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Abstract
A cone space is a complete metric space (X, d) with a pair of func-

tions cs, cu : X ×X → R, such that there exists K > 0 satisfying

1
K

d(x, x′) ≤ max(cs(x, x′), cu(x, x′)) ≤ Kd(x, x′) for x, x′ ∈ X.

For a partial map f between cone spaces X and Y we introduce |f |s
which measures the stable contraction rate and 〈f〉u which measures
the unstable expansion rate. We say that f is cone-hyperbolic if

|f |s < 1 < 〈f〉u.

Using cone �eld and graph-directed IFS we build an abstract met-
ric model which decribes the dynamics of the hyperbolic-like systems.
This allows to obtain estimations from below and above of the fractal
dimension of the hyperbolic invariant set.

1 Introduction
Graph description of dynamical behaviour, and in particular graph-directed
iterated function theory, is one of the most important and fruitful ideas in
modern theory of dynamical systems [3, 5, 6, 8, 10, 13, 15, 18].

We generalize the notion of the graph-directed IFS from contracting to
hyperbolic case. As a consequence we obtain a simple and applicable tool,
based on the graph-directed IFS and cone condition, to characterize the
dynamics of the hyperbolic-like systems in general metric spaces. It allows
to estimate the dimension of the invariant set from above and below or show
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the Lipschitz semiconjugacy between the invariant set and the model graph-
directed system. Before proceeding further let us show a direct consequence
of our results on the classical Smale's horseshoe (see Theorem 6.1).
Smale's horseshoe. Consider the horizontal H1 = [−1, 1] × [−3

4
,−1

4

]
,

H2 = [−1, 1]×[
1
4
, 3

4

]
and vertical V1 =

[−3
4
,−1

4

]×[−1, 1], V2 =
[

1
4
, 3

4

]×[−1, 1]
strips. Let S = H1 ∪H2

Let f : S → R2 be such that fi := f |Hi is an a�ne mapping, fi(Hi) = Vi

and df1 =

[
1/4 0
0 4

]
and df2 =

[
1/4 0
0 −4

]
.

Let us take a Lipschitz function p : S → R2 and consider g := f + p. If
‖p‖sup < 1/4 and lip(p) < 1/4,

then the dynamics of g on inv(g, S) is conjugated to f on inv(f, S) by a home-
omorphism Φ, such that the Hölder constant of Φ is less then log1/4(1/4 +
lip(p)) and Hölder constant of Φ−1 is less then log1/4−lip(p)(1/4). Moreover 1,

dimB(inv(fp, S)) ≤ (log2(4− lip(p))−1 − (log2(1/4 + lip(p))−1,

dimH(inv(fp, S)) ≥ (log2(4 + lip(p))−1 − (log2(1/4− lip(p))−1.

Observe that when lip(p) → 0 then the Hölder constant and the dimension
converge to 1.

To describe our ideas more precisely let us quote the Mauldin andWilliams
graph-directed generalization [4, Theorem 3.5] of the classical Moran Theo-
rem [12] (for the original paper see [11]). Let G = (V,E) be a directed graph
(where V denotes the set of vertices and E the set of edges). Given an edge
e by i(e) we denote its initial and by t(e) its terminal vertex. By a path
α = (αj)j∈J in G we denote a sequence of edges such that t(αj) = i(αj+1)
for j ∈ J : j + 1 ∈ J .

We call G a contracting graph if we are given a labeling function S :
E → (0, 1). If G is a strongly connected contracting graph then we call G a
Mauldin-Williams graph. With every Mauldin-Williams graph we associate
the Mauldin-Williams dimension, which is the unique r := rG(S) ∈ [0,∞)
such that there exist (xv)v∈V ⊂ (0, 1) satisfying

xv =
∑

e∈E: t(e)=v

(Se)
rxi(v) for v ∈ V. (1)

1We are particulary interested in these estimates since we have dimH ≤ dim ≤ dimB

for most reasonable fractal dimension dim.
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By Z− we understand {k ∈ Z : k < 0}.
Moran Theorem [4, Theorem 3.5]. Let G = (V, E) be a strongly con-
nected graph, let Xv be a bounded complete metric space for every v ∈ V ,
and let Fe : Xi(e) → Xt(e) be such that

• lip(Fe) < 1 for every e ∈ E.

By inv−(Xv) we denote the backward invariant set of Xv, that is the set of
all points x ∈ Xv for which there exists a path α = (αk)k∈Z− in G, t(α−1) = v
and an α-orbit z = (zk)k∈Z−∪{0} (Fαk

(zk) = zk+1) such that z0 = x.
Then for every v ∈ V

• inv−(Xv) is compact;

• dimB (inv−(Xv)) ≤ rG(lip(Fe)).

Moreover, in general the above estimation cannot be improved.
One of the disadvantages of the classical IFS theory is that it does not

cope well with typical hyperbolic behaviour, while there exists a large and
advanced theory dealing with the properties (in particular global and local
dimension) of C1 hyperbolic systems [1, 16].

