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Abstract

A cone space is a complete metric space (X, d) with a pair of func-
tions cg, ¢y : X X X — R, such that there exists K > 0 satisfying

1
?d(x,x') < max(cs(z,2'), cu(z,2')) < Kd(z,2") for z,2' € X.

For a partial map f between cone spaces X and Y we introduce |f|s
which measures the stable contraction rate and (f), which measures
the unstable expansion rate. We say that f is cone-hyperbolic if

[fls <1 <{flu-

Using cone field and graph-directed IFS we build an abstract met-
ric model which decribes the dynamics of the hyperbolic-like systems.
This allows to obtain estimations from below and above of the fractal
dimension of the hyperbolic invariant set.

1 Introduction

Graph description of dynamical behaviour, and in particular graph-directed
iterated function theory, is one of the most important and fruitful ideas in
modern theory of dynamical systems |3, 5, 6, 8, 10, 13, 15, 18|.

We generalize the notion of the graph-directed IF'S from contracting to
hyperbolic case. As a consequence we obtain a simple and applicable tool,
based on the graph-directed IFS and cone condition, to characterize the
dynamics of the hyperbolic-like systems in general metric spaces. It allows
to estimate the dimension of the invariant set from above and below or show



the Lipschitz semiconjugacy between the invariant set and the model graph-
directed system. Before proceeding further let us show a direct consequence
of our results on the classical Smale’s horseshoe (see Theorem 6.1).

Smale’s horseshoe. Consider the horizontal Hy = [—1,1] x [=3 —1],
Hy = [-1,1]x [, 3] and vertical Vi = [=3, =1 x[-1,1], Vo = [1, 3] x[-1,1]

strips. Let S = H; U Hy
Let f: S — R? be such that f; := f|H; is an affine mapping, fi(H;) = V;
[1/4 0 (14 0
anddfl—{ 0 4}anddf2—{ 0 _4}

Let us take a Lipschitz function p : S — R? and consider g := f +p. If
[Pllsup < 1/4 and lip(p) < 1/4,

then the dynamics of g on inv(g, S) is conjugated to f oninv(f,S) by a home-
omorphism ®, such that the Hélder constant of ® is less then logy,,(1/4 +

lip(p)) and Holder constant of ®" is less then 1og, 4y, (1/4). Moreover ',

dimp(inv(f,, 5)) < (logy(4 — lip(p)) ™" — (logy(1/4 + lip(p)) ",

dimy (inv(f,, 8)) = (logy(4 +lip(p)) ™ — (logy(1/4 — lip(p)) .
Observe that when lip(p) — 0 then the Holder constant and the dimension
converge to 1.

To describe our ideas more precisely let us quote the Mauldin and Williams
graph-directed generalization |4, Theorem 3.5] of the classical Moran Theo-
rem [12] (for the original paper see [11]). Let G = (V, E) be a directed graph
(where V' denotes the set of vertices and E the set of edges). Given an edge
e by i(e) we denote its initial and by ¢(e) its terminal vertex. By a path
a = (aj)jes in G we denote a sequence of edges such that t(a;) = i(aj11)
foryjed:g+1elJ.

We call G a contracting graph if we are given a labeling function S :
E — (0,1). If G is a strongly connected contracting graph then we call G a
Mauldin- Williams graph. With every Mauldin-Williams graph we associate
the Mauldin- Williams dimension, which is the unique r := r4(5) € [0, 00)
such that there exist (z,),ev C (0, 1) satisfying

Ty = Z (Se) @iy forveV. (1)

e€E:t(e)=v

'We are particulary interested in these estimates since we have dimy < dim < dimp
for most reasonable fractal dimension dim.



By Z_ we understand {k € Z : k < 0}.

Moran Theorem [4, Theorem 3.5]. Let G = (V, E) be a strongly con-
nected graph, let X, be a bounded complete metric space for every v € V,
and let F, : Xy — Xye) be such that

o lip(F.) <1 for every e € E.

By inv™(X,) we denote the backward invariant set of X,, that is the set of
all points x € X, for which there exists a path o = (ag)rez_ in G, t(a_1) =v
and an a-orbit z = (2)kez_ugoy (Fay(2k) = 2k41) such that zp = .

Then for every v e V

e inv (X,) is compact;
o dimp (inv™ (X,)) < r¢(lip(F.)).

Moreover, in general the above estimation cannot be improved.

