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Abstract

In this paper we introduce and study new fuzzy algebraic opera-
tions: ⊕-sum and scalar �-multiplication defined by

(A⊕B)(z) := sup
x+y=z

A(x) ·B(y) and (λ�A)(z) := (A(z/λ))λ,

where A,B are fuzzy subsets and λ ∈ (0,∞). This allows us to in-
vestigate a new definition of fuzzy convexity – a fuzzy set A is called
log-convex if

λ�A⊕ (1− λ)�A ⊂ A for λ ∈ (0, 1).

It occures that the class of upper semicontinuous fuzzy log-convex
sets with nonempty compact supports can be embedded isometrically
and isomorphically as a closed convex cone into a Banach space. In
particular, fuzzy log-convex sets have the cancellation law

A⊕B = A⊕ C iff B = C.
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1 Introduction

To explain our main idea we first establish some basic notation. The alge-
braic sum of fuzzy subsets A, B of a Banach space X and the multiplication
of fuzzy set by scalar λ ∈ (0,∞) are defined by the Zadeh extension principle
[19]:

(A + B)(z) := sup
x+y=z

A(x) ∧B(y), (1)

(λ · A)(z) := A(z/λ), (2)

where ∧ denotes the minimum operation. One can easily notice that such
definitions coincide with classical definitions on crisp (sharp) sets.

The most common metric d∞ on the upper semicontinuous (usc) normal1

fuzzy sets is defined by the supremum of the Hausdorff metric2 on the level
sets

d∞(A, B) := sup
α∈[0,1]

dH([A]α, [B]α), (3)

where [A]α := {x ∈ X : A(x) ≥ α} for α ∈ (0, 1] and [A]0 := supp A =
{x ∈ X : A(x) > 0}.

Observe that such definition of metric requires normality, in the opposite
case the distance would be infinite.

An important subclass of fuzzy sets consists of fuzzy convex sets [18], that
is of sets satisfying the inequality

A(λx + (1− λ)y) > min(A(x), A(y)) for λ ∈ (0, 1). (4)

Let us note that usc normal convex fuzzy sets with compact supports can be
embedded isometrically as a complete convex cone in a Banach space [11].

Our aim in this article is to investigate the consequences of exchanging
the ∧ operation in the formula (1) with standard real multiplication.

Remark 1.1. In general one can exchange the minimum operation with
another continuous associative operation on [0, 1] such that 0 acts as zero

1Fuzzy set A is called normal if there exists x0 such that A(x0) = 1.
2Hausdorff distance between K, L ⊂ X is defined by the following: dH(K, L) := inf{ε >

0 : K ⊂ L + ε · B and L ⊂ K + ε · B}, where B denotes unit ball centered at zero.
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and 1 is a neutral element. A characterization of such operations is given in
[9], for a general description of continuous associative functions on [0, 1] see
also [8]. An example of such an exchange in fuzzy sets theory can be found
in [2], where authors consider generalizations of fuzzy lattice operations

(A ∩B)(x) = p(A(x), B(x)) and (A ∪B)(x) = s(A(x), B(x))

with p, s : [0, 1]2 −→ [0, 1] associative monotonic operations.

Simultaneously with the change of the algebraic sum we modify the for-
mula (2) for multiplication of fuzzy sets. The new algebraic ⊕-sum of fuzzy
sets and �-multiplication of fuzzy set by positive scalar are given by

(A⊕B)(z) := sup
x+y=z

A(x) ·B(y),

(λ� A)(z) := (A(z/λ))λ.

We want to resign from the normality limitation. Thus we put our interest
on a subclass of fuzzy sets consisting of usc mappings with nonempty compact
supports and we equip this class with a metric that does not depend on the
existence of all level sets. Namely we make use of the concept of hypograph.
A similar definition of metric based on sendographs has been studied before
[5, 6, 7, 16, 17]. Our logarithmic metric measures the distance between
hypographs of logarithms of fuzzy sets

dlog(A, B) := dH(hyp (ln A), hyp (ln B)),

where dH denotes the Hausdorff distance in the cartesian product X × R.

The convexity of fuzzy sets is a wide area for studies. For the properties of
convex and strongly convex fuzzy sets see [4] and [18]. Modifications of fuzzy
convexity can be found in [10], [13] and [14], where authors consider convex,
pseudo-convex, preinvex and pseudo-invex fuzzy mappings. Moreover one
can find the discussion on preinvex and Φ1-convex fuzzy mappings in [15].

The modified algebraic operations allow us to reformulate the definition
of fuzzy convexity (4). We call a fuzzy set A log-convex if

λ� A⊕ (1− λ)� A ⊂ A for λ ∈ (0, 1).

It occurs that every fuzzy log-convex set is also fuzzy convex, however the
converse is not true. The use of the phrase ”logarithmic” in the name of new
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convexity concept is justified by the fact that the hypographs of logarithms
of fuzzy log-convex sets are crisp convex sets.