We show that by a relatively simple adaptation of the cone condition [2, 8,
14, 18] to a metric case we can generalize the notion of classical graph-directed
IFS to the �hyperbolic-like� case. This allows us to obtain estimations from
above and below of the dimension of the invariant set of graph-directed IFS
with hyperbolic structure.

Let us brie�y describe the contents of the paper. In the next section we
adapt the notion of a cone �eld to metric spaces by modifying the approach
of S. Newhouse from [14]. By a cone space we understand a complete metric
space (X, d) with a pair of functions cu, cs : X × X → R, such that there
exists K > 0 satisfying

1

K
d(x, x′) ≤ max(cs(x, x′), cu(x, x′)) ≤ Kd(x, x′) for x, x′ ∈ X.

Given a cone space X we de�ne the stable and unstable cones by the formula

Cs(X) := {(x, x′) : cs(x, x′) ≥ cu(x, x′)},
Cu(X) := {(x, x′) : cu(x, x′) ≥ cs(x, x′)}.
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For a partial map f between cone spaces X and Y we introduce

|f |s := sup
(f(x),f(x′))∈Cs(Y )

c(f(x), f(x′))
c(x, x′)

,

〈f〉u := inf
(x,x′)∈Cu(X)

c(f(x), f(x′))
c(x, x′)

.

We call |f |s the s-contraction rate and 〈f〉u the u-expansion rate2. Roughly
speaking |f |s measures the contraction rate on the stable cone while 〈f〉u the
expansion rate on the unstable one. We say that f is cone-hyperbolic if

|f |s < 1 < 〈f〉u.

In 3 section we establish some notation related to the graph-directed IFS.
Sections 4 and 5 contain main theorems of the paper. Let us present one of
the results of section 5 (see Corollary 5.1). Given a directed graph G = (V,E)
and e ∈ E, by e−1 we denote the inversed edge (that is i(e−1) = t(e), t(e−1) =
i(e)). By G−1 = (V, E−1) we denote the graph with the same vertices and
inversed edges.
Hyperbolic Moran Theorem. Let G = (V,E) be a strongly connected
graph, let Xv be a bounded cone space for every v ∈ V , and let Fe be a partial
map with a closed graph between Xi(e) and Xt(e) such that

• Fe is cone-hyperbolic for every e ∈ E.

By inv(Xv) we denote the invariant set of Xv, that is the set of all points
x ∈ Xv for which there exists a doubly in�nite path α = (αk)k∈Z in G and an
α-orbit z = (zk)k∈Z such that z0 = x.

Then for every v ∈ V

• invv(Xv) is compact;

• dimB (inv(Xv)) ≤ rG(|Fe|s) + rG−1(〈Fe〉−1
u ).

Moreover, in general the above estimation cannot be improved.
In the last section we present an application of our tools on an example

of the Smale's horseshoe with a Lipschitz perturbation.
2These constants correspond to minimal expansion and the minimal co-expansion used

by S. Newhouse [14].

4



2 Cone �elds in metric spaces
Let (X, d) be a metric space. It is often convenient to modify the original
metric d to some other function c : X ×X → R+. In our case we just need
the single assumption on c that there exists K > 0 such that

1

K
d(x, x′) ≤ c(x, x′) ≤ Kd(x, x′) for x, x′ ∈ X.

From now on we assume that on every metric space we have an additional
function c which satis�es the above condition (if we are not given c directly
we simply take c = d).

For an interval J ⊂ R we de�ne JZ := J ∩ Z. We say that I ⊂ Z is a
Z-interval if there exists an interval J ⊂ R such that I = JZ. For a Z-interval
we put I+ := I ∪ (I + 1).

Given metric spaces X,Y and a partial map f : X ⇀ Y we de�ne the
Lipschitz and the co-Lipschitz constants of f (with respect to the function
c) by the formula

|f | := inf {R ∈ [0,∞] : c(f(x), f(x′)) ≤ R · c(x, x′) for x, x′ ∈ domf},
〈f〉 := sup {R ∈ [0,∞] : c(f(x), f(x′)) ≥ R · c(x, x′) for x, x′ ∈ domf}.

Observation 2.1. Let E and F be Banach spaces and let A : E → F be
an invertible linear operator. Let U ⊂ E, p : U → F and let g : U → F be
de�ned by

g(x) := Ax + p(x) for x ∈ U.

We put c(x, x′) = ‖x− x′‖. Then one can easily notice that

〈g〉 ≥ ‖A−1‖−1 − lip(g), |g| ≤ ‖A‖+ lip(g).

Let f : Y ⇀ Z and g : X ⇀ Y . Then

|f ◦ g| ≤ |f | · |g|, 〈f ◦ g〉 ≥ 〈f〉 · 〈g〉. (2)

Remark 2.1. Consider mappings fi : Xi ⇀ Xi+1 for i ∈ I = [k, n)Z where
k, n ∈ Z, k < n. Let (xi)i∈I+ , (x′i)i∈I+ be such that:

xi, x
′
i ∈ domfi, xi+1 = fi(xi), x′i+1 = fi(x

′
i) for i ∈ I.

