R™, respectively.

It is easy to check, by means of a partition of unity, that the division
problem is local. Therefore, if the answer to the division problem is affirma-
tive for one of those spaces of distributions, it is so for the remaining two as
well.

For a bounded open subset 2 C R* let H(Q2) denote the set of smooth
functions f : 2 — R that satisfy the following growth condition:
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Vaec N I M, s,>0 < M, dist (u, 0Q) ™% for all wu € Q.

Further, G(€2) denotes the set of smooth functions f : @ — R that satisfy
the following growth condition:

de,s>0 |f(u)] > edist (u,00)° forall wu e .
Consider a bounded smooth leaf I' C R™ of the form
I'={(u,v) € QxR ™" :v=n(u)}, (*)
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where © is a bounded open subset of R¥ w = (z1,...,21), v = (g1, -+, Tn),
n(u) = Mer1(w), ..., a(w)) and n;(u) € H(Q) for i = k+1,...,n. We say
that I" satisfies condition (R) with respect to a subset 2 C R™ if the closures
T and E—\F of I" and F \ T, respectively, are regularly separated.

For the reader’s convenience, we recall the definition of regular separation,
due to Lojasiewicz (cf. [10], Sect. 18 or [9], Sect. 3). We say that two closed
subsets E, F' C R"™ are regularly separated at a point a € E N F, if there
are a neighbourhood W of a and ¢, s > 0 such that one of the following two
equivalent inequalities holds:

dist (z, B) > edist (x, ENF)® forall ze€ FNW

or

dist (z, F) + dist (x, E) > edist (z, EN F)* forall z e W.
The closed subsets E and F' are called regularly separated, if they are so at
all points a € EN F.

Let us mention that condition (R) presented herein differs slightly from
the one defined by Lojasiewicz in paper [9], Sect. 4. However, it is also
suitable for his proof of the theorem under study (cf. [9], Sect. 10), which
can be formulated as follows.

Theorem of Lojasiewicz. Let U be a bounded open subset of R", ®
a smooth function in a neighbourhood of the closure U and Z := {x € U :
O(z) = 0} be its zero locus. Suppose & € G(U \ Z) and Z admits a finite

smooth stratification
n—1
z=JUrt

k=0 1

such that each stratum T¥ is a k-dimensional smooth leaf of the form (*) with
appropriate functions
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which satisfies condition (R) with respect to the set
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Further, assume that, for each stratum T¥, there is an integer | = I¥ such
that

o — 0P %P - 0o

Oz, Ox2 T Oal!

=0 on TF

and
P ki k 0o k
8_%(“’77 (w)) € G(Q) (a fortiori, 8_:(:&1 #0 on T7).

Then the mapping
PU)>S — &S e P(U)

18 surjective.

We now fix a polynomially bounded, o-minimal structure R which admits
smooth cell decomposition.

Proposition. If f : U — R is a smooth definable function on a
bounded open subset U C R™, then

feHU) and fegU\Z(f)),
where Z(f) is the zero locus of f.

For the first property, it is sufficient to show that every definable function
g : U — R satisfies the following growth condition:

AM,s>0 g(x) < Mdist(z,0U)"° forall zeU.
For any ¢t > 0, put

0(t) — 0 if UN{x:dist (z,0U) =t} =10
() = max {|g(z)| : dist (z,0U) =t} otherwise.

Since the structure R is polynomially bounded, there are M, s > 0 such that
O(t) < Mt¢* for all t> 0, as desired.
In order to prove the second property, for any ¢t > 0, put

C(t) :=min{|f(x)| : x € U, dist(z,0UU Z(f)) =1} > 0.

Again, by polynomial boundedness, there are ¢, s > 0 such that ((t) > et*
for all ¢ > 0, which completes the proof.



The Lojasiewicz inequality (cf. [10], Sect. 18, [5], Sect. 4.14 or [3], Theo-
rem 6.2) yields immediately the regular separation of any two closed definable
subsets. Consider a smooth function ® definable in a neighbourhood of the
closure U of a bounded open definable subset U C R™. Then, in view of
the foregoing proposition, the assumptions of the theorem in question will
be fulfilled for ®, once we find a finite smooth definable stratification

n—1
2=y
k=0 1

such that each stratum T'¥ is a k-dimensional smooth leaf of the form (*)
with appropriate functions
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for which there is an integer [ = [¥ such that
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and o o
) , )
87(% n*'(u)) € G(QF)  (a fortiori, Pl #0 on I'F).
Our procedure will be to construct a stratification just described. We
still need the lemma below, being a generalization of the classical lemma of

Koopman-Brown (cf. [8], [10], Sect. 22 or [5], Sect. 4.9).

n

Good Directions Lemma. Let E be a definable subset of R™ of
dimension < (n — 1). Then for a generic line X\ € P,,_q, i.e. for every line
A outside a nowhere dense, definable subset of the projective space P, 1, we
have

t(EN(a+ ) <oo forall aeR"

As a direct consequence, we obtain the

Corollary. Let E be a definable subset of R™ of dimension < (n — k).
Then for a generic k-dimensional vector subspace V- € Gy, i.e. for every
subspace V' outside a nowhere dense, definable subset of the Grassmannian
Gpk, we have

t(EN(a+V)) <oo forall aeR"
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Now, we shall demonstrate how to construct a required stratification.
First, consider the decreasing sequence of quasianalytic subsets

P
Z::{xEU:(ID(x):O}DZl::{xGU:(ID(x):gx =0}>
0P ok

By topological noetherianity (cf. [5], Sect. 4.17, [3], Theorem 6.1 or [12],
Appendix), this sequence stabilizes:

ZZZZZ_HZZH_QZ... foran [ € N.

