
Quasianalytic perturbation of

multi-parameter hyperbolic polynomials

and symmetric matrices

Krzysztof Jan Nowak

IMUJ PREPRINT 2010/02

Abstract

This paper investigates hyperbolic polynomials with quasianalytic
coefficients. Our main purpose is to prove factorization theorems for
such polynomials, and next to generalize the results of K. Kurdyka
and L. Paunescu about perturbation of analytic families of symmetric
matrices to the quasianalytic settings.

Generally, the perturbation problem concerns the issue whether, given a
family of monic polynomials with coefficients from a certain class of functions,
one can represent its roots as function of this class. Hyperbolic polynomials
with analytic coefficients in one variable were studied by Rellich [24, 25],
which was linked with his investigation into the behaviour of eigenvalues of
symmetric matrices under one-parameter analytic perturbation. This one-
parameter theory, initiated by Rellich, culminated in the work of Kato [8].
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One-parameter families of hyperbolic polynomials were contemporarily stud-
ied in [2, 10], as well. Recently, Kurdyka–Paunescu [12] developed multi-
parameter analytic perturbation theory. Our purpose is to carry over this
multi-parameter theory to the quasianalytic settings. This task is also the
subject of a contemporaneous paper [23].

The main purpose of this paper is to establish certain splitting theorems
for quasiordinary hyperbolic polynomials with quasianalytic coefficients. Our
main results are Theorem 1 and Theorem 1∗ to the effect that every such
polynomial splits into linear factors with coefficients which are arc-Q-analytic
functions or smooth, definable in the real field with restricted Q-analytic
functions, respectively. In order to prove Theorem 1, we introduce the
concepts of arc-symmetric Q-sets and a noetherian arc-symmetric topology,
which correspond to those by Kurdyka [11] for semialgebraic sets. Also, we
use global (canonical) desingularization results by Bierstone–Milman [4, 5].
Theorem 1∗ is derived from Theorem 1 by means of a description of arc-Q-
analytic functions due to Bierstone–Milman–Valette [7] and a quasianalytic
version of Glaeser’s composite function theorem presented in our paper [21]
(wherein we demonstrate how to carry over the results of Bierstone–Milman–
Paw lucki [6] to the quasianalytic settings). Finally, we draw some applica-
tions to perturbation of symmetric matrices with quasianalytic entries.

In our earlier approach to quasianalytic families of hyperbolic polyno-
mials and symmetric matrices (cf. [17]), we applied a generalization of the
Abhyankar–Jung theorem for henselian k[x]-algebras of formal power series,
which are closed under reciprocal, power substitution and division by a coor-
dinate, given in our paper [16]. This allowed us to carry over that theorem to
the local rings of quasianalytic function germs in several variables in polyno-
mially bounded o-minimal structures. Our proof of that theorem made use,
however, of Luengo’s statement that every quasiordinary Weierstrass polyno-
mial in the Tschirnhausen form is ν-quasiordinary in the sense of Hironaka.
Therefore, those results of ours bear a relative character, because it turned
out, as indicated in [9], that Luengo’s proof seems to have an essential gap.

As in our previous papers [14, 15], we fix a family Q = (Qm)m∈N of
sheaves of local R-algebras of smooth functions on Rm. For each open subset
U ⊂ Rm, Q(U) = Qm(U) is thus a subalgebra of the algebra C∞m (U) of
real smooth functions on U . By a Q-analytic function (or a Q-function, for
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abbreviation) we mean any function f ∈ Q(U). Similarly,

f = (f1, . . . , fk) : U −→ Rk

is called a Q-analytic mapping (or a Q-mapping) if so are its components
f1, . . . , fk. We impose on this family of sheaves the following six conditions:

1. each algebra Q(U) contains the restrictions of polynomials;

2. Q is closed under composition, i.e. the composition of Q-mappings is a
Q-mapping (whenever it is well defined);

3. Q is closed under inverse, i.e. if ϕ : U −→ V is a Q-mapping between
open subsets U, V ⊂ Rm, a ∈ U , b ∈ V and if ∂ϕ/∂x(a) 6= 0, then
there are neighbourhoods Ua and Vb of a and b, respectively, and a Q-
diffeomorphism ψ : Vb −→ Ua such that ϕ ◦ ψ is the identity mapping
on Vb;

4. Q is closed under differentiation;

5. Q is closed under division by a coordinate, i.e. if f ∈ Q(U) and
f(x1, . . . , xi−1, ai, xi+1, . . . , xm) = 0 as a function in the variables xj,
j 6= i, then f(x) = (xi − ai)g(x) with some g ∈ Q(U);

6. Q is quasianalytic, i.e. if f ∈ Q(U) and the Taylor series f̂a of f at a
point a ∈ U vanishes, then f vanishes in the vicinity of a.

We have not attempted to avoid some possible redundancy among them;
for instance, it is easy to check, via the Taylor formula, that condition 5
implies condition 4.