Then obviously

d(xn, x′n) ≤ K2 · |fn−1| · . . . · |fk| · d(xk, x
′
k).
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In this section we generalize the notion of a cone-�eld to metric spaces
(our aim is to obtain the analogue of Remark 2.1). To estimate the distance
between orbits from above and below in the case when the given map has
hyperbolic-like structure we need an additional structure of a cone �eld. We
adapt some of the notation and ideas from [14].

De�nition 2.1. Let (X, d) be a complete metric space. By a cone �eld on
X we understand a pair of functions cs, cu : X × X → R+, such that there
exists K > 0 satisfying

1

K
d(x, y) ≤ c(x, y) ≤ Kd(x, y) for x, y ∈ X,

where c(x, y) := max(cs(x, y), cu(x, y)). In this case we call X a cone metric
space (cone space shortly).

Given a cone space X we introduce the cones Cs(X) and Cu(X) by the
formula:

Cs(X) := {(x, x′) ∈ X ×X : cs(x, y) ≥ cu(x, x′)},
Cu(X) := {(x, x′) ∈ X ×X : cu(x, x′) ≥ cs(x, x′)}.

De�nition 2.2. For f : X ⇀ Y we de�ne

|f |s := inf {R ∈ [0,∞] : c(f(x), f(x′)) ≤ R · c(x, y)
for x, x′ ∈ domf : (f(x), f(x′)) ∈ Cs(Y )},

〈f〉u := sup {R ∈ [0,∞] : c(f(x), f(x′)) ≥ R · c(x, x′)
for x, x′ ∈ domf : (x, x′) ∈ Cu(X)}.

We call |f |s the s-contraction rate and 〈f〉u the u-expansion rate.

In the following we give an estimate of |f |s and 〈f〉u.
Observation 2.2. We assume that we have two Banach spaces E = Es⊕Eu

and F = Fs ⊕ Fu. For each x ∈ E we have x = xs + xu where xs ∈ Es,
xu ∈ Eu and as functions cs and cu we take

cs(x, x′) := ‖xs − x′s‖, cu(x, x′) := ‖xu − x′u‖, x, x′ ∈ E.

The same holds for F . Additionally we assume that both norms satisfy ‖x‖ =
max(‖xs‖, ‖xu‖).
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Let A : E → F be a linear operator given in the matrix form by

A =

[
As Asu

Aus Au

]
.

and let p = (ps, pu) : U → Fs ⊕ Fu, where U ⊂ E, be a given Lipschitz
mapping. Let g : U → F , g(x) := Ax + p(x). Then

|g|s ≤ ‖As‖+ ‖Asu‖+ lip(ps), (3)
〈g〉u ≥ ‖A−1

u ‖−1 − ‖Aus‖ − lip(pu). (4)

Proof. To prove (3) let us choose x, x′ ∈ U such that (g(x), g(x′)) ∈ Cs(F ).
Then

‖g(x)− g(x′)‖ ≤ ‖As(xs − x′s)‖+ ‖Asu(xu − x′u)‖+ lip(ps)‖x− x′‖
≤ (‖As‖+ ‖Aus‖+ lip(ps)) · ‖x− x′‖.

We show (4). Fix x, x′ ∈ U such that (x, x′) ∈ Cu(E). Then ‖x − x′‖ =
‖xu − x′u‖ ≥ ‖xs − x′s‖, and consequently

‖g(x)− g(x′)‖ ≥ ‖Au(xu − x′u) + Aus(xs − x′s) + (pu(x)− pu(x
′))‖

≥ (‖A−1
u ‖−1 − ‖Aus‖ − lip(pu)) · ‖x− x′‖.

De�nition 2.3. The function f is dominating if

|f |s < 〈f〉u,

and cone-hyperbolic if
|f |s < 1 < 〈f〉u.

Trivially, a cone-hyperbolic mapping is dominating.

Proposition 2.1. Let f : X ⇀ Y be dominating. Then f is cone invariant,
that is for x, x′ ∈ domf we have

(x, x′) ∈ Cu(X) ⇒ (f(x), f(x′)) ∈ Cu(Y ), (5)
(f(x), f(x′)) ∈ Cs(Y ) ⇒ (x, x′) ∈ Cs(X). (6)
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Proof. Let x, x′ ∈ domf be such that (x, x′) ∈ Cu(X). Then

c(f(x), f(x′)) ≥ 〈f〉uc(x, x′).

We want to show that (f(x), f(x′)) ∈ Cu(Y ). If this was not the case, then

(f(x), f(x′)) ∈ Cs(Y ), c(f(x), f(x′)) > 0.

This gives us
0 < c(f(x), f(x′)) ≤ |f |sc(x, x′).

Consequently, |f |s > 0 and c(x, y) > 0. Summarizing, we obtain that

|f |sc(x, x′) ≥ c(f(x), f(x′)) ≥ 〈f〉uc(x, x′).

Since c(x, x′) > 0 we get |f |s ≥ 〈f〉u, a contradiction.
The proof for f−1 is analogous.

As an important consequence we get an analogue of (2).

Theorem 2.1. Let f : Y ⇀ Z and g : X ⇀ Y be dominating. Then

|f ◦ g|s ≤ |f |s · |g|s, 〈f ◦ g〉u ≥ 〈f〉u · 〈g〉u.