One of the disadvantages of the classical IFS theory is that it does not
cope well with typical hyperbolic behaviour, while there exists a large and
advanced theory dealing with the properties (in particular global and local
dimension) of C'! hyperbolic systems [1, 16].

We show that by a relatively simple adaptation of the cone condition [2, 8,
14, 18] to a metric case we can generalize the notion of classical graph-directed
IFS to the “hyperbolic-like” case. This allows us to obtain estimations from
above and below of the dimension of the invariant set of graph-directed IFS
with hyperbolic structure.

Let us briefly describe the contents of the paper. In the next section we
adapt the notion of a cone field to metric spaces by modifying the approach
of S. Newhouse from [14]. By a cone space we understand a complete metric
space (X, d) with a pair of functions ¢,,cs : X X X — R, such that there
exists K > 0 satisfying

1
?d(a:, r') < max(cs(z,2'), cy(z,2") < Kd(z,2') for z,2’ € X.

Given a cone space X we define the stable and unstable cones by the formula

Cs(X) :=A{(z,2') : cs(x,2") > cu(x,2")},
Co(X) :=A{(z,2") : cy(x,2") > es(x,2")}.



For a partial map f between cone spaces X and Y we introduce

|fls = sup —
(f@).f@)ecs(y)  c(@, ')

(flu = inf

(z,2")€C,(X) c(x,x’)

We call |f|, the s-contraction rate and (f), the u-expansion rate*. Roughly
speaking | f|s measures the contraction rate on the stable cone while (f), the
expansion rate on the unstable one. We say that f is cone-hyperbolic if

[fls <1 <{fu-

In 3 section we establish some notation related to the graph-directed IFS.
Sections 4 and 5 contain main theorems of the paper. Let us present one of
the results of section 5 (see Corollary 5.1). Given a directed graph G = (V, E)
and e € E, by e~! we denote the inversed edge (that isi(e™') = t(e), t(e™!) =
i(e)). By G™' = (V,E™') we denote the graph with the same vertices and
inversed edges.

Hyperbolic Moran Theorem. Let G = (V,E) be a strongly connected
graph, let X, be a bounded cone space for every v € V', and let F, be a partial
map with a closed graph between Xy and Xy such that

o I, is cone-hyperbolic for every e € L.

By inv(X,) we denote the invariant set of X,, that is the set of all points
x € X, for which there exists a doubly infinite path o = (c)kez in G and an
a-orbit 7z = (2 )kez such that zg = x.

Then for every v e V

o inv,(X,) is compact;
[ J ﬁB (ll’lV(Xv)) S TG(|Fe|s) + TG*1<<F8>51)'

Moreover, in general the above estimation cannot be improved.
In the last section we present an application of our tools on an example
of the Smale’s horseshoe with a Lipschitz perturbation.

2These constants correspond to minimal expansion and the minimal co-expansion used
by S. Newhouse [14].



2 Cone fields in metric spaces

Let (X, d) be a metric space. It is often convenient to modify the original
metric d to some other function ¢ : X x X — R,. In our case we just need
the single assumption on c that there exists K > 0 such that

1
?d(x,z’) <c(z,2") < Kd(x,2') for z,2’ € X.

From now on we assume that on every metric space we have an additional
function ¢ which satisfies the above condition (if we are not given ¢ directly
we simply take ¢ = d).

For an interval J C R we define J; := JNZ. We say that I C Z is a
Z-interval if there exists an interval J C R such that I = Jz. For a Z-interval
we put It :=TU(I+1).

Given metric spaces X,Y and a partial map f : X — Y we define the
Lipschitz and the co-Lipschitz constants of f (with respect to the function
¢) by the formula

|f] == inf{R € [0,00] : c¢(f(x), f(z") < R-c(x,a’) for x,2’ € domf},
(f) := sup{R €1[0,00] : c(f(x), f(«')) > R - e(x,2’) for x,2" € domf}.

Observation 2.1. Let E and F be Banach spaces and let A : E — F be
an tnvertible linear operator. Let U C E, p: U — F and let g : U — F' be

defined by
g(x) == Ax +p(z) forxeU.

We put c(z,2") = ||x — &'||. Then one can easily notice that
(9) = [IA77" = Tip(g), lg| < [[A]l + lip(g).
Let f:Y = Zand g: X — Y. Then
[fogl <I[f]-1gl, (Fog) = (f)-(9). (2)

Remark 2.1. Consider mappings f; : X; — X1 for i € I = [k, n)z where
k,n€ Z k <n. Let (z;);er+, (x})icr+ be such that:

z;, xy € domf;, xipr = fi(w:), xjq = fi(z}) foriel.
Then obviously
d(@n, ) < K2 fuoal oo | fil - d(ag, 27,).



