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Abstract

Given a quasianalytic system Q = (Qn)n∈N of sheaves, denote by
Qn the local ring of Q-analytic function germs at 0 ∈ Rn. This paper
introduces the concepts of  Lojasiewicz radical and geometric spectrum
Speg Qn ⊂ Sper Qn. Via the  Lojasiewicz inequality, a version of the
Nullstellensatz for Qn is given. We establish a quasianalytic version of
the Artin–Lang property for Qn. Finally, we prove, by means of trans-
formation to normal crossings by blowing up, that the  Lojasiewicz
radical £(I) of any ideal I ⊂ Qn coincides with the contraction of the
real radical <(IQ̂n).

1. Introduction. As in our previous paper [9, 10, 11, 12], we begin
by fixing a quasianalytic system Q = (Qn)n∈N of sheaves of local R-algebras
of smooth functions on Rn. For each open subset U ⊂ Rn, Q(U) = Qn(U)

AMS Classification. 26E10, 14P15, 13J30.
Key words: quasianalytic functions, semi-quasianalytic sets, Artin–Lang property,

 Lojasiewicz radical, real Nullstellensatz.
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is thus a subalgebra of the algebra C∞n (U) of real smooth functions on U .
By a Q-analytic function (or a Q-function, for short) we mean any function
f ∈ Q(U). Similarly,

f = (f1, . . . , fk) : U −→ Rk

is called Q-analytic (or a Q-mapping) if so are its components f1, . . . , fk. The
following six conditions are imposed on this family of sheaves:

1. each algebra Q(U) contains the restrictions of polynomials;

2. Q is closed under composition, i.e. the composition of Q-mappings is a
Q-mapping (whenever it is well defined);

3. Q is closed under inverse, i.e. if ϕ : U −→ V is a Q-mapping between
open subsets U, V ⊂ Rn, a ∈ U , b ∈ V and if ∂ϕ/∂x(a) 6= 0, then
there are neighbourhoods Ua and Vb of a and b, respectively, and a Q-
diffeomorphism ψ : Vb −→ Ua such that ϕ ◦ ψ is the identity mapping
on Vb;

4. Q is closed under differentiation;

5. Q is closed under division by a coordinate, i.e. if f ∈ Q(U) and
f(x1, . . . , xi−1, ai, xi+1, . . . , xn) = 0 as a function in the variables xj,
j 6= i, then f(x) = (xi − ai)g(x) with some g ∈ Q(U);

6. Q is quasianalytic, i.e. if f ∈ Q(U) and the Taylor series f̂a of f at a
point a ∈ U vanishes, then f vanishes in the vicinity of a.

Q-mappings give rise, in the ordinary manner, to the category Q of Q-
manifolds and Q-mappings, which is a subcategory of that of smooth man-
ifolds and smooth mappings. Similarly, Q-analytic, Q-semianalytic and Q-
subanalytic sets can be defined. One of the most powerful tools of Q-analytic
geometry is transformation to normal crossings by blowing up, which can be
used, in particular, the achieve the  Lojasioewicz inequality and topological
noetherianity (cf. [3]).

Denote by Qn the local ring of Q-analytic function germs at 0 ∈ Rn; it can
be embedded into its completion in the Krull topology which is isomorphic
to the formal power series ring Q̂n ≡ R[[x]], x = (x1, . . . , xn).
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Denote by R = RQ the expansion of the real field R by restricted Q-
analytic functions, i.e. functions of the form

f̃(x) =

{
f(x), if x ∈ [−1, 1]n

0, otherwise

where f(x) is a Q-function in the vicinity of the compact cube [−1, 1]n. RQ

is a polynomially bounded o-minimal structure which is model complete and
admits smooth cell decompositions (cf. [17, 9]). Therefore, the definable
subsets in RQ coincide with those subsets in Rn which are Q-subanalytic in
a semialgebraic compactification of Rn. From now on, the word ”definable”
means ”definable with parameters” in the structure R.