An important subclass, with respect to modified algebraic operations,
consists of usc fuzzy log-convex sets with nonempty compact supports. This
class has a R̊adström type embedding [12] property:

Main Result (see Theorem 5.6). The space of usc fuzzy log-convex sets
with nonempty compact supports can be embedded isometrically and isomor-
phically as a closed convex cone into a Banach space.

Let us recall that one can use the embedding property to study another
method of integration of fuzzy log-convex-valued functions or to investigate
fuzzy differential equations.

Concluding, we show that within the modified algebraic operations a the-
ory of fuzzy sets similar to the classical one can be build, a theory that has
certain advantages over the first one:

• the metric which we define behaves in some cases more naturally then
d∞;

• we do not have to restrict to normal sets;

• fuzzy log-convex sets are more regular then classical fuzzy convex sets.

In our opinion in some problems our approach may be more appropriate then
the classical one.

2 Modified algebraic operations

In this section we introduce new algebraic operations: ⊕-sum and scalar
�-multiplication and show that they generalize standard algebraic operations
on subsets of a Banach space X.

We start with recalling some basic informations regarding the classical
theory of fuzzy sets, see [3]. By F(X) we denote the class of fuzzy subsets
of a Banach space X, that is the class of mappings

A : X −→ [0, 1].
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Note that any subset K of X can be embedded in F(X) by means of its
characteristic function

1K(x) :=

{
1 if x ∈ K,
0 if x ∈ X\K.

The space of fuzzy sets is equipped with two algebraic operations defined
in (1) and (2). It is well-known that in case of normal sets the algebraic
operations can be described on α-level (cut) sets [A]α. We have

[A + B]α = [A]α + [B]α,

[λ · A]α = λ · [A]α,

where A, B ∈ F(X), λ ∈ (0,∞).
Partial ordering in the space F(X) is given by inclusions. We say that

A ⊂ B if A(x) 6 B(x) for all x ∈ X. Note that A ⊂ B iff [A]α ⊂ [B]α for
all α ∈ [0, 1].

There are several methods of introducing metric in the space of fuzzy sets
[3]. In this paper we consider the most common one, that is the d∞ distance
defined by (3). Note that such definition of metric requires normality.

By Fusc(X) we denote the subclass of F(X) consisting of upper semicon-
tinuous mappings with nonempty compact supports. As elements of Fusc(X)
does not have to have nonempty α-level sets for all α ∈ [0, 1] there is a need
to equip this space with metric different to the d∞ one. We do this in Section
5.

We denote by E(X) the class of usc normal convex fuzzy subsets of X
with compact supports. Space (E(X), d∞) is an important subset of F(X)
as it can be embedded isometrically as a complete convex cone in a Banach
space [11].

Now we are ready to proceed with our modification of the classical defi-
nition of fuzzy algebraic operations.

Definition 2.1. Let A, B ∈ F(X). We define ⊕-sum of fuzzy sets A and B
by the formula

(A⊕B)(z) := sup
x+y=z

A(x) ·B(y) for z ∈ X.

By �-multiplication of fuzzy set A by scalar λ ∈ (0,∞) we understand the
operation

(λ� A)(z) := (A(z/λ))λ for z ∈ X.
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Remark 2.2. The definition of �-multiplication comes in a natural way
from operation ⊕. Let x ∈ X, a ∈ (0, 1) and k ∈ N. Then

((a · 1{x})⊕ . . .⊕ (a · 1{x})︸ ︷︷ ︸
k

)(z) = (a · 1{x})(z/k) · . . . · (a · 1{x})(z/k)︸ ︷︷ ︸
k

= ak · 1{x}(z/k) = ((a · 1{x})(z/k))k

= k � (a · 1{x})(z),

The following example shows that fuzzy sets obtained as the results of
two methods of addition are usually different. In fact

A⊕B ⊂ A + B and λ� A ⊂ λ · A

for A, B ∈ F(X) and λ ∈ (0,∞).

Example 2.3. Consider fuzzy sets A = 1
2
1{1} and B = 1

3
1{2}. The standard

sum of fuzzy sets results from the Zadeh extension principle

(A + B)(z) = sup
x+y=z

A(x) ∧B(y) = sup
x+y=z

1

2
1{1}(x) ∧ 1

3
1{2}(y)

=

{
1
3

for z = 3,
0 for z 6= 3.

The ⊕-sum can be found by direct computations

(A⊕B)(z) = sup
x+y=z

A(x) ·B(y) = sup
x+y=z

1

2
1{1}(x) · 1

3
1{2}(y)

=

{
1
6

for z = 3,
0 for z 6= 3.

It follows that

A + B =
1

3
1{3} and A⊕B =

1

6
1{3}.

When looking on fuzzy sets through theirs supports it occurs that the
⊕-sum acts similarly to the standard