In this section we generalize the notion of a cone-field to metric spaces
(our aim is to obtain the analogue of Remark 2.1). To estimate the distance
between orbits from above and below in the case when the given map has
hyperbolic-like structure we need an additional structure of a cone field. We
adapt some of the notation and ideas from [14].

Definition 2.1. Let (X, d) be a complete metric space. By a cone field on
X we understand a pair of functions ¢4, ¢, : X X X — R, such that there
exists K > 0 satisfying

1
?d(‘ray) < C(:an) < Kd(l‘7y) for T,y € X:

where ¢(z,y) := max(cs(x,y), cu(z,y)). In this case we call X a cone metric
space (cone space shortly).

Given a cone space X we introduce the cones Cs(X) and C,(X) by the
formula:

(I‘ I/) e X xX: C5<I7y) > CU<'I>$/)}7

(X) :={(z,
={(z,2") € X x X : ¢y(z,2") > cs(z,2)}.

Cs {
Cu(X) = {

Definition 2.2. For f: X — Y we define

|fls = inf{R € [0,00] : c(f(x), f(2)) < R-c(z,y)
for z, 2" € domf : (f(x), f(2')) € Cs(Y)},

(Flu = sup{R € [0,00] : ¢(f(x), f(z)) = R-c(x,2')
for x,2’ € domf : (z,2") € Cu(X)}.

We call |f|s the s-contraction rate and (f), the u-expansion rate.
In the following we give an estimate of |f|s and (f),.

Observation 2.2. We assume that we have two Banach spaces E = E;® E,
and F' = F; & F,. For each x € E we have v = x, + x, where x; € Ej,
Ty € B, and as functions cs and ¢, we take

cs(z,2') = |lws — 2|, culz,2’) :=|w, — 2|, =z,2' €FE.

The same holds for F. Additionally we assume that both norms satisfy ||z|| =
max([|zs|[, [lzu]])-



Let A: E — F be a linear operator given in the matriz form by

AS ASU
A= { A A, } '

and let p = (ps,pu) : U — Fs ® F,, where U C E, be a given Lipschitz
mapping. Let g: U — F, g(x) := Az + p(z). Then

9ls < [[As[l + | Asul| +Tip(ps), (3)
(@a = 1A = 1 Aus]l — Tip(pu). (4)

Proof. To prove (3) let us choose z,2" € U such that (g(x),g(z’)) € Cs(F).
Then

lg(z) = g(z)] [As(zs — 2 )| + | Asu(wu = 2,)[| + lip(ps) [ — 2|

<
< (Al + [[Aus]l + lip(ps)) - [l — 2.

We show (4). Fix z,2’ € U such that (z,2') € C,(F). Then |z — 2| =
|z — || > ||zs — 2|, and consequently

lg(z) = g@ = [[Au(zu — 2,) + Aus(zs — 27) + (pu(x) — pulz’)) |
> (1A = Il Ausll = lip(pa)) - [l — 2.

Definition 2.3. The function f is dominating if

’f’S < <f>’u7

and cone-hyperbolic if

fls <1 <{flu
Trivially, a cone-hyperbolic mapping is dominating.

Proposition 2.1. Let f: X — Y be dominating. Then f is cone invariant,
that is for x,2" € domf we have

(z,2) € Cu(X) = (f(z), f(a')) € Cu(Y), (5)

(f(@), f(2") € Cs(Y) = (x,2") € Cs(X). (6)

-~



Proof. Let z,2" € domf be such that (x,2’) € C,(X). Then

c(f(x), f(2) 2 (fluc(z, 2).

We want to show that (f(x), f(z')) € C,(Y). If this was not the case, then

(f(2), f(2)) € C(Y), e(f(z), f(2)) > 0.

This gives us
0 <c(f(x), f(2) < |flse(z,2).
Consequently, |f|s > 0 and ¢(z,y) > 0. Summarizing, we obtain that

| flsc(z, ') = e(f(x), f(2") = (fuc(z, 2).

Since c(z,2") > 0 we get |f|s > (f)u, a contradiction.
The proof for f=! is analogous. O

As an important consequence we get an analogue of (2).