In Section 2, we introduce the concept of the  Lojasiewicz radical of an
ideal of Qn along with a quasianalytic version of the Nullstellensatz. In
the next section, we define formal zero locus (which consists of formal arcs
through zero) and prove the Artin–Lang property for the ring of formal power
series. The latter was first established by Artin [1], in relation to Hilbert’s
17-th problem, for the rings of polynomials with coefficients from a real closed
field R. It says that there exists an ordering of the field of rational finctions
R(x), x = (x1, . . . , xn), for which a finite number of polynomials g1, . . . , gl

are positive iff there exists a point a ∈ Rn for which g1(a) > 0, . . . , gl(a) > 0.
This result was later generalized by Lang [7] to finitely generated exten-
sions of real closed fields. Our proof of the Artin–Lang property relies on
the Weierstrass preparation theorem and the Cherlin–Dickmann theorem on
quantifier elimination for real closed, non-trivially and convexly valued fields.

In Section 4, we introduce the notion of the geometric spectrum of the
quasianalytic local ring Qn and formulate a weak version of the Artin–Lang
property for Qn. The last section provides a relation between  Lojasiewicz
radical and real radical: the  Lojasiewicz radical £(I) of an ideal I of Qn

coincides with the contraction of the real radical <(I·R[[x]]), x = (x1, . . . , xn).

2. Zero locus and  Lojasiewicz radical. In this section, we wish to
introduce the notion of the zero locus V (I) of any ideal I in the quasianalytic
local ring Qn. This concept is clear for an ideal generated by a finite num-
ber of Q-analytic function germs, because one can take their representatives
f1, . . . , fk which are Q-analytic in a common neighbourhood U of zero, and
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then the zero locus V (I) is determined by the zero set

V (f1, . . . , fk) := {x ∈ U : f1(x) = . . . = fk(x) = 0}.

We shall make no distinction in notation between germs and their represen-
tatives; this ambiguity will not lead to confusion.

In order to give the general definition of zero locus in Corollary 3 below,
we still define the zero set

Ṽ (f1, . . . , fk) := {γ(τ) = (γ1(τ), . . . , γn(τ)) ∈ Qn
1 :

γ(0) = 0 and f1(γ) = . . . = fk(γ) = 0}.

Clearly, there is a one-to-one correspondence between the set of Q-analytic
arcs γ(τ) = (γ1(τ), . . . , γn(τ)) through 0 ∈ Rn and the set of homomorphisms
γ : Qn −→ Q1; namely, γi(τ) = γ(xi), i = 1, . . . , n.

Further, we shall regard Q1 as an ordered ring of function germs in one
variable τ > 0. As before, we may identify homomorphisms γ : Qn −→ Q1

into the ordered ring Q1 with the half-branches of the corresponding Q-
analytic arcs γ(τ) = (γ1(τ), . . . , γn(τ)) through 0 ∈ Rn. The theorem below
demonstrates that those homomorphisms into the ordered ring Q1 can be
treated on a par with the ordinary points in the vicinity of 0 ∈ Rn.

Theorem 1. For f, g1, . . . , gl ∈ Qn, put

S := {x ∈ Rn : f(x) = 0, g1(x) > 0, . . . , gl(x) > 0}

and

S̃ := {γ(τ) ∈ Qn
1 : γ(0) = 0, f(γ) = 0, g1(γ) > 0, . . . , gl(γ) > 0}.

Then S = ∅ iff S̃ = ∅.

Theorem 1 will be proven once we know that any Q-semianalytic set germ
at zero has an arbitrarily small representative which is a union of Q-analytic
arcs through zero. The latter follows from our theorem on decomposition of
a Q-semianalytic set into special cubes (cf. [9]). Indeed, a Q-semianalytic
representative of the germ S in an arbitrarily small ball is a finite union of
special cubes, i.e. sets of the form Sj = ϕj((0, 1)dj ), j = 1, . . . , s, where each
ϕj is a mapping Q-analytic in the vicinity of [0, 1]dj such that its restriction
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to (0, 1)dj is a diffeomorphism onto Sj; actually, the mappings ϕj can be
taken as the restrictions of certain compositions of finitely many blowings-up
along smooth centers. Then the germ S is represented by the finite union of
those special cubes which are adjacent to zero. Clearly, this representative
is a union of Q-analytic arcs through zero, as required.