Proof. It is a direct consequence of the cone invariance (see (5) and (6)) and
De�nition 2.2.

In the following we show that in the case of dominating functions we can
estimate the rate of increase of distance between two orbits.

Corollary 2.1. Consider dominating mappings fi : Xi ⇀ Xi+1 for i ∈ I,
where I = [k, n)Z. Let (xi)i∈I+, (x′i)i∈I+ be such that:

xi, x
′
i ∈ dom(fi), xi+1 = fi(xi), x′i+1 = fi(x

′
i) for i ∈ I.

Then for every l ∈ I+ = [k, n]Z we have:

c(xl, x
′
l) ≤ max(〈fn−1〉−1

u · . . . · 〈fl〉−1
u · c(xn, x′n), |fl−1|s · . . . · |fk|s · c(xk, x

′
k)).
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Proof. Consider �rst the case when (xl, x
′
l) ∈ Cu(Xl). Applying Proposition

2.1 we obtain that (xi, x
′
i) ∈ Cu(Xi) for i = l, . . . , n. By Theorem 2.1 we get

c(xn, x′n) ≥ 〈fn−1〉u · . . . · 〈fl〉u · c(xl, x
′
l),

and consequently

c(xl, x
′
l) ≤ 〈fn−1〉−1

u · . . . · 〈fl〉−1
u · c(xn, x

′
n).

Now let us discuss the case when (xl, x
′
l) ∈ Cs(Xl). By Proposition 2.1 we

have (xi, x
′
i) ∈ Cu(Xi) for i = k, . . . , l, and therefore

c(xl, x
′
l) ≤ |fl−1|s · . . . · |fk|s · c(xk, x

′
k).

3 Graph notation
Let G = (V, E) be a directed graph. Given a (possibly empty) Z-interval J
we consider the set of paths in G

E(J,G) := {α : J → E : t(αj) = i(αj+1) for j ∈ J : j + 1 ∈ J}.
If G is �xed, we usually omit it and write E(J). By E(G) (or simply E())
we denote the set of all paths in the graph G. For a Z-interval I such that
0 ∈ I+ and v ∈ V we de�ne

Ev(I, G) := {α ∈ E(I, G) : t(α−1) = v or i(α0) = v}.
We also put Ev(G) :=

⋃
I: 0∈I+ Ev(I, G).

De�nition 3.1. Let G = (V, E) be a given directed graph. By a graph G-
directed iterated function system (or G-graph system shortly) we understand
labeling functions X and F over vertices and edges of G: every vertex v is
labeled by a complete metric space Xv, and every edge e is labeled with a
partial function Fe : Xi(e) ⇀ Xt(e) with a closed graph3. To denote the whole
G-graph system we usually write (V, v → Xv; E, e → Fe) (in that case we
speak simply of a graph system).

3In fact to shorten the notation we informally allow Fe to have a larger domain then
Xi(e) or image not contained in Xt(e) and then restrict automatically Fe to Fe ∩ (Xi(e) ×
Xt(e))
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Let us explain why we assume in the de�nition that every Fe has a closed
graph.

Observation 3.1. Let α ∈ E(G, I) be a given path in G and let zn = (zn
i )i∈I+

be a pointwise convergent (to some z = (zi)i∈I+) sequence of α-orbits. Then
by the fact that Fe has a closed graph we obtain that z is also an α-orbit.

We say that a graph system Γ is contracting if |Fe| < 1 for every e ∈ E.
Since we modify the standard approach let us now brie�y show how one
usually proves the Moran Theorem [4, Theorem 3.5]. The idea is based on
building an abstract graph system and using the semiconjugacy.

We de�ne the left shift operator P on E(), where P (E(I)) = E(I − 1),
by the formula

(Pα)k := αk+1 for α ∈ E(I), k ∈ I − 1.

Given α, α′ ∈ E(G), we de�ne a two-sided analogue of the longest common
pre�x

α ∧ α′ := (α ∩ α′)|I ∈ E(G),

where
I :=

⋃
{J | J is Z-interval, 0 ∈ J+, α|J = α′|J}.

Given a labeling function T : E → [0, 1] we naturally extend it to the
space of all paths by

T (α) :=





∏
i∈I

T (αi) if I 6= ∅,

1 otherwise,

for α ∈ E(I).

De�nition 3.2. Let α ∈ E(I). We say that z : I+ → ⋃
v∈V Xv is an α-orbit

if zi ∈ domFαi
for i ∈ I and

Fαi
(zi) = zi+1 for i ∈ I.

The set of all α-orbits we denote by orb(α).

Let v ∈ V and I be such that 0 ∈ I+. Then for α ∈ Ev(I) we de�ne its
coding multimap

CI
v (α) := {x ∈ Xv | ∃z ∈ orb(α) : z0 = x}.
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Dually, given x ∈ Xv, we denote its I-address multimap by

AI
v(x) := {α ∈ Ev(I) | ∃z ∈ orb(α) : z0 = x}.

If I = Z then we simply write Av(x), Cv(α). One can easily observe that CI
v

and AI
v are inverse multimaps. Now we are ready to de�ne the invariant set

for Xv (we assume that 0 ∈ I+):

invI(Xv) := {x ∈ Xv | AI
v(x) 6= ∅}.