Theorem 2.1. Let f:Y — Z and g : X — 'Y be dominating. Then

[fogls < [fls-1gls; (foghu = (Fu-(9)u

Proof. 1t is a direct consequence of the cone invariance (see (5) and (6)) and
Definition 2.2. ]

In the following we show that in the case of dominating functions we can
estimate the rate of increase of distance between two orbits.

Corollary 2.1. Consider dominating mappings f; : X; — X1 fori € 1,
where I = [k,n)z. Let (x;)ier+, (@})icr+ be such that:

z;,xy € dom(f;), vip1 = fi(wi), iy = fiz}) foriel
Then for every l € IT = [k, n|z we have:

c(wap) Smax((fa-t)y' - i)y - cl@n, @) | fimals - Ll - (@, 24)).



Proof. Consider first the case when (z;,z]) € C,(X;). Applying Proposition
2.1 we obtain that (z;,z}) € C,(X;) for i =1,...,n. By Theorem 2.1 we get

C(:L’n,l’,n) > <fn—1>u et <fl>u : C(xlv JI;),

and consequently

oz, 2) < (famt)y' - (fi)u - elam, 7).

Now let us discuss the case when (z;,2)) € Cs(X;). By Proposition 2.1 we
have (z;,2}) € C,(X;) for i = k,...,l, and therefore

C(iﬁlyfg) S |fl—1|s et |fk:|5 : C(Iknx;c)‘

3 Graph notation

Let G = (V, E) be a directed graph. Given a (possibly empty) Z-interval J
we consider the set of paths in G

E(J,G) ={a:J— E :tla;) =i(ajy) forje J:j+1e J}

If G is fixed, we usually omit it and write E(J). By E(G) (or simply E())
we denote the set of all paths in the graph G. For a Z-interval I such that
0 € I" and v € V we define

E,(I,G) ={a€ E(I,G) : t(a_1) = v or i(ag) = v}.
We also put £,(G) = Uy ger+ Eo(I,G).

Definition 3.1. Let G = (V, E) be a given directed graph. By a graph G-
directed iterated function system (or G-graph system shortly) we understand
labeling functions X and F' over vertices and edges of G: every vertex v is
labeled by a complete metric space X,, and every edge e is labeled with a
partial function F, : X;) — Xy with a closed graph3. To denote the whole
G-graph system we usually write (V,v — X,;E,e — F.) (in that case we
speak simply of a graph system).

3In fact to shorten the notation we informally allow F, to have a larger domain then
Xi(e) or image not contained in Xy and then restrict automatically F, to F. N (X x
Xt(e))



Let us explain why we assume in the definition that every F, has a closed
graph.

Observation 3.1. Let o € E(G,I) be a given path in G and let 2" = (7] )ier+

be a pointwise convergent (to some z = (z;)ic1+) sequence of a-orbits. Then

by the fact that F. has a closed graph we obtain that z is also an a-orbit.

We say that a graph system I' is contracting if |F.| < 1 for every e € E.
Since we modify the standard approach let us now briefly show how one
usually proves the Moran Theorem [4, Theorem 3.5]. The idea is based on
building an abstract graph system and using the semiconjugacy.

We define the left shift operator P on E(), where P(E([)) = E(I — 1),
by the formula

(Pa)y =gy forae E(I),kel—1.

Given «, o’ € E(G), we define a two-sided analogue of the longest common
prefix
aNd = (and)|; € E(G),

where

I:= U{J | J is Z-interval, 0 € J*, a|; = o}

Given a labeling function 7' : E — [0,1] we naturally extend it to the
space of all paths by

[T () if 1 #0,
T(a) = iel
1 otherwise,

for a € E(I).

Definition 3.2. Let o € E(I). We say that z: [T — (J, o, X, is an a-orbit
if z; € domF,,, for v € I and

F,,(z;) =2z;41 foriel.
The set of all a-orbits we denote by orb(a).

Let v € V and I be such that 0 € I™. Then for a € E,(I) we define its
coding multimap

Cl(a):={r € X,|Fz € orb(a): 2o = z}.

10



Dually, given z € X,,, we denote its [-address multimap by
Al(z) .= {a € E,(I)|3z € orb(a) : 7y = z}.

If [ = Z then we simply write A,(z), C,(a). One can easily observe that C!
and A! are inverse multimaps. Now we are ready to define the invariant set
for X, (we assume that 0 € I1):

inv!(X,) := {r € X, | Al(z) # 0}.
If I = Z then we simply write inv(X,).