By means of Q-mappings, one can build, in the ordinary manner, the cat-
egory Q of Q-manifolds and Q-mappings, which is a subcategory of that of
smooth manifolds and smooth mappings. Also, the category Q gives rise to
the geometry of Q-semianalytic and Q-subanalytic sets. What is unavailable
in the Q-analytic geometry are the Weierstrass preparation and division the-
orems, whereon majority of the classical analytic geometry relies. Instead, it
is largely based on transformation to normal crossings by blowing up along
smooth centers and desingularization algorithms, which are ensured by the
above conditions (as proven in papers [4, 5, 26]).
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Often it is convenient to use the terminology of o-minimal structures.
Denote by RQ the expansion of R by restricted Q-functions, which is an o-
minimal polynomially bounded structure with exponent field Q and admits
smooth quasianalytic cell decomposition (cf. [26, 14]. From now on, the word
”definable” means ”definable (with parameters) in the structure RQ”.

Let Ω ⊂ Rm be an open subset. We call a monic polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ Q(Ω)[t]

hyperbolic if, for each value of the parameters x ∈ Ω, all its roots are real.
This is an abbreviated name for ”a quasianalytic family of hyperbolic polyno-
mials”. The following result refers to one-parameter hyperbolic polynomials.

Proposition 1. Every hyperbolic polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ Q(c, d)[t]

with coefficients quasianalytic on an interval (c, d) ⊂ R, splits into linear
factors over Q(c, d).

The problem being local, we can regard the coefficients of the polynomial
as Q-analytic germs at 0 ∈ R. The counterpart of the Newton–Puiseux
theorem holds for the local ring Q1 of Q-analytic germs at 0 ∈ R, because it
is a discrete valuation ring (cf. [18], Remark 3). Therefore all roots of f(x; t)
are of the form

r−1∑
k=0

αk(x) · xk/r, where αk(x) ∈ Q1, r = n!

(loc. cit., Remark 2). But all algebraic conjugates

r−1∑
k=0

αk(x) · (εix1/r)k, i = 0, . . . , r − 1,

where ε is a primitive r-th root of unity, are roots of f(x; t) too. Since all
the roots are real, it follows that

αk(x) ≡ 0 for all k = 1, . . . , r − 1,

as required.
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Let M be a Q-manifold. We call a function g : M −→ R arc-quasianalytic
(or arc-Q-analytic) if, for every Q-analytic arc γ : (−δ, δ) −→M , the super-
position g ◦ γ is Q-analytic. It is well known that every arc-Q-function is
continuous (cf. [11, 3, 20]).

Now, consider a monic polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ Q(Ω)[t]

with quasianalytic coefficients on an open subset Ω ⊂ Rm. We call f(x; t)
a quasiordinary polynomial if its discriminant D(x) is a normal crossing
on Ω. Our main purpose is to establish a multi-parameter counterpart of
the foregoing result, namely, the following theorem on splitting a hyperbolic
quasiordinary polynomial into linear factors over the ring of arc-Q-analytic
functions:

Theorem 1. (Splitting of hyperbolic quasiordinary polynomials) Let
Ω be an open, simply connected subset of Rm. Then every hyperbolic quasi-
ordinary polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ Q(Ω)[t]

splits into linear factors of the form

f(x; t) =
n∏

i=1

(t− ψi(x)), x ∈ Ω,

where ψi(x) are arc-Q-functions on Ω. Furthermore, the functions ψi(x),
i = 1, . . . , n, enjoy at every point P ∈ Ω the following property (T):

(T) there exist formal power series Ψi, i = 1, . . . , n, centered at P such
that for each Q-analytic arc γ(τ) through P , γ(0) = P , not contained in the
zero locus of the discriminant D(x) of f(x; t), the Taylor series of ψi ◦ γ at
zero are Ψi ◦ γ̂, i = 1, . . . , n; here γ̂ denotes the Taylor series of γ at zero.

Before proceeding with the proof of this theorem, we shall introduce some
terminology and results indispensable for our approach. Let M be a defin-
able, locally closed, smooth submanifold of an affine space RN . By a Q-leaf
in M we mean a definable, connected, locally closed subset that is a smooth
submanifold of M . We say that a definable subset E ⊂ M is arc-symmetric
when one of the two equivalent conditions holds:
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i) if γ : (−1, 1) −→ M is a Q-analytic arc such that γ(−1, 0) ⊂ E, then
γ(−1, 1) ⊂ E;

ii) if γ : (−1, 1) −→ M is a Q-analytic arc such that Int (γ−1(E)) 6= ∅,
then γ(−1, 1) ⊂ E.

We shall call E an arc-symmetric Q-subset of M . This is an o-minimal
generalization of the concept of an arc-symmetric semialgebraic subset, in-
troduced by Kurdyka [11] and inspired by his joint article [13]. By the curve
selection lemma, every arc symmetric Q-subset E of M is closed.

Applying smooth definable stratifications (and even the decompositions
into Q-leaves instead) and the global (canonical) desingularization of quasi-
analytic hypersurfaces due to Bierstone–Milman [4, 5], we are able to carry
over Kurdyka’s results about arc-symmetric semialgebraic sets to the case
of arc-symmetric Q-sets. Below, we state three quasianalytic counterparts
of his Theorem 1.4, Theorem 2.6 and Corollary 2.8, whose proofs can be
repeated almost verbatim.