If I = Z then we simply write inv(Xv).

De�nition 3.3. Let I be a Z-interval such that 0 ∈ I+ and let Γ = (V, v →
Xv; E → Fe) be a graph system. For e ∈ E we put

F I
e := Fe ∩ (invI(Xi(e))× invI(Xt(e))), (7)

and de�ne the graph system

invI(Γ) := (V, v → invI(Xv); E, e → F I
e ).

In the case when I = Z we simply write inv(Γ).

4 Metric hyperbolic case
With the use of the metric one can estimate the Hausdor� dimension of the
invariant set from below. To do this, we will need a hyperbolic equivalent of
a Mauldin-Williams graph:

De�nition 4.1. Let G = (V,E) be a directed graph. We say that G is
hyperbolic if we are given two labeling functions S, U : E → (0,∞) such that

Se ∈ (0, 1), Ue ∈ (1,∞) for e ∈ E.

We say that G is a hyperbolic Mauldin-Williams graph if G is a strongly
connected hyperbolic graph.

For α ∈ E(Z) we put α− = α|Z− , α+ = α|N. Let us observe that we have
natural isomorphisms:

Ev(Z, G) 3 α → (α−, α+) ∈ Ev(Z−, G)× Ev(N, G),
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Ev(N, G) 3 α → α−1 ∈ Ev(Z−, G−1),

Ev(Z, G) 3 α → (α−, α−1
+ ) ∈ Ev(Z−, G)× Ev(Z−, G), (8)

where (α−1)k := (α−1−k)
−1. In the following we generalize the abstract con-

tracting graph construction from the previous section to the hyperbolic case.
One can easily verify that the following construction is correct:
Model hyperbolic graph construction. Let G be a hyperbolic graph. We
de�ne a graph system ΓG[S, U ] by:

• we label every v ∈ V with the space Xv := Ev(Z);

• for every e ∈ E we consider the partial map Pe : Xi(e) ⇀ Xt(e) which is
the restriction of the left shift P to {α ∈ E(Z) : α0 = e};

• we de�ne the cone structure and complete metric ρU
S on Xv:

cS(α, α′) := S(α−∧α′−), cU(α, α′) := (1/U)(α+∧α′+) for α, α′ ∈ Ev(Z),

ρU
S (α, α′) := max(cS(α, α′), cU(α, α′)).

• we have
|Pe|s = Se, 〈Pe〉u = Ue for e ∈ E. (9)

In the contracting case we have the following.
Dimension Theorem [3, Theorem 6.4.2]. Let G be a Mauldin-Williams
graph and let r := rG(S) denote the Mauldin-Williams dimension of G (see
(1)). Then

dimH(Ev(Z−)) = dimB(Ev(Z−)) = dimB(Ev(Z−)) = r,

and Hr(Ev(Z−)) ∈ (0,∞), where in Ev(Z−) we take the metric ρS de�ned
as ρS(α, α′) := S(α∧α′). The space (Ev(Z−), ρS) is a compact and complete
metric space.

Observation 4.1. Let us observe that (8) induces a natural isometry

(Ev(Z, G), ρU
S ) ≈ (Ev(Z−, G), ρS)× (Ev(Z−, G−1), ρ1/U).

Consequently, (Ev(Z), ρU
S ) is a compact and complete metric space.
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Modifying of the standard argument (see [4]) from one-sided to two-sided
case one can get the following.
Hyperbolic Dimension Theorem. Let G be a hyperbolic Mauldin-Williams
graph and let r := rG(S) + rG−1(1/U). Then

dimH(Ev(Z)) = dimB(Ev(Z)) = dimB(Ev(Z) = r,

and Hr(Ev(Z)) ∈ (0,∞), where in Ev(Z) we take the metric ρU
S .

To proceed further we need notions of semiconjugacy between two graph
systems.

De�nition 4.2. Let Γ and Γ′ be two G-graph systems. We say that a
sequence of surjections Φv : Xv → X ′

v is a semiconjugacy between Γ and Γ′ if

F ′
e ◦ Φi(e) = Φt(e) ◦ Fe for e ∈ E.

If all the functions are homeomorphisms then the sequence (Φv)v∈V is called
a conjugacy.

Now we are ready to formulate the main result of this section. We recall
that F Ze = Fe ∩ (inv(Xi(e))× inv(Xt(e))) (see De�nition 3.3).

Theorem 4.1. Let Γ be a graph system. We assume that

• there exists ε > 0 such that for e, e′ ∈ E, e 6= e′

t(e) = t(e′) ⇒ distt(e)(imF Ze , imF Ze′) ≥ ε, (10)
i(e) = i(e′) ⇒ disti(e)(domF Ze , domF Ze′) ≥ ε; (11)

• Se := 〈Fe〉 ∈ (0, 1), Ue := |Fe| ∈ (1,∞) for every e ∈ E;

• orb(α) 6= ∅ for every α ∈ E(Z).

Then the maps Av : inv(Xv) → Ev(Z) give a Lipschitz semiconjugacy between
inv(Γ) and ΓG[S, U ].