Definition 3.3. Let [ be a Z-interval such that 0 € I™ and let I' = (V,v —
X,; E — F,) be a graph system. For e € F we put

Fli=F. 0 (inv! (X)) % inv! (X)), (7)
and define the graph system
inv!(T) := (V,v — inv!(X,); B, e — FI).

In the case when [ = Z we simply write inv(I").

4 Metric hyperbolic case

With the use of the metric one can estimate the Hausdorff dimension of the
invariant set from below. To do this, we will need a hyperbolic equivalent of
a Mauldin-Williams graph:

Definition 4.1. Let G = (V, E) be a directed graph. We say that G is
hyperbolic if we are given two labeling functions S,U : F — (0, c0) such that

Se € (0,1),U. € (1,00) foree€ E.

We say that G is a hyperbolic Mauldin-Williams graph if G is a strongly
connected hyperbolic graph.

For a € E(Z) we put o = «|z_, ooy = «|n. Let us observe that we have
natural isomorphisms:

E,(Z,G)3>a— (a_,ay) € E,(Z_,G) x E,(N,G),

11



E,N,G)>a—a '€ EJ(Z_,G™),
E,(Z,G)>a — (a_,a;') € BE,(Z_,G) x E,(Z_,G), (8)

where (a™1);, := (a_;_)~'. In the following we generalize the abstract con-
tracting graph construction from the previous section to the hyperbolic case.
One can easily verify that the following construction is correct:

Model hyperbolic graph construction. Let G' be a hyperbolic graph. We
define a graph system T'g[S, U] by:

o we label every v € V with the space X, := E,(Z);

e for every e € E we consider the partial map P, : Xy — Xye) which is
the restriction of the left shift P to {a € E(Z) : oy = e};

e we define the cone structure and complete metric p% on X,:
cs(a,a’) == S(a_nal), cy(a,a’) == (1/U)(agx N, )  for a, o’ € E,(Z),
p%(a, @) = max(cg(a, o), cy(a, ).

e we have
|P.|s = Se, (P.)y =U, fore€E. 9)

In the contracting case we have the following.

Dimension Theorem [3, Theorem 6.4.2]. Let G be a Mauldin- Williams

graph and let v := rg(S) denote the Mauldin- Williams dimension of G (see
(1)). Then

dimy(F,(Z_)) = dimg(E,(Z_)) = dimp(E,(Z_)) =,
and H'(E,(Z_)) € (0,00), where in E,(Z_) we take the metric ps defined

as ps(a, ) = S(aANd'). The space (E,(Z_), ps) is a compact and complete
metric space.

Observation 4.1. Let us observe that (8) induces a natural isometry
(E’U<Z7 G), Pg) ~ (EU(Z—J G>7 PS) X (E’U(Z—J G_1>7 pl/U)'

Consequently, (E,(Z),pY) is a compact and complete metric space.

12



Modifying of the standard argument (see [4]) from one-sided to two-sided
case one can get the following.

Hyperbolic Dimension Theorem. Let G be a hyperbolic Mauldin- Williams
graph and let r :=rg(S) +rg-1(1/U). Then

dimpy(E,(Z)) = dimp(E,(Z)) = dimg(E,(Z) = r,

and H"(E,(Z)) € (0,00), where in E,(Z) we take the metric pg.

To proceed further we need notions of semiconjugacy between two graph
systems.

Definition 4.2. Let I' and IV be two G-graph systems. We say that a
sequence of surjections ®, : X, — X is a semiconjugacy between I' and I if

Fel o (I)i(e) = (I)t(e) oF, foree F.

If all the functions are homeomorphisms then the sequence (®,),ecy is called
a conjugacy.

Now we are ready to formulate the main result of this section. We recall
that FZ = F, N (inv(X;()) X inv(Xy))) (see Definition 3.3).

Theorem 4.1. Let I' be a graph system. We assume that

e there exists € > 0 such that for e,e’ € E e # ¢
tle) =t(e') = distye (imF”,imF7) > e, (10)
i(e) =i(e') = distye)(domF?, domF7) > ¢; (11)
o S.:=(F.)€(0,1), Us := |F,| € (1,00) for every e € E;
o orb(a) # 0 for every o € E(Z).