Proposition 2. There exists a unique noetherian topology AS on M
such that its closed sets are precisely the arc-symmetric Q-subsets of M .

This follows, via induction on the dimension of the ambient space M ,
from the decomposition of a definable set into finitely many Q-leaves and the

Observation. Let E ⊂M be an arc-symmetric Q-subset and Γ ⊂M a
Q-leaf. If dim(Γ ∩R) = dim Γ, then Γ ⊂ E.

The topology described above shall be called the arc-symmetric topology.

Theorem 2. Let Y be a reduced Q-analytic hypersurface in Rm of di-
mension m−1. Further, let U be an open, definable, relatively compact subset
of Rm, X := Y ∩ U and E an arc-symmetric Q-subset of X of dimension
m−1. Consider a (canonical) desingularization σ : X̃ −→ X which is a finite
sequence of global blowings-up with smooth centers. Then E is irreducible in
the arc-symmetric topology iff there is a (unique) connected component C of

X̃ such that σ(C) coincides with the closure (in the ordinary topology) of the
set Regm−1(E) of those points at which E is smooth of dimension m− 1.

Kurdyka’s proof applies directly to the above quasianalytic version of his
Theorem 2.6, because the image σ(E) of the exceptional divisor E of σ is an
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arc-symmetric Q-subset of dimension < (m− 1).

Corollary 2. Under the foregoing assumptions, if E is an arc-symmetric
Q-subset of X of dimension m− 1, then the two conditions are equivalent:

i) E is irreducible in the arc-symmetric topology;
ii) each two points of the closure Regm−1(E) of Regm−1(E) can be joined

by a Q-analytic arc lying in Regm−1(E).

Remark 1. In the proof of this corollary, Kurdyka’s argument why any
given two points P,Q on a connected real analytic submanifold V in a real
affine space RN can be joined by an analytic arc (by means of geodesics)
should be replaced in the quasianalytic settings by two observations. First,
the problem reduces to the case of a connected open subset of RN via a
tubular neighbourhood (in the category of Q-manifolds) (W, %) of the Q-
submanifold V under study, where % : W −→ V is a retraction. Indeed,
one must compose a Q-analytic arc in W with the retraction %. Next, take
a broken line γ : [0, 1] −→ W , γ(0) = P , γ(1) = Q, which lies in W and
joins the two points P = (P1, . . . , PN), Q = (Q1, . . . , QN) ∈ V ⊂ RN . Then,
applying a variant of the Weierstrass approximation theorem, stated below,
it suffices to approximate the components γi(t), i = 1, . . . , N , of γ by real
polynomials pi(t) in one variable t such that pi(0) = Pi, pi(1) = Qi for
i = 1, . . . , N .

Lemma 1. Consider a continuous real function f(t) on a compact
interval [c, d] and a finite number of points ξ1, . . . , ξs ∈ [c, d]. Then for each
real number ε > 0, there exists a polynomial p(t) such that

|f(t)− p(t)| < ε for all t ∈ [c, d] and f(ξ1) = p(ξ1) , . . . , f(ξs) = p(ξs).

This lemma is a combination of Weierstrass approximation and Lagrange
interpolation with nodes ξ1, . . . , ξs.

At this stage we can readily turn to the proof of our main result.

Proof of Theorem 1. The zero locus

Y := {(x, t) ∈ Ω× Rt : f(x; t) = 0} ⊂ Rm
x × Rt

is a reduced hypersurface of codimension 1. Due to the identity principle
for arc-Q-functions, the splitting problem is local. We may thus confine our
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proof to an open, relatively compact subset

U = (−δ, δ)m × (−M,M)

of Ω× R which contains all roots of f(x; t) over (−δ, δ)m, and such that the
discriminant of f(x, t) is of the form D(x) = xα · u(x), where α ∈ Nm and
u(x) is a nowhere vanishing, Q-analytic function on (−δ, δ)m. In the sequel,
we shall apply Theorem 2 to the trace X := Y ∩ U .

The set {x ∈ ( δ, δ)m : D(x) 6= 0} contains the union of 2m open cubes
Qj cut out from U by the cross x1 · . . . · xm = 0. Obviously, the set X over
each cube Qj is the union of the graphs of n Q-analytic and Q-subanalytic
functions ψj,1(x), . . . , ψj,n(x) on Qj such that

ψj,1(x) < . . . < ψj,n(x) for all x ∈ Qj.

By the classical Abhyankar–Jung theorem (see e.g. [1, 9, 18]), the formal
roots Ψ1(x), . . . ,Ψn(x) of f(x; t) at 0 ∈ Rm belong to

Ψ1(x), . . . ,Ψn(x) ∈ C[[x1/r]], x1/r = (x
1/r
1 , . . . , x1/r

m ), r = n!.

But, by Proposition 1, the roots of the restriction of f(x; t) to each polynomial
arc γ through zero can be arranged as n Q-analytic functions at zero. Hence,
the restrictions of the fractional power series Ψi(x

1/r) to each polynomial arc
γ through zero are real formal power series. Therefore Ψ1(x), . . . ,Ψn(x) ∈
R[[x]] by virtue of the lemma below.