Proof. By the de�nition Av(x) 6= ∅ for x ∈ inv(Xv). Moreover, by the
assumptions we know that orb(α) 6= ∅ for every α ∈ E(Z), which implies
that Av(inv(Xv)) = Ev(Z).
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Let us now show that Av : inv(Xv) → Ev(Z) is a well-de�ned single-
valued map. Let x, x′ ∈ inv(Xv) and α ∈ Av(x), α′ ∈ Av(x

′) be arbitrarily
chosen. We show that

ρS(α−, α′−) ≤ K2

ε
d(x, x′), ρ1/U(α+, α′+) ≤ K2

ε
d(x, x′)

We prove the �rst inequality (the second is analogous). It is enough to
consider the case when α− 6= α′−. Let k ∈ Z− be such that

αk 6= α′k, αi = α′i for i ∈ Z−, i > k.

Let z be an α-orbit such that z0 = x, and z′ be an α′-orbit such that z′0 = x′.
By the assumption (10) we conclude that

d(zk, z
′
k) ≥ ε.

Consequently

d(x, x′) = d(z0, z
′
0) ≥

1

K
c(z0, z

′
0) ≥

−1∏

i=k

〈Fαi
〉 · 1

K
c(zk, z

′
k) ≥

ε

K2
ρS(α−, α′−).

Thus ρU
S (α, α′) ≤ K2

ε
d(x, x′) which implies that Av is a single valued and

Lipschitz map.

As a direct consequence of the above theorem and the Hyperbolic Dimen-
sion Theorem we get:

Corollary 4.1. Assume additionally (to assumptions of Theorem 4.1) that
G is a strongly connected graph. Let r = rG(S) + rG−1(1/U). Then

Hr(inv(Xv)) > 0 for v ∈ V.

5 Cone-hyperbolic graph
We show that cone graph system (graph system in which every space Xv is
a cone space) under some additional assumptions is conjugated to the model
hyperbolic graph.

Let us begin with a direct consequence of Corollary 2.1.
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Proposition 5.1. Let Γ be a cone graph system such that Fe is dominating
for every e ∈ E. We assume that

C = max
X∈V

diam(Xv) < ∞.

Let v ∈ V be �xed and let α, α′ ∈ Ev(), and z ∈ orb(α), z′ ∈ orb(α′). Then

dv(z0, z
′
0) ≤ K2C max(|F (α− ∧ α′−)|s, 〈F (α+ ∧ α′+)〉−1

u ).

We say that a cone graph system Γ = (V, v → Xv; E, e → Fe) is hyperbolic
if

|Fe|s < 1 < 〈Fe〉u for e ∈ E.

Theorem 5.1. Let Γ = (V, v → Xv; E, e → Fe) be a hyperbolic cone graph
system such that

C := max
v∈V

diam(Xv) < ∞.

Let Se := |Fe|s, Ue := 〈Fe〉u and let

Xv := {α ∈ Ev(Z) : orb(α) 6= ∅}.
Then

• the space Xv is a cone-space with cone �eld cS, cU and the metric ρU
S ;

• for every e ∈ E the partial map Pe : Xi(e) ⇀ Xt(e) de�ned as the
restriction of the left shift P to {α ∈ Xi(e) : α0 = e} satis�es

|Pe|s ≤ Se, 〈Pe〉u ≥ Ue for e ∈ E; (12)

• the maps Cv give a Lipschitz semiconjugacy between the hyperbolic graph
system (V, v → (Xv, ρS); E, e → Pe) and inv(Γ);

• inv(Xv) is a compact subset of Xv.

Proof. Let α, α′ ∈ Xv and z ∈ orb(α), z′ ∈ orb(α′) be arbitrarily chosen.
Directly from Proposition 5.1 we conclude that

dv(z0, z
′
0) ≤ CK2ρU

S (α, α′). (13)

This implies that the map Cv : Xv → inv(Xv) is a single-valued Lipschitz
map (directly from the de�nition it is a surjection).
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Let us now show that Xv is a cone space. Since (Ev(Z; G), ρU
S ) is a com-

pact (and consequently complete) metric space, to show that Xv is complete
it is enough to prove that it is a closed subset of Ev(Z). So let (αn)n∈N ⊂ Xv

be a sequence convergent to α ∈ Ev(Z). Our aim is to prove that α ∈ Xv,
or in other words that orb(α) 6= ∅. For n ∈ N let zn ∈ orb(αn) be arbitrarily
chosen. Let us �x j ∈ Z. Then by (13)

dv(z
k
j , z

l
j) ≤ CK2ρU

S (P jαk, P jαl) → 0, as k, l →∞.

Because spaces {Xu}u∈V are complete, we obtain that zn
j → zj for some zj ∈

Xi(αj). We are going to show that such de�ned z is an α-orbit. Take k ∈ N
such that j ∈ [−k, k]Z. The set Uk := {β ∈ Ev(Z), αl = βl, l ∈ [−k, k]Z} is
an open neighbourhood of α in Ev(Z). This yields that there exists nk ∈ N
such that αn ∈ Uk for n ≥ nk. Consequently

Fαj
(zn

j ) = Fαn
j
(zn

j ) = zn+1
j , n ≥ nk.