Next, choose a line \; € P, _; according to the above lemma applied to the
zero locus Z := {® = 0}; we may assume that \; = R -e,. Take a smooth
cell decomposition C of R™ compatible with the sets Z, Z1, ..., Z;. The cells
of dimension (n — 1) are, of course, smooth definable leaves of the form (*).
Project the cells of dimension < (n — 1) onto R""! in parallel to R - e,,
again choose a line \y € P,,_5 according to the above lemma applied to those
projections, and take Ay = R -¢,_;. Consequently, the plane R-¢e, +R-e,_4
satisfies the conclusion of the foregoing corollary applied to the initial cells
of dimension (n — 2) in R™.

Further, refine the cell decomposition of R"~? induced by C so that the
cells of dimension (n — 1) and (n — 2) are smooth definable leaves of the
form (*). We continue in this fashion, and eventually attain, after performing
a linear change of coordinates, a new, finer, smooth definable cell decompo-
sition such that every cell C' is a smooth definable leaf of the form (*).

Finally, we must take a smooth definable stratification compatible with
that new cell decomposition. We are thus led to the following quasianalytic
generalization of the Lojasiewicz division theorem.

Division Theorem. Consider a polynomially bounded, o-minimal
structure R which admits smooth cell decomposition. Let U be a connected
open subset of R™ and ® : U — R a smooth, non-vanishing function locally
definable on U with respect to the structure R. Then the mapping

DU)>S—®-SeD(U)

18 surjective.



Hence and by routine arguments from functional analysis, we obtain

Corollary. Let® : U — R be a function as in the above theorem. Then
O -E(U) is a closed ideal of the Fréchet algebra E(U) of smooth functions on
U, and the linear mapping

0:EU)> f—Dfcd-EU)
18 a homeomorphism.

Our proof starts with the observation that, by the Banach open mapping
theorem, the ideal ® - £(U) is closed iff the mapping ¢ is a homeomorphism.
Suppose, on the contrary, that ¢ is not a homeomorphism. Then there is a
sequence (f,) C £(U) such that ®f, — 0 and f, /4 0. We may, of course,
assume that all the functions f, lie outside a neighbourhood W of 0 € £(U).

For any distribution 7" € £'(U), take a distribution S € &'(U) for which
T=®-S. Then

T(f,) = (®-9)(f,) = S(®f) =0,

and thus the numerical sequence (T'(f,)) is bounded. The sequence (f,) is
therefore bounded in £(U). Indeed, any subset F' of a locally convex topo-
logical vector space is bounded iff it is weakly bounded (see e.g. [7], Chap. 6,
§8, Theorem 4’). This fact relies on two fundamental results from functional
analysis, namely, the Banach—Steinhaus and Hahn—Banach theorems.

Since £(U) is a Montel space (i.e. it has the Heine-Borel property), the
set { f, } is relatively compact. Consequently, we can take a subsequence (f,,)
convergent to an element f € £(U). But we must have f # 0, whence

Bf,, — Of £0.
This contradicts our assumption, concluding the proof.

Remarks. 1) It follows immediately from the Hahn-Banach theorem
that also valid is the converse implication:

If the linear mapping
0 EU)> f—dfcd -EWU)
1s a homeomorphism, then the mapping

D'U)>S —®-SeD(U)
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18 surjective.

2) B. Malgrange generalized the foregoing theorem on closed ideals to the
case of ideals generated locally by finitely many analytic functions (cf. [11],
Chap. 6, Theorem 1.1). This strengthening seems not to carry over easily to
the quasianalytic settings for lack of theorems about good algebraic proper-
ties of quasianalytic local rings (such as, for instance, noetherianity, flatness
properties or coherence). Actually, the problem whether quasianalytic local
rings are noetherian remains open as yet.

3) The above corollary is tantamount to the quasianalytic division theo-
rem to the effect that a smooth function f formally divisible by a quasiana-
lytic function ® is divisible by ®. The latter was established by Bierstone—
Milman [3], Section 6, who followed Atiyah’s proof of the analytic division
theorem [1], based on transformation to normal crossings by blowing up.

4) The above results related to division by a quasianalytic function will be
applied in our further research (e.g. [15, 16]) on carrying the issues linked with
Glaeser’s composite function theorem (cf. [6, 4, 2]) over to the quasianalytic
settings.
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