Lemma 2. Let

Ψ(x, y) =
∑
i,α

ai,αx
i/ryα/r ∈ C[[x1/r, y1/r]], i ∈ N, α ∈ Nm, r ∈ N, r > 1,

be a fractionary power series, where x = x1 and y = (y1, . . . , ym). Suppose
that aj,β 6= 0 for some j ∈ N \ rN, β ∈ Nm. Then there is a polynomial arc
γ such that Ψ ◦ γ is fractionary but not a power series.

Indeed, consider polynomial arcs γ parametrized by

x = τ, y = (cτ)r, c ∈ Cm.

Then

(Ψ ◦ γ)(τ) =
∑

p

 ∑
i/r+|α|=p

ai,αc
α

 τ p.
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Put q := j/r + |β|. Clearly, the polynomial

P (C) :=
∑

i/r+|α|=q

ai,αC
α 6≡ 0, C = (C1, . . . , Cm),

does not vanish, because aj,β 6= 0, and if i/r + |α| = j/r + |β| and α = β,
then i = j. Now it suffices to take c ∈ Cm for which P (c) 6= 0.

The ring R[[τ ]] of formal power series in one variable τ is an ordered ring
by putting τ > 0. Consider formal arcs γ(τ) = (γ1(τ), . . . , γm(τ)) ∈ (R[[τ ]])m

through zero. In the following lemma about the roots Ψi(x), the open cubes
Qj are regarded, by abuse of notation, as the subsets of (R[[τ ]])m given by
the same inequalities as those of Rm.

Lemma 3. Suppose a formal arc γ(τ) through zero lies in an open cube
Qj. If Ψi(γ) < Ψk(γ), then this inequality remains true for every formal
arc ϑ(τ) through zero lying in that cube. In other words, one can order the
formal roots Ψi(x), i = 1, . . . , n, with respect to any open cube Qj.

We first observe that the formal power series Ψi(x) can be approximated
in the Krull topology by convergent power series Ψi,ν(x), i = 1, . . . , n, ν ∈ N,
such that the discriminants of the polynomials

fν(x) :=
n∏

i=1

(t−Ψi,ν(x)), ν ∈ N,

are of the form Dν(x) = xα · uν(x) with uν(0) 6= 0. Indeed, the discriminant
D(x) = xα · u(x) with u(0) 6= 0, of the polynomial f(x, t) can be expressed
as follows:

D(x) = P (Ψ1(x), . . . ,Ψn(x)) ∈ R[[x]],

where P (T1, . . . , Tn) ∈ Z[T1, . . . , Tn] is a polynomial with integer coefficients;
here we identify Q-analytic function germs at zero with their Taylor series.
Our assertion thus follows from the Artin approximation theorem applied to
the system of two polynomial equations

P (A1, . . . , An) = xα · U, U · V = 1,

with indeterminates A1, . . . , An, U, V .
Therefore, Ψi,ν(γ) < Ψk,ν(γ) for ν large enough. By approximation in the

Krull topology, we may assume that γ is a convergent arc through zero. It is
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clear that this inequality remains true for every convergent arc through zero
lying in the cube Qj. Let ϑ be a formal arc through zero lying in Qj. Then,
again by approximation in the Krull topology, Ψi,ν(ϑ) ≤ Ψk,ν(ϑ), and hence
Ψi(ϑ) ≤ Ψk(ϑ). But Ψi(ϑ) 6= Ψk(ϑ) because the discriminant D ◦ ϑ 6= 0
of the restriction of the polynomial f(x; t) to the formal arc ϑ is not zero.
Lemma 3 thus follows.

Lemma 3 is valid, of course, not only at 0 ∈ U , but at each point a ∈ U .
Theorem 1 will be established once we prove that the arc-symmetric Q-set X
has, in the AS topology, precisely n irreducible components Ci, i = 1, . . . , n,
each of which is the graph of an arc-Q-function.

To this end, observe that in the desingularization from Theorem 2 one
can ensure that the set

X̃ \
⋃
ji

σ−1(graph (ψj,i))

is a normal crossing divisor (locally, the zero locus of the Jacobian determi-
nant of σ or a submanifold of codimension 1; cf. [5], Theorem 5.10). Since σ
is a proper modification which is a Q-diffeomorphism over each graph (ψj,i),
we get

σ(∂(σ−1(graph (ψj,i))) = ∂(graph (ψj,i));

here ∂A denotes the frontier of a set A. Let Qj, Ql be two adjacent cubes with
common face Qj,l. We first consider our problem of irreducible components
in the arc-symmetric topology over the open subset Ωj,l := Qj ∪Ql ∪Qj,l. In
a similar fashion, we can proceed with attaching successive cubes.

We introduce the following notation:

Xj := X ∩ (Qj × R), Xl := X ∩ (Ql × R), Xj,l := X ∩ (Ωj,l × R)

X̃j := X̃ ∩σ−1(Qj ×R), X̃l := X̃ ∩σ−1(Ql×R), X̃j,l := X̃ ∩σ−1(Ωj,l×R),

Aj,i = graph (ψj,i) and Ãj,i = σ−1(Aj,i).