Since each Fe, e ∈ E has a closed graph we conclude that Fαj
(zj) = zj+1 for

every j ∈ Z, and therefore z ∈ orb(α), which implies that α ∈ Xv.
One can easily notice that (12) is a direct consequence of (9). Also

inv(Xv) is compact as an image of a compact set Xv through the continuous
map Cv.

As a direct corollary of the above theorem and Hyperbolic Dimension
Theorem from Section 4 we obtain:
Corollary 5.1. Let G = (V,E) be a strongly connected graph, let Xv be a
bounded cone space for every v ∈ V , and let Fe be a partial map with a closed
graph between Xi(e) and Xt(e) such that

• Fe is cone-hyperbolic for every e ∈ E.
Then for every v ∈ V

• invv(Xv) is compact;

• dimB (inv(Xv)) ≤ rG(|Fe|S) + rG−1(〈Fe〉1/U).
Moreover, in general the above estimation cannot be improved.

Theorem 5.1 has a disadvantage since it does not give a semiconjugacy
with the model hyperbolic system we know well, but only with its subset.
To obtain semiconjugacy we need an additional assumption.
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Corollary 5.2. Let all the assumptions of Theorem 5.1 hold. Then orb(α) 6=
∅ for every path α ∈ E(Z) if and only if

orb(α) 6= ∅ for every �nite path α ∈ E(). (14)

Consequently, if (14) holds then Xv = Ev(Z) for every v ∈ Z.
Proof. Let α ∈ E(Z) be �xed and let αn := α|[−n,n)Z . We choose zn ∈
orb(αn). By proceeding as in the proof of Theorem 5.1 one can easily prove
that zn

j → zj for every j ∈ Z, and that {zj}j∈Z is in fact an α-orbit.

Remark 5.1. Note that in the classical case of contracting graph-directed
IFS condition (14) is automatically satis�ed, while in the general hyperbolic
case this condition is usually non-trivial.

In general, to verify (14) one needs some additional topological tools like
covering relations [7, 19] which �work� for subsets of Rn or related analogues
in general metric spaces [9, 17].

Now we are going to �summarize� the results of this and the previous
section in one theorem.

Theorem 5.2. Let Γ = (V, v → Xv; E, e → Fe) be a cone graph system such
that

i) diam(Xv) < ∞ for every v ∈ V ;

ii) for every e, e′ ∈ E, e 6= e′:

domFe ∩ domFe′ = ∅, imFe ∩ imFe′ = ∅; (15)

iii) Fe is bi-Lipschitz and cone-hyperbolic for every e ∈ E;

iv) orb(α) 6= ∅ for every �nite path α ∈ Ev().

Let Xv := Ev(Z) and let

S ′e := 〈Fe〉, Se := |Fe|s, Ue := 〈Fe〉u, U ′
e := |Fe|.

Then

• Cv : (Xv, ρ
U
S ) → (inv(Xv), dv) is a Lipschitz surjection;
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• Av : (inv(Xv), dv) → (Xv, ρ
U ′
S′ ) is a Lipschitz surjection;

• Cv de�nes the conjugacy between graph systems ΓG[Se, Ue] and inv(Γ).

Proof. All we need to show is that the assumptions of Theorem 4.1 are sat-
is�ed.

By Theorem 5.1 we conclude that inv(Xv) is compact for every v ∈ V .
This together with the fact that Fe has a closed graph yields that the domain
and the image of F Ze (see De�nition 3.3) are compact sets. Finally (15) implies
that the ε-disjointness assumption of Theorem 4.1 is satis�ed.

By Corollary 5.2 we conclude that orb(α) 6= ∅ for every α ∈ E(Z). Thus
all the assumptions of Theorem 4.1 are satis�ed.

As an easy consequence we obtain Hölder conjugacy.

Corollary 5.3. Let all the assumptions of Theorem 5.2 hold. Suppose that
we are given constants S̄e, Ūe and γ ∈ (0, 1] such that

S̄e ∈ [〈Fe〉1/γ, |Fe|γs ], Ūe ∈ [〈Fe〉γu, |F |1/γ] for e ∈ E.

Then the graph systems ΓG[S̄, Ū ] and inv(Γ) are Hölder conjugate, where
the conjugacy Cv and its inverse Av are Hölder continuous with Hölder con-
stant γ.

6 Smale's horseshoe
Our aim is to show an application of Theorem 5.2 on a relatively simple
example. Before that let us comment on the assumptions of Theorem 5.2.
Conditions i) and ii) are quite easy to verify using direct computations or
interval arithmetics approach. To show iii) one can use estimations obtained
in Observations 2.1 and 2.2. Assumption iv) can be checked by the covering
relations argument [7, 19]. Let us explain the main idea behind this notion
in a simpli�ed R2 case.