It follows immediately from this theorem that the above two concepts of
zero locus V (f1, . . . , fk) and Ṽ (f1, . . . , fn) are equivalent:

Corollary 1. If f1, . . . , fk, g1, . . . , gl ∈ Qn, then

V (f1, . . . , fk) = V (g1, . . . , gl) iff Ṽ (f1, . . . , fk) = Ṽ (g1, . . . , gl).

Corollary 2. Let f1, . . . , fk, f ∈ Qn and suppose that

f ∈
k∑

i=1

fi · R[[x]] ∩Qn =
k∑

i=1

fi ·Qn ∩Qn.

Then V (f1, . . . , fk) = V (f1, . . . , fk, f).

Corollary 3. (on zero locus) Let I ⊂ Qn be an ideal, f1, . . . , fk ∈ I be
generators of the ideal I ·R[[x]] and V = V (f1, . . . , fk) be their zero set germ.
Then each Q-analytic function germ f ∈ I · R[[x]] ∩Qn vanishes on V .

Therefore, one can define the zero locus V (I) by putting V (I) := V .

Corollary 4. (on topological noetherianity) Every descending sequence
(Vj)j∈N of Q-analytic set germs stabilizes, i.e. there is an integer N such that
Vj = VN for all j ≥ N .

Indeed, let Ij ⊂ Qn be the ideal of those Q-analytic function germs which
vanish on Vj, j ∈ N. Then

Ij = Ij · R[[x]] ∩Qn for j ∈ N.

Therefore, since the ascending sequence of ideals (Ij ·R[[x]])j∈N stabilizes, so
do the sequences (Ij)j∈N and (Vj)j∈N, as required.

We now turn to the concept of  Lojasiewicz radical. Let I ⊂ Qn be a
proper ideal, V = V (I) its zero locus and suppose that a Q-analytic func-
tion germ g ∈ Qn vanishes on V . By topological noetherianity, there are
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f1, . . . , fk ∈ I such that

V = V (f1, . . . , fk) = V (f 2
1 + . . .+ f 2

k ) = V (f)

with f = f 2
1 + . . . + f 2

k ∈ I. It follows from the  Lojasiewicz inequality that
there are a positive integer s and a positive constant C for which

|g(x)|s ≤ C|f(z)| whence |g(x)|s+1 ≤ |f(x)|

in the vicinity of zero. This reasoning leads to the following definition: the
 Lojasiewicz radical of an ideal I ⊂ Qn is the ideal

£(I) := {g ∈ Qn : |g|r ≤ |f | for some f ∈ I and r ∈ N.

The name is thus justified by a quasianalytic version of the Nullstellensatz
presented below, which comes immediately from the  Lojasiewicz inequality.

Proposition 1. The  Lojasiewicz radical £(I) of any ideal I ⊂ Qn

coincides with the zero ideal I(V (I)) of those Q-analytic function germs which
vanish on V (I): £(I) = I(V (I)).

3. Formal zero locus and formal Artin-Lang property. In this
section, we recall a well-known theorem concerning the real spectrum of the
real formal power series ring (Theorem 2) and a formal version of the real
Nullstellensatz. The latter result was established by Riesler [15] (conver-
gent version) and Lassalle [8] (formal version). Inspired by these papers,
Ruiz proved a certain convergent version of the former (cf. [18], Chap. IV,
Prop. 3.4).