It is not difficult to check that the closure (in the ordinary topology) of
each set Aj,i is the graph of a continuous function on Qj ∪ Qj,l. Since the
roots of a monic polynomial depend continuously on the coefficients, we get
∂Xj = ∂Xl; here frontier ∂ is understood with respect to the ambient space
Ωj,l × R. Then

X̃j =
⋃
i

Ãj,i, X̃l =
⋃
k

Ãl,k
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and X̃j,l \ (X̃j ∪ X̃l) is a normal crossing divisor. Clearly,

∂Ãj,i =
⋃
k 6=i

(∂Ãj,i ∩ ∂Ãj,k) ∪
⋃
k

(∂Ãj,i ∩ ∂Ãl,k),

whence

∂Aj,i = σ(∂Ãj,i) =
⋃
k 6=i

σ(∂Ãj,i ∩ ∂Ãj,k) ∪
⋃
k

σ(∂Ãj,i ∩ ∂Ãl,k).

We still need the following

Claim. The sets ∂Ãj,i, i = 1, . . . , n, are pairwise disjoint, and the sets

σ(∂Ãj,i ∩ ∂Ãl,k), k = 1, . . . , n, are pairwise disjoint too.

Suppose, on the contrary, that two sets ∂Ãj,i and ∂Ãj,p, with p 6= i, have

a common point P̃ . Take a Q-analytic arc η : (−1, 1) −→ X̃j,l such that

η(−1, 0) ⊂ Ãj,p , η(0, 1) ⊂ Ãj,i and η(0) = P̃ . Then

(σ ◦ η)(τ) = (γ(τ), ψ(τ)), τ ∈ (−1, 1),

for some Q-analytic γ and ψ. Let π : Rm
x × Rt −→ Rm

x be the canonical
projection.

We may assume, by a linear change of variables, that (π◦σ)(P̃ ) = 0 ∈ Rm.
Keep the notation of Lemma 3 and order the formal roots Ψi(x), i = 1, . . . , n,
with respect to the open cube Qj. The arcs γ(τ) and γ(−τ) lie in the cube
Qj, ψ(τ) occurs at the i-th place among Ψ1(γ(τ)), . . . ,Ψn(γ(τ)), and ψ(−τ)
occurs at the p-th place among Ψ1(γ(−τ)), . . . ,Ψn(γ(−τ)), which contradicts
the conclusion of Lemma 3.

To prove the second assertion, suppose that two sets

σ(∂Ãj,i ∩ ∂Ãl,k) and σ(∂Ãj,i ∩ ∂Ãl,q) for some q 6= k,

have a common point P = σ(P̃ ) = σ(S̃) with

P̃ ∈ ∂Ãj,i ∩ ∂Ãl,k and S̃ ∈ ∂Ãj,i ∩ ∂Ãl,q.

Take two Q-analytic arcs η, ζ : (−1, 1) −→ X̃j,l such that η(−1, 0) ⊂ Ãl,k,

η(0, 1) ⊂ Ãj,i, η(0) = P̃ , ζ(−1, 0) ⊂ ∂Ãl,q, ζ(0, 1) ⊂ ∂Ãj,i and ζ(0) = S̃.
Then

(σ ◦ η)(τ) = (γ(τ), ψ(τ)), τ ∈ (−1, 1)
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and
(σ ◦ ζ)(τ) = (ϑ(τ), ϕ(τ)), τ ∈ (−1, 1),

for some Q-analytic γ, ϑ, ψ and ϕ.
As before, assume that π(P ) = 0 ∈ Rm. The arcs γ(τ), ϑ(τ) lie in the

cube Qj, and the arcs γ(−τ), ϑ(−τ) lie in the cube Ql. Clearly,

ψ(τ) = Ψi(γ(τ)) and ϕ(τ) = Ψi(ϑ(τ)),

and thus
ψ(−τ) = Ψi(γ(−τ)) and ϕ(−τ) = Ψi(ϑ(−τ)).

Hence and by Lemma 3, the roots ψ(−τ) and ϕ(−τ) for τ > 0 belong to a
common set Al,p. This contradiction completes the proof of the claim.

In view of the above claim, we see that the connected set ∂Aj,i is the dis-

joint union of the closed subsets σ(∂Ãj,i∩∂Ãl,k), k = 1, . . . , n. Consequently,

∂Aj,i = σ(∂Ãj,i ∩ ∂Ãl,p)

for a unique p = ω(i) ∈ {1, . . . , n}, and

∂Ãj,i ∩ ∂Ãl,k = ∅ for all k = 1, . . . , n, k 6= ω(i).