By an h-set we denote the set A ⊂ R2 and the homeomorphism h :
[0, 1]2 → A. Having two h-sets A1, A2 and a continuous map f : A1 → R2 we
say that A1 f -covers A2 (A1

f⇒ A2) if the following conditions are satis�ed

• (h−1
2 ◦ f ◦ h1)([0, 1]2) ⊂ [0, 1]× R,

• (h−1
2 ◦ f ◦ h1)([0, 1]× {0}) is below [0, 1]× {0},
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• (h−1
2 ◦ f ◦ h1)([0, 1]× {1}) is above [0, 1]× {1}.

Covering Relations Theorem [19, Theorem 4]. For a sequence of h-sets
(Ai)

n+1
i=1 ⊂ R2 and continuous functions fi : Ai → R2 such that Ai

fi⇒ Ai+1

there exists a sequence of points (xi)
n+1
i=1 such that

xi ∈ Ai, xi+1 = fi(xi), for i = 1, . . . , n.

Example 6.1. We consider a modi�ed linear horsheshoe based on [1, Section
6.1.3]. Take two horizontal strips

H1 = [−1, 1]×
[
−3

4
,−1

4

]
and H2 = [−1, 1]×

[
1

4
,
3

4

]

Put S = H1 ∪ H2 and take a function f : S → R2 such that fi = f |Hi are
a�ne mappings and

df1 =

[
s 0
0 u

]
and df2 =

[
s 0
0 −u

]
,

where 0 < s ≤ 1/4 and u ≥ 4. To keep things simple assume that f1(0, 1/2) =
(−1/2, 0) and f2(0,−1/2) = (1/2, 0) (see Fig. 1).

H
1

H
2

Figure 1: Construction of a modi�ed linear horsheshoe.

By Observations 2.1 and 2.2 we know that

〈fi〉 = |fi|s = s and 〈fi〉u = |fi| = u.
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Therefore we have a hyperbolic graph system

Γ = ({v}, v → inv(f, S); {e1, e2}, ei → fi)

which represents the dynamics of f on the invariant set inv(f, S).
In our example we have Hi

fi⇒ Hj for i, j = 1, 2. By Covering Relation
Theorem we know that (14) is satis�ed. Therefore by Theorem 5.2 we obtain
that Γ is Lipschitz conjugated to an abstract cone graph system which is in
fact a simple shift on two symbols Σ2 = {1, 2}Z. The essential di�erence
from the classical approach is that we de�ne the metric on Σ2 by

ρ(α, α′) = max
{
s−k− , u−1−k+

}
, (16)

where k− := inf{i ≤ 0 : α−1 = α′−1, . . . , αi = α′i}, k+ := sup{i ≥ −1 : α0 =
α′0, . . . , αi = α′i}.

Corollary 4.1 and 5.1 imply that most reasonable fractal dimension of
inv(f, S) is equal to logu 2− logs 2.4

We further modify the above example by introducing a Lipschitz pertur-
bation. Let g = f +p where p is Lipschitz. We are interested in the dynamics
of g on the set inv(g, S) (see Fig. 2).

In the following we present the major consequence of our results. Recall
that |p| stands for the Lipschitz constant of p.

Theorem 6.1. Let p : S → R2 be such that

|p| < s, (17)

sup{‖p(x)‖ : x ∈ S} <
1

2
− s. (18)

Let g = f + p. Then the dynamics of g on inv(g, S) is Hölder conjugated
to the shift on two symbols Σ2 with metric de�ned as in (16) by a homeo-
morphism Φ. Φ is Hölder continuous with constant logs(s + |p|) and Φ−1 is
Hölder continuous with constant logs−|p| s. Moreover

dimB(inv(g, S)) ≤ (log2(u− |p|)−1 − (log2(s + |p|)−1, (19)

dimH(inv(g, S)) ≥ (log2(u + |p|)−1 − (log2(s− |p|)−1. (20)
4In the case when u = 4 and s = 1/4 we obtain that dim(inv(f, S)) = 1.
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Figure 2: Invariant set for a perturbated linear horsheshoe.

Proof. Obviously diam(S) < ∞. From (18) it follows that

img1 ∩ img2 = ∅,

where gi = fp|Hi. By Proposition 2.1 we have

|gi| ≥ si − |p|,
|gi|s ≤ si + |p|,
〈gi〉u ≥ ui − |p|,
〈gi〉 ≤ ui + |p|.

Therefore by (17) we know that gi are bi-Lipschitz and cone-hyperbolic.
Assumption (18) yields that Hi

g⇒ Hj for i, j = 1, 2. Consequently orb(α) 6=
∅ for every �nite path α ∈ E(). Theorem 5.2 yields that C : (Σ2, ρ1) →

21



(inv(g, S), d) and A : (inv(g, S), d) → (Σ2, ρ2) are Lipschitz, where

ρ1(α, α′) = max
{
(s + |p|)−k− , (u− |p|)−1−k+

}
,

ρ2(α, α′) = max
{
(s− |p|)−k− , (u + |p|)−1−k+

}
,

and d is a standard Euclidean metric in R2. This gives us the fractal di-
mension estimates (19) and (20). The functions id1 : (Σ2, d) → (Σ2, d1) and
id2 : (Σ2, d2) → (Σ2, d) are both Hölder continuous and as the homeomor-
phism Φ we take C ◦ id1 = (id2 ◦ A)−1. Hölder constants follow from simple
calculations.
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