In our approach, we shall formulate and prove Theorem 2∗ which is a
strengthening of the former theorem. Our short proof applies the following
two tools: the Weierstrass preparation theorem and the Cherlin–Dickmann
theorem (cf. [6]) on quantifier elimination for real closed, non-trivially and
convexly valued fields. As an immediate corollary to Theorem 2 we shall
obtain the Nullstellensatz for real formal power series.

The real spectrum of a ring A shall be denoted by SperA. One may
regard an element σ ∈ SperA as a homomorphism σ : A −→ R into a real
closed field R containing the ordered residue field of ker σ. We are now
concerned with the ring R[[x]] of real formal power series in several variables
x = (x1, . . . , xn). We establish the following formal Artin–Lang property:
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Theorem 2. Take f, g1, . . . , gm ∈ R[[x]]. Then there is a σ ∈ Sper R[[x]]
such that

σ(f) = 0, σ(g1) > 0, . . . , σ(gm) > 0,

iff there is a homomorphism γ : R[[x]] −→ R[[τ ]] into the ordered ring of
formal power series in one variable τ > 0 such that

γ(f) = 0, γ(g1) > 0, . . . , γ(gm) > 0.

Clearly, the if part of the equivalence is trivial, and so we must prove
the converse implication. We are, in fact, going to establish its strengthen-
ing, stated below, which enables us to make use of the Cherlin–Dieckmann
theorem. Let R be a real closed field with a non-trivial valuation v whose
valuation ring V is a convex subset of R. Consider the language L of ordered
rings with an extra unary relation symbol to denote V . The latter theorem
can be formulated as follows. The real closed valued field R admits quan-
tifier elimination in the language L augmented by a binary relation symbol
≺ construed by putting a ≺ b if v(a) < v(b) or, equivalently, if a/b 6∈ V . In
what follows we shall regard the ordered ring R[[τ ]] of formal power series in
one variable τ > 0 as a subring of the quotient field F of the formal Puiseux
series in the variable τ . The latter is a real closed field, and the order func-
tion is a non-trivial valuation; the set of elements bounded with respect to
the real field R forms its valuation ring, whose maximal ideal coincides with
the set of all infinitesimals.

Theorem 2∗. Take f, g1, . . . , gm, a1, b1. . . . , ap, bp ∈ R[[x]]. If

σ(f) = 0, σ(g1) > 0, . . . , σ(gm) > 0, σ(b1) � σ(a1), . . . , σ(bp) � σ(ap),

for some σ ∈ Sper R[[x]], then there is a homomorphism γ : R[[x]] −→ R[[τ ]]
such that

γ(f) = 0, γ(g1) > 0, . . . , γ(gm) > 0, γ(b1) � γ(a1), . . . , γ(bp) � γ(ap).

We proceed by induction with respect to the number n of variables. The
case n = 1 is evident. Suppose the assertion holds for n; we will prove it for
n + 1. By the Weierstrass preparation theorem, we can assume that all the
formal power series under consideration are polynomial with respect to the
variable xn+1, and thus there are polynomials

F,G1, . . . , Gm, A1, B1. . . . , Ap, Bp ∈ R[xn+1, C], C = (C1, . . . , Cs),
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and
h(x′) = (h1(x

′), . . . , hs(x
′)) ∈ R[[x′]]s, x′ = (x1, . . . , xn),

such that
f(x) = F (xn+1, h(x′), gi(x) = Gi(xn+1, h(x′)),

aj(x) = Aj(xn+1, h(x′)), bj(x) = Bj(xn+1, h(x′)).

Then

σ(f) = F (σ(xn+1), σ(h)) = 0, σ(gi) = Gi(σ(xn+1), σ(h)) > 0,

σ(bj) = Bj(σ(xn+1), σ(h)) � σ(aj) = Aj(σ(xn+1), σ(h)).

Consider the formula

∃ y F (y, C) = 0,
m∧

i=1

Gi(y, C) > 0,

p∧
j=1

Bj(y, C) � Aj(y, C).