Then the maps A, : inv(X,) — E,(Z) give a Lipschitz semiconjugacy between
inv(T") and Tg[S, U].

Proof. By the definition A,(x) # 0 for x € inv(X,). Moreover, by the
assumptions we know that orb(a) # (0 for every o € E(Z), which implies
that A, (inv(X,)) = E,(Z).



Let us now show that A, : inv(X,) — E,(Z) is a well-defined single-
valued map. Let z,2’ € inv(X,) and a € A,(z), o € A,(2') be arbitrarily
chosen. We show that

2 K2
pS(a*7O/_) < ?d(x,x'), pl/U(a+>O/+) < ?d(.’lﬁ,l‘,)

We prove the first inequality (the second is analogous). It is enough to
consider the case when a_ # o’ . Let k € Z_ be such that

ap # ay, o =« fori € Z_,i> k.

Let z be an a-orbit such that zy = x, and z’ be an o/-orbit such that z;, = 2.
By the assumption (10) we conclude that

d(zy, 7)) > €.

Consequently
1 = 1 £
d(z,2") = d(z0,2y) = EC(ZanB) = H<Fai> : KC(Zk,ZZ) 2 ﬁﬂs(aﬂai)-
i=k

Thus p%(a,a’) < KTQd(x,x’) which implies that A, is a single valued and
Lipschitz map. [

As a direct consequence of the above theorem and the Hyperbolic Dimen-
sion Theorem we get:

Corollary 4.1. Assume additionally (to assumptions of Theorem 4.1) that
G is a strongly connected graph. Let r = rg(S) +rg-1(1/U). Then

H"(inv(X,)) >0 forvelV.

5 Cone-hyperbolic graph

We show that cone graph system (graph system in which every space X, is
a cone space) under some additional assumptions is conjugated to the model
hyperbolic graph.

Let us begin with a direct consequence of Corollary 2.1.

14



Proposition 5.1. Let I" be a cone graph system such that F, is dominating
for every e € E. We assume that

C' = max diam(X,) < occ.
Xev

Let v € V be fized and let a, o/ € E,(), and z € orb(a), 2’ € orb(a/). Then
du(z0,7p) < K2C max(|F(a- A al)s, (Flay A a/))7").
We say that a cone graph system I' = (V,v — X,; E,e — F) is hyperbolic
if
|F.|s <1< (F,), forecEFE.

Theorem 5.1. Let I' = (Vv — X,; E;e — F.) be a hyperbolic cone graph
system such that
C := maxdiam(X,) < oco.

veV
Let S, = |F.|s, Ue := (F,), and let
X, :={a € E,(Z) : orb(a) # 0}.
Then

e the space X, is a cone-space with cone field cs, cy and the metric p% ;

e for every e € E the partial map P. : Xje) — Xye) defined as the
restriction of the left shift P to {a € Xy : ag = e} satisfies

|Pels < Se, (Pe)u 2 Ue fore € E; (12)

e the maps C, give a Lipschitz semiconjugacy between the hyperbolic graph
system (Vv — (X, ps); E,e — P.) and inv(T);

o inv(X,) is a compact subset of X,.

Proof. Let o, € X, and z € orb(a), 2 € orb(a’) be arbitrarily chosen.
Directly from Proposition 5.1 we conclude that

dy (20, 2) < C’K2pg(a,o/). (13)

This implies that the map C, : X, — inv(X,) is a single-valued Lipschitz
map (directly from the definition it is a surjection).

15



Let us now show that X, is a cone space. Since (E,(Z;G), p%) is a com-
pact (and consequently complete) metric space, to show that X, is complete
it is enough to prove that it is a closed subset of E,(Z). So let (a™)nen C X,
be a sequence convergent to a € E,(Z). Our aim is to prove that o € X,,
or in other words that orb(a) # (). For n € N let 2" € orb(a™) be arbitrarily
chosen. Let us fix j € Z. Then by (13)

dy(z%,75) < CK*p5(Pla”, Pial) — 0, as k,1 — oco.

7770
Because spaces { X, }.ev are complete, we obtain that z} — z; for some z; €
Xi(aj). We are going to show that such defined z is an a-orbit. Take £k € N
such that j € [—k,k]z. The set Uy := {8 € E,(Z),cqy = 5,1 € [k, k|z} is
an open neighbourhood of « in E,(Z). This yields that there exists n; € N
such that " € Uy for n > ny. Consequently

Foy (7)) = Far(2]) = 2 n > ny,.