Hence ∂Ãj,i ⊂ ∂Ãl,ω(i), and thus, by symmetry, we get ∂Ãj,i = ∂Ãl,ω(i).
Consequently,

Ãj,i ∪ Ãl,ω(i) ∪ ∂Ãj,i

is the connected component (in the ordinary topology) of X̃j,l. Hence and
by Theorem 2,

Aj,i ∪ Al,ω(i) ∩ ∂Aj,i

is the irreducible component (in the arc-symmetric topology) of Xj,l contain-
ing Aj,i. Therefore the arc-symmetric Q-subset Xj,l of Ωj,l ×R has precisely
n irreducible arc-symmetric components Ci, i = 1, . . . , n, of the form

Ci = Aj,i ∪ Al,ω(i) ∩ ∂Aj,i = graph (χi),

where i 7→ ω(i) is a permutation of {1, . . . , n} and each χi is a continuous
function which extends the functions ψj,i and ψl,ω(i).
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It remains to show that each function χi is an arc-Q-function with the
property (T). So let γ : (−1, 1) −→ Ωj,l be a Q-analytic arc and put:

Xγ := {(τ, t) ∈ (−1, 1)× R : f(γ(τ), t) = 0} = (γ × Id)−1(X).

By Proposition 1, Xγ is the union of the graphs of n, not necessarily distinct,
Q-analytic functions on (−1, 1), say, ϕ1(τ), . . . , ϕn(τ). Then

Ci ⊂
n⋃

k=1

(γ, ϕk)(−1, 1) and
n⋃

k=1

(γ, ϕk)−1(Ci) = (−1, 1).

Hence Int (γ, ϕk)−1(Ci) 6= ∅ for some k, and thus (γ, ϕk)(−1, 1) ⊂ Ci,
because Ci is an arc-symmetric Q-subset. This demonstrates that

(χi ◦ γ)(τ) = ϕk(τ) for all τ ∈ (−1, 1),

and thus χi ◦ γ is a Q-analytic function, as required. Property (T) follows
directly from Lemma 3.

Eventually, we can repeat the above arguments when attaching successive
cubes Qp. In this manner, we see that X has precisely n irreducible compo-
nents in the AS topology, each of which is the graph of an arc-Q-function.
This completes the proof of Theorem 1.

Now, let A be a normal domain, K its quotient field and f(t) ∈ A[t] be
a monic polynomial. It is well known from commutative algebra that if f(t)
is irreducible over A, then so it is over K. Consequently, if the field K is
of characteristic zero, then every irreducible monic polynomial f(t) ∈ A[t] is
square-free.

We cannot apply this algebraic assertion directly to the domain Q(Ω).
However, each Q-meromorphic fraction

a(x)/b(x), a(x), b(x) ∈ Q(Ω),

which is integral over Q(Ω), can be transformed to a Q-analytic function over
any open, relatively compact subset U ⊂ Ω by a finite sequence of global
blowings-up with smooth centers. Indeed, one can transform the functions
a(x) and b(x) by global blowing up to normal crossings, which are locally of
the form yα · u(y) and yβ · v(y), respectively, where u(y), v(y) are units and
either α ≤ β or α ≥ β. In our case, since the fraction yα−β · u(y)v−1(y) is
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integral over the ring of Q-analytic functions, there must be α ≥ β, which
is the desired result. Consequently, one can adapt the foregoing algebraic
assertion to the quasianalytic settings as follows.

Proposition 3. (On square-free factorization) If f(x; t) is a monic
polynomial with coefficients in Q(Ω) and U ⊂ Ω is an open, relatively compact

subset, then there exists a Q-modification σ : Ũ −→ U such that
i) σ is a composite of finitely many global blowings-up with smooth centers;
ii) the pull-back polynomial fσ(y; t) factorizes globally into a product of

square-free monic polynomials with coefficients in Q(Ũ).

Hence and via transformation to normal crossings by blowing up, we
obtain the following

Corollary 3. Every monic polynomial f(x; t) ∈ Q(Ω)[t] with quasiana-
lytic coefficients factorizes, after a suitable transformation of its coefficients
by a finite sequence of global blowings-up with smooth centers over any open,
relatively compact subset U ⊂ Ω, into a product of quasiordinary polyno-
mials with quasianalytic coefficients. Moreover, if the polynomial f(x; t) is
hyperbolic, so are its modified quasiordinary factors.

Corollary 3 and Theorem 1 yield immediately the following theorem on
the splitting of hyperbolic polynomials:

Corollary 4. If f(x; t) is a hyperbolic polynomial with coefficients in
Q(Ω) and U ⊂ Ω is an open, relatively compact subset, then there exists a

Q-modification σ : Ũ −→ U such that
i) σ is a composite of finitely many blowings-up with smooth centers;
ii) the pull-back polynomial fσ(y; t) has, locally in the vicinity of each

point b ∈ Ũ , a factorization of the form

f(y; t) =
n∏

i=1

(t− ψi(y)),

where ψi(y) are arc-Q-functions near b.

Before drawing subsequent corollaries, we state two theorems on recti-
linearization of quasianalytic functions and arc-quasianalytic functions. The
latter will play a key role in our approach to hyperbolic polynomials. They
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are counterpart of two theorems by Bierstone–Milman [3] from the real
analytic geometry, and are proven in a manuscript by Bierstone–Milman–
Valette [7] yet unpublished. It should be emphasized, however, that the
quasianalytic versions are much weaker than the analytic ones, because they
refer only to quasianalytic functions which satisfy a non-trivial Q-analytic
equation. The passage from functions with subanalytic graphs to functions
with semianalytic graphs needs much stronger algebro-analytic methods un-
available in the quasianalytic settings such as, for instance, complexification
and the techniques of flattening or equidimensionality (see also [19, 20]).