By the Cherlin–Dickmann theorem, this formula is equivalent in (R, V ) to a
quantifier-free formula, which can obviously be taken as a finite disjunction
of some finite conjunctions of the form as above. Then one of those conjunc-
tions defines a subset of Rs containing σ(h). It follows from the induction
hypothesis that there is a homomorphism γ : R[[x′]] −→ R[[τ ]] for which
γ(h) ∈ F s satisfies that conjunction construed over the valued field F . Via
quantifier elimination, there is an element γn+1 ∈ F such that

F (γn+1, γ(h)) = 0, Gi(γn+1, γ(h)) > 0, Bj(γn+1, γ(h)) � Aj(γn+1, γ(h)).

But we may always assume, without loss of generality, that the conditions
σ(xi) � 1, i = 1, . . . , n+1, occur among the initial ones. We can thus find an
element γn+1 ∈ F as above which is a formal Puiseux series with γn+1(0) = 0;
say γn+1 ∈ R[[τ 1/r]] for a positive integer r. By putting γ(xn+1) = γn+1,
we extend the homomorphism γ to a homomorphism R[[x]] −→ F which
fulfills the required conditions. Since the assignment τ 7→ τ r determines
an increasing automorphism ϕ of the field F , the composition ϕ ◦ γ is a
homomorphism R[[x]] −→ R[[τ ]] we are looking for. This completes the
proof.

Clearly, there is a one-to-one correspondence between the set of homo-
morphisms γ : R[[x]] −→ R[[τ ]] into the ordered ring R[[τ ]], τ > 0, and
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the set of the half-branches τ > 0 of formal arcs γ(τ) = (γ1(τ), . . . , γn(τ))
through 0 ∈ Rn; namely, γi(τ) = γ(xi), i = 1, . . . , n. Hence and by Theo-
rem 2, we can treat those half-branches of formal arcs as ”basic points” in
the real spectrum.

This legitimizes the following definition of the formal zero locus V̂ (I) of an

ideal I ⊂ R[[x]]: V̂ (I) is the set R̂n
0 of all homomorphisms γ : R[[x]] −→ R[[τ ]]

or, equivalently, of all formal arcs γ(τ) = (γ1(τ), . . . , γn(τ)) through 0 ∈ Rn,
such that

γ(f) = f(γ1(τ), . . . , γn(τ)) = 0

for every f ∈ I; here γi(τ) = γ(xi) for i = 1, . . . , n. Such an approach to
zero locus may be connected to the model theoretic ones of Robinson [16]
and Prestel [14].

For a subset V of R̂n
0 , define the zero ideal Î(V ) by putting

Î(V ) := {f ∈ R[[x]] : γ(f) = 0 for all γ ∈ V } =
⋂
{ker γ : γ ∈ V }.

As an immediate consequence of Theorem 2, we obtain the following result
due to Lassalle [8]:

Corollary. (formal Nullstellensatz) The real radical <(I) of an ideal

I ⊂ R[[x]] coincides with Î(V̂ (I)):

<(I) = Î(V̂ (I)) =
⋂
{ker γ : γ ∈ R̂n

0 , γ|I = 0}.

Remark. Theorems 2, 2∗ and the above corollary remain valid, with the
same proof, for the case of convergent power series.

4. Geometric spectrum and quasianalytic Artin–Lang property.
We begin with the following

Theorem 3. If q ∈ Sper R[[x]] and p := q ∩ Qn ∈ SperQn, then
£(p) = p.

Our proof makes use of Theorem 2 and the formal positivstellensatz
(cf. [4], Prop. 4.4.1) applied to the power series ring. Denote by Σ2 the
cone of finite suns of squares of formal power series from R[[x]].
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Suppose g ∈ £(p), i.e. g2k ≤ f for some f ∈ p and k ∈ N. Then

h := f − g2k ≥ 0, and thus γ(h) ≥ 0 for every γ ∈ R̂n
0 . Hence and by

Theorem 2, σ(h) ≥ 0 for every σ ∈ Sper R[[x]]. Therefore, it follows from
the formal positivstellensatz that

ha = h2m + b for some a, b ∈ Σ2,

and thus

h =
h2a

h2m + b
=
h2a (h2m + b)2k−1

(h2m + b)2k
.