Since each F;, e € E has a closed graph we conclude that I, (z;) = 241 for
every j € Z, and therefore z € orb(«), which implies that o € X,,.

One can easily notice that (12) is a direct consequence of (9). Also
inv(X,) is compact as an image of a compact set X,, through the continuous
map C,. O]

As a direct corollary of the above theorem and Hyperbolic Dimension
Theorem from Section 4 we obtain:

Corollary 5.1. Let G = (V, E) be a strongly connected graph, let X, be a
bounded cone space for everyv € V', and let F, be a partial map with a closed
graph between X,y and Xy such that

o I, is cone-hyperbolic for every e € L.
Then for everyv € V
o inv,(X,) is compact;
o dimp (inv(X,)) < rg(|Fels) + ra-1((F)iyv)-
Moreover, in general the above estimation cannot be improved.

Theorem 5.1 has a disadvantage since it does not give a semiconjugacy
with the model hyperbolic system we know well, but only with its subset.
To obtain semiconjugacy we need an additional assumption.

16



Corollary 5.2. Let all the assumptions of Theorem 5.1 hold. Then orb(«) #
0 for every path o € E(Z) if and only if

orb(a) # 0 for every finite path o € E(). (14)

Consequently, if (14) holds then X, = E,(Z) for every v € Z.

Proof. Let o € E(Z) be fixed and let o = a|[_pn),. We choose z" €
orb(a™). By proceeding as in the proof of Theorem 5.1 one can easily prove
that z} — z; for every j € Z, and that {z;} ez is in fact an a-orbit. O

Remark 5.1. Note that in the classical case of contracting graph-directed
IFS condition (14) is automatically satisfied, while in the general hyperbolic
case this condition is usually non-trivial.

In general, to verify (14) one needs some additional topological tools like
covering relations [7, 19] which “work” for subsets of R™ or related analogues
in general metric spaces |9, 17].

Now we are going to “summarize” the results of this and the previous
section in one theorem.

Theorem 5.2. Let I' = (V,v — X,; E,e — F.) be a cone graph system such
that

i) diam(X,) < oo for every v € V;
ii) for everye,e € E, e #¢€':

domF, NdomF, = 0, imF, NimF, = 0; (15)

iii) F, is bi-Lipschitz and cone-hyperbolic for every e € E;
iv) orb(a) # 0 for every finite path o € E,().
Let X, := E,(Z) and let
S = (F), S, = |Flu, Uy = (F)u UL = |F|.

Then

o C,: (X,,pY%) — (inv(X,),d,) is a Lipschitz surjection;
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o A, : (inv(X,),d,) — (X, p%) is a Lipschitz surjection;
e C, defines the conjugacy between graph systems I'g[Se, U] and inv(T).

Proof. All we need to show is that the assumptions of Theorem 4.1 are sat-
isfied.

By Theorem 5.1 we conclude that inv(X,) is compact for every v € V.
This together with the fact that F, has a closed graph yields that the domain
and the image of FZ (see Definition 3.3) are compact sets. Finally (15) implies
that the e-disjointness assumption of Theorem 4.1 is satisfied.

By Corollary 5.2 we conclude that orb(a) # ) for every o € E(Z). Thus
all the assumptions of Theorem 4.1 are satisfied. O

As an easy consequence we obtain Holder conjugacy.

Corollary 5.3. Let all the assumptions of Theorem 5.2 hold. Suppose that
we are given constants Se,U. and v € (0,1] such that

Se € [(Fo)'/7, |FLL], Ue € ()L [FI'YY) for e € E.

Then the graph systems I'[S, U] and inv(T') are Hélder conjugate, where
the conjugacy C, and its inverse A, are Hélder continuous with Hélder con-
stant .

6 Smale’s horseshoe

Our aim is to show an application of Theorem 5.2 on a relatively simple
example. Before that let us comment on the assumptions of Theorem 5.2.
Conditions i) and ii) are quite easy to verify using direct computations or
interval arithmetics approach. To show iii) one can use estimations obtained
in Observations 2.1 and 2.2. Assumption iv) can be checked by the covering
relations argument |7, 19]. Let us explain the main idea behind this notion
in a simplified R? case.