Theorem 3. (Rectilinearization of Q-subanalytic functions) Let M be a
(connected) Q-manifold, U ⊂M a relatively compact, open, definable subset,
and g : M −→ R be a continuous Q-subanalytic function which satisfies a
Q-analytic equation of the form Φ(x, g(x)) = 0, Φ 6≡ 0. Then there exists a

surjective Q-mapping σ : Ũ −→ U such that
i) σ is a composite of finitely many Q-mappings, each of which is either

a blowing-up with smooth center or a surjection of the form
∐
Uj −→

⋃
Uj,

where (Uj)j is a finite covering of the target space by coordinate charts and∐
denotes disjoint union, or a local power substitution of the form

Uj −→ Uj, (u1, . . . , um) 7→ (ε1u
r1
1 , . . . , εmu

rm
m ),

where (u1, . . . , um) are the coordinates of Uj, r1, . . . , rm > 0 are integers and
ε1 . . . , εm = ±1;

ii) g ◦ σ is a Q-analytic function.

Theorem 4. (Description of arc-Q-analytic functions) Let M be a (con-
nected) Q-manifold, U ⊂ M a relatively compact, open, definable subset,
and g : M −→ R be an arc-Q-analytic function which satisfies a Q-analytic
equation of the form Φ(x, g(x)) = 0, Φ 6≡ 0. Then there exists a surjective

Q-mapping σ : Ũ −→ U such that
i) σ is a composite of finitely many Q-mappings, each of which is either

a blowing-up with smooth center or a surjection of the form
∐
Uj −→

⋃
Uj,

where (Uj)j is a finite covering of the target space by coordinate charts and∐
denotes disjoint union;
ii) g ◦ σ is a Q-analytic function.

From Corollary 4 and Theorem 4 we can immediately derive the following
two results, which carry over those from [12] to the quasianalytic settings.
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Corollary 5. If f(x; t) is a hyperbolic polynomial with coefficients in
Q(Ω) and U ⊂ Ω is an open, relatively compact subset, then there exists a

Q-modification σ : Ũ −→ U such that
i) σ is a composite of finitely many Q-mappings, each of which is either

a blowing-up with smooth center or a surjection of the form
∐
Uj −→

⋃
Uj,

where (Uj)j is a locally finite covering of the target space by coordinate charts
and

∐
denotes disjoint union;

ii) the pull-back polynomial fσ(y; t) has locally, in the vicinity of each

point b ∈ Ũ , a Q-analytic factorization of the form

fσ(y; t) =
n∏

i=1

(t− ψi(y)).

Corollary 6. Under the foregoing assumptions, there exists a Q-
subanalytic subset Σ ⊂ Ω of codimension at least 2 such that, in the vicinity
of each point a ∈ Ω \ Σ, the hyperbolic polynomial f(x; t) has a Q-analytic
factorization of the form

f(x; t) =
n∏

i=1

(t− ψi(x)).

We shall now apply the foregoing description of arc-Q-analytic functions
and the quasianalytic version of Glaeser’s composite function theorem pre-
sented in our paper [21] to achieve the following strengthening of Theorem 1.

Theorem 1∗. Let Ω be an open, simply connected subset of Rm. Then
every hyperbolic quasiordinary polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ Q(Ω)[t]

splits into linear factors of the form

f(x; t) =
n∏

i=1

(t− ψi(x)), x ∈ Ω,

where ψi(x) are smooth (i.e. of class C∞) functions on Ω definable in the
structure RQ.
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As in the case of Theorem 1, we may confine our proof to an open,
relatively compact subset

U = (−δ, δ)m × (−M,M)

of Ω×R which contains all roots of f(x; t) over (−δ, δ)m. Consider a surjective

Q-mapping σ : Ũ −→ U which is a finite composite of local blowings-up along
smooth centers such that the superpositions

ψ̃i := ψi(x) ◦ σ : Ũ −→ R, i = 1, . . . , n,

are Q-analytic functions. We show that each function ψ̃i is formally compos-
ite with σ, i.e. for each P ∈ U , there is a formal power series Φ at P such
that, for every point P̃ ∈ σ−1(P ) on the fiber over P , the Taylor series TP̃ ψ̃i

of ψ̃i at P̃ coincides with Φ ◦ TP̃ σ. As Φ above, we should take the formal
power series Ψi from the conclusion of Theorem 1, property (T). Indeed, for

a generic straight line l(τ) through P̃ , l(0) = P̃ , we have

Ψi ◦ TP̃ σ ◦ l = Ψi ◦ TP̃ (σ ◦ l) = TP̃ (ψi ◦ σ ◦ l) = TP̃ (ψ̃i ◦ l) = TP̃ ψ̃i ◦ l.

Hence Ψi ◦ TP̃ σ = TP̃ (ψ̃i), as required.
Since the mapping σ is generically a submersion, it follows from the quasi-

analytic version of the composite function theorem from [21] that ψ̃i is a
composite function with σ, i.e. there is a smooth mapping

ϕi : U −→ R such that ϕ̃i = ϕi ◦ σ.