Putting c := h2m + b, we get

hc2k ∈ Σ2 whence fc2k ∈ ((gc)2k + Σ2) ∩ p · R[[x]].

Consequently,
gc ∈ <(p · R[[x]]) ⊂ q.

We now have the following dichotomy: either c 6∈ q or c ∈ q. In the first
case, we get g ∈ q ∩Qn = p, as required. In the other one, h2m + b ∈ q, and
since b ∈ Σ2, we get

h = f − g2k ∈ <(q) = q.

Therefore, g2k ∈ q and again we get g ∈ q ∩Qn = p, concluding the proof.

Hence and by the quasianalytic Nullstellensatz (Proposition 1), we obtain
immediately the

Corollary. Under the foregoing assumptions, we have p = I(V (p)).

This legitimizes the following definition: the geometric spectrum SpegQn

of the quasianalytic local ring Qn is the subset of the real spectrum SperQn

of all ideals p = q ∩Qn with q ∈ Sper R[[x]].

Before establishing a quasianalytic version of the Artin–Lang property,
we achieve, via transformation to normal crossings by blowing up, a partial
result, stated below.

Proposition 2. For f, g1, . . . , gm ∈ Qn, put

S̃ := {γ(τ) ∈ Qn
1 : γ(0) = 0, f(γ) = 0, g1(γ) > 0, . . . , gl(γ) > 0}
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and

Ŝ := {γ(τ) ∈ R[[τ ]]n : γ(0) = 0, f(γ) = 0, g1(γ) > 0, . . . , gl(γ) > 0}.

Then Ŝ = ∅ iff S̃ = ∅.

Suppose f, g1, . . . , gm are functions Q-analytic in a ball around zero, and
regard S as a Q-semianalytic subset in this ball. Consider a transformation
ϕ : M −→ B to the normal crossings:

fϕ := f ◦ ϕ, gϕ
1 := g1 ◦ ϕ, . . . , gϕ

l := gl ◦ ϕ,

and assume, for the sake of simplicity, that ϕ is a finite composition of
definable blowings-up with global smooth Q-analytic centers (cf. [2, 3]). Then
E := ϕ−1(0) is a compact Q-analytic subset of M .

Since every Q-analytic and every formal arc can be lifted when blowing
up, S̃ 6= ∅ or, respectively, Ŝ 6= ∅, iff there exist a point b ∈ E and a
Q-analytic arc ϑ̃(τ) or, respectively, a formal arc ϑ̂(τ), through b such that

fϕ(ϑ̃) = 0, gϕ
1 (ϑ̃) > 0, . . . , gϕ

l (ϑ̃) > 0

or, respectively,

fϕ(ϑ̂) = 0, gϕ
1 (ϑ̂) > 0, . . . , gϕ

l (ϑ̂) > 0.

But the existence of such arcs ϑ̃(τ) and ϑ̂(τ) is equivalent, because the func-
tions fϕ, gϕ

1 , . . . , g
ϕ
l are normal crossings at each point b ∈ E. This completes

the proof.

By virtue of Theorems 1 and 2, Proposition 2 yields the following version
of the Artin–Lang property:

Theorem 4. For f, g1, . . . , gm ∈ Qn, put

Ŝf := {σ ∈ Sper R[[x]] : γ(0) = 0, f(γ) = 0, g1(γ) > 0, . . . , gl(γ) > 0},

and let S be the set germ at 0 ∈ Rn determined by the conditions

f(x) = 0, g1(x) > 0, . . . , gm(x) > 0.