By an h-set we denote the set A C R? and the homeomorphism A :
[0,1]> — A. Having two h-sets Ay, Ay and a continuous map f : A; — R? we

say that A; f-covers Ay (A4 L Ay) if the following conditions are satisfied
o (hy'o foh)([0,1]*) C[0,1] xR,
o (hy'o fohy)([0,1] x {0}) is below [0,1] x {0},
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o (hyto fohy)([0,1] x {1}) is above [0,1] x {1}.

Covering Relations Theorem [19, Theorem 4]. For a sequence of h-sets

(4" € R? and continuous functions f; : A; — R? such that A, Iy Ay
there exists a sequence of points (z;)""}' such that

x; € AZ', Tiy1 = fl<l’l), for 7 = 1, o

Example 6.1. We consider a modified linear horsheshoe based on [1, Section
6.1.3]. Take two horizontal strips

3 1 1 3

Hy = [—17 1] X [_17_Z:| and Hy = [_171] X {Z’ Z_L]

Put S = H, U Hy and take a function f : S — R? such that f; = f|H; are
affine mappings and

dfl—{[s) 2] anddfg—[g _Ou},

where 0 < s < 1/4 and u > 4. To keep things simple assume that f;(0,1/2) =
(—1/2,0) and f5(0,—1/2) = (1/2,0) (see Fig. 1).

Figure 1: Construction of a modified linear horsheshoe.
By Observations 2.1 and 2.2 we know that
(fiy =Ifils=s and (fi)u=I|fil =
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Therefore we have a hyperbolic graph system

I'=({v},v —inv(f,S);{e1,ea},e; — fi)

which represents the dynamics of f on the invariant set inv(f,S).

In our example we have H; i H; for 7,5 = 1,2. By Covering Relation
Theorem we know that (14) is satisfied. Therefore by Theorem 5.2 we obtain
that I' is Lipschitz conjugated to an abstract cone graph system which is in
fact a simple shift on two symbols ¥y = {1,2}%. The essential difference
from the classical approach is that we define the metric on >y by

pla, o) = max {s™ w7} (16)

where k_ :=inf{i <0: a1 =0a 4,..., 0, =a}, ky :==sup{i > —1: o =
Ay ooy = AL}

Corollary 4.1 and 5.1 imply that most reasonable fractal dimension of
inv(f,S) is equal to log, 2 — log, 2.*

We further modify the above example by introducing a Lipschitz pertur-
bation. Let g = f+p where p is Lipschitz. We are interested in the dynamics
of g on the set inv(g, S) (see Fig. 2).

In the following we present the major consequence of our results. Recall
that |p| stands for the Lipschitz constant of p.

Theorem 6.1. Let p: S — R? be such that

pl <'s, (17)

sup{llp(a)]| - € 5} < 5 — s (18)

Let g = f+p. Then the dynamics of g on inv(g, S) is Holder conjugated
to the shift on two symbols Lo with metric defined as in (16) by a homeo-
morphism ®. ® is Holder continuous with constant log (s + |p|) and @1 is
Holder continuous with constant log,_, s. Moreover

dimp(inv(g, 5)) < (logy(u — |p]) ™" — (logy(s + [p) ™, (19)

dimp (inv(g, §)) > (logy(u + |p|) ™ — (logy(s — Ip|) ™" (20)

“In the case when u = 4 and s = 1/4 we obtain that dim(inv(f,S)) = 1.
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Figure 2: Invariant set for a perturbated linear horsheshoe.

Proof. Obviously diam(S) < co. From (18) it follows that

img; N imgy = (),

where g; = f,|H;. By Proposition 2.1 we have

’gi‘

|gl|s

<gi>u

<gi>

INIVIN IV

S; — ‘p'a
si +1pl,
u; — |p),
u; + |p|.

Therefore by (17) we know that g; are bi-Lipschitz and cone-hyperbolic.
Assumption (18) yields that H; < H; for i,7 = 1,2. Consequently orb(a) #
() for every finite path a € F(). Theorem 5.2 yields that C : (X, p1) —
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(inv(g, S),d) and A : (inv(g, S),d) — (3, p2) are Lipschitz, where

pi(a, ') =max {(s+[p|) ", (u—|p]) """},
pa(a, ') = max {(s — |p]) ™", (u+|p]) """},

and d is a standard Euclidean metric in R?. This gives us the fractal di-
mension estimates (19) and (20). The functions id; : (X2,d) — (32,d;) and

idg .

(39,d2) — (X9,d) are both Holder continuous and as the homeomor-

phism @ we take C o id; = (idy o A)~!. Holder constants follow from simple
calculations. Il
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