Therefore, the mappings ϕi and ψi coincide over an open and dense subset
of U , whence so do they over U . This completes the proof.

Before turning to the perturbation of symmetric matrices, we introduce
some terminology. We shall state the results about perturbation of matrices
with quasianalytic entries in terms of quasianalytic function germs. Denote
by Mm,a the field of quasi-meromorphic germs at a ∈ Rm, i.e. the quotient
field of the local ring Qm,a of Q-analytic germs at a point a ∈ Rm. In the
vector spaces Rn and (Mm,a)n over the fields R and Mm,a, respectively, the
standard inner products given by the formula

v •w = v1w1 + · · ·+ vnwn and f(x) • g(x) = f1(x)g1(x) + · · ·+ fn(x)gn(x).
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The spectral theorem for symmetric matrices is valid for any real closed
field. The assumption of real closedness is necessary to ensure that the
characteristic polynomial of a given symmetric matrix, which always is hy-
perbolic, factorizes into linear factors. We are able to dispense with it, but
we must apply Corollary 5 instead, i.e. split the characteristic polynomial
into linear factors via transformation by blowing up. Therefore, repeating
mutatis mutandis the proof of the spectral theorem from linear algebra, we
obtain the following counterpart over the field of quasi-meromorphic function
germs.

Theorem 5. (Spectral theorem with quasianalytic parameters.) Let N
be a symmetric n× n matrix with quasianalytic entries from Qm,0. Then we
can find a modification σ : W −→ U of a neighbourhood U of 0 ∈ Rm, which
is a finite composite of local blowings-up with smooth centers, such that for
each point b ∈ σ−1(0) ⊂ W the vector space (MW,b)

n over the field MW,b has
an orthogonal basis

w1(y), . . . , wn(y) ∈ (QW,b)
n

that consists of eigenvectors of the pull-back matrix Nσ.

A matrix with entries from the R-algebra Qm,a may be regarded as a
quasianalytic family of real matrices parametrized by x. Our next objective
is to achieve a simultaneous quasianalytic diagonalization of the pull-back
matrix Nσ after performing a suitable modification σ which is a finite com-
posite of local blowings-up with smooth centers. Let

λ1(y), . . . , λn(y) ∈ QW,b

be the eigenvalues of Nσ, which may not be pairwise distinct. The above
theorem yields a quasianalytic family

w1(y), . . . , wn(y) ∈ Rn

of orthogonal eigenvectors which form a basis of Rn generically near b ∈ W ;
say over a set W0 = W \ Σ where Σ ⊂ W is a closed Q-analytic subset of
codimension at least one. Fix a vector w(b) = wj(b), j = 1, . . . , n, and its
eigenvalue λ(b) = λj(b). Take any sequence (bk) ⊂ W0 which tends to b:
bk → b, and such that the limit

v(b) = lim
k→∞

v(bk), where v(bk) =
w(bk)

‖w(bk)‖
,
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exists. We obviously have

(Nσ(b)− λ(b)) · v(b) = lim
k→∞

(Nσ(bk)− λ(bk)) · v(bk) = 0.

Since the vectors wj(y) are pairwise orthogonal, we obtain in this manner an
orthonormal basis

v1(b), . . . , vn(b) ∈ Rn

that consists of eigenvectors of the matrix Nσ(b).

We wish to construct a quasianalytic family

v1(y), . . . , vn(y) ∈ Rn

of orthonormal bases that consist of eigenvectors of the matrices Nσ(y).
Clearly, this will be possible once we know that all the components of each
vector wj(y), j = 1, . . . , n, are divisible in QW,b by one of them. It is well
known that the last condition can be ensured via a successive transforma-
tion to normal crossings by blowing up. Consequently, we have obtained the
theorem stated below, which generalizes to the quasianalytic settings the re-
sult of Kurdyka–Paunescu [12] about real analytic perturbation of symmetric
matrices.

Theorem 6. (On quasianalytic diagonalization of symmetric matrices)
Consider a symmetric n × n matrix N with entries from Qm,0. Then there
exists a modification σ : W −→ U of a neighbourhood U of zero, which is a
finite composite of local blowings-up with smooth centers, such that the pull-
back matrix Nσ admits a simultaneous quasianalytic diagonalization near
each point b ∈ σ−1(0) ⊂ W . This diagonalization can be performed by a
Q-analytic choice of orthonormal bases that consist of eigenvectors of Nσ.

Remark 2. Both Theorem 5 and 6 with quasianalytic parameters remain
valid, with the same proof, in the case of quasianalytic families of hermitian
matrices with entries from Qm,0 ⊗R C.

Remark 3. All the above results can be, as shown by Kurdyka–Paunescu,
carried over to the case of polynomials with purely imaginary roots, and
thence to that of antisymmetric matrices. Indeed, a polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ Qm,0[t]
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has purely imaginary roots iff the polynomial i−nf(x; it) is hyperbolic (cf. [12]
for details).

Remark 4. It is well known that, in general, one cannot find bases
of eigenvectors even in a continuous way. This is caused by that the an-
gle between linearly independent eigenvectors, which correspond to distinct
eigenvalues, may tend to zero when approaching a given point b.
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