Then Ŝf = ∅ iff S = ∅.
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Remark. In the case of function germs in two variables, n = 2, this result
was proven by Pieroni (cf. [13], Section 9) under the additional assumption
that the quasianalytic local ring Q2 is closed under division, i.e. if f, g ∈ Q2

are such that f = gh with a smooth function germ h, then h ∈ Q2.
On the other hand, for smooth, non-flat function germs in several vari-

ables x = (x1, . . . , xn), Broglia–Pernazza [5] proved a special case of the above
result where the function germ f , which occurs in the equation defining S,
is an analytic one.

From the definition of geometric spectrum, we immediately obtain a weak
quasianalytic version of the Artin–Lang property:

Corollary. Take f, g1, . . . , gm ∈ Qn. Then

σ(f) = 0, σ(g1) > 0, . . . , σ(gm) > 0,

for some σ ∈ SpegQn iff the set germ

S := {x ∈ Rn : f(x) = 0, g1(x) > 0 . . . , gl(x) > 0} 6= ∅

is non-empty.

5.  Lojasiewicz radical as the contraction of real radical. We first
establish the following

Proposition 3. Let I ⊂ Qn be an ideal, and V := V (I) and V̂ := V̂ (I)

be their zero and formal zero loci, respectively. Then the zero ideals Î(V ) and

Î(V̂ ) coincide: Î(V ) = Î(V̂ ).

As for Proposition 2, the proof relies again on transformation to normal
crossings by blowing up. By Corollary 4 to Theorem 1, we may assume that
the ideal I is principal, say, I = (f) with f being a function Q-analytic in a
ball B around 0 ∈ Rn. Consider a transformation ϕ : M −→ B to the normal
crossing fϕ := f ◦ ϕ, which is a finite composition of definable blowings-up
with global smooth Q-analytic centers. As before, E := ϕ−1(0) is a compact
Q-analytic subset of M and, for any g ∈ R[[x]], we have the equvalences:

g ∈ Î(V ) iff for every Q-analytic arc γ(τ) through zero

f ◦ γ = 0 ⇒ g ◦ γ = 0
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iff for each point b ∈ E and every Q-analytic arc ϑ(τ) through b

fϕ ◦ γ = 0 ⇒ gϕ ◦ γ = 0.

Similarly, g ∈ Î(V̂ ) iff for every formal arc γ(τ) through zero

f ◦ γ = 0 ⇒ g ◦ γ = 0

iff for each point b ∈ E and every formal arc ϑ(τ) through b

fϕ ◦ γ = 0 ⇒ gϕ ◦ γ = 0.

Since fϕ is a normal crossing at each point b ∈ E, it is of the form fϕ(y) =
u(y) · yβ in local coordinates near b with y(b) = 0, where u(y) is a Q-analytic
unit at b, u(b) 6= 0, and β ∈ Nn. Therefore, both the last conditions in the
above two sequences of equivalences mean the same, namely, that gϕ vanishes
on the hypersurface yβ near b. Consequently, g ∈ Î(V ) iff g ∈ Î(V̂ ), as
asserted.

Corollary. Put

I(V ) := {g ∈ Qn : g ◦ γ = 0 for every γ ∈ V }

and
I(V̂ ) := {g ∈ Qn : g ◦ γ = 0 for every γ ∈ V̂ }.

Then I(V ) = I(V̂ ).

We conclude this paper with a theorem on  Lojasiewicz radical, stated
below. It follows directly from Proposition 3 and the quasianalytic and formal
versions of the Nullstellensatz.

Theorem 5. If I is an ideal of the ring Qn, then

£(I) = <(I · R[[x]]) ∩Qn.

Indeed, with the foregoing notation, we get the following equalities:
I(V (I)) = £(I) — by Proposition 1;

Î(V̂ (I)) = <(I · R[[x]]) — by the corollary to Theorem 2;

Î(V̂ (I)) = Î(V (I)) — by Proposition 3.
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Hence

£(I) = Î(V (I)) ∩Qn = Î(V̂ (I)) ∩Qn = <(I · R[[x]]) ∩Qn,

which completes the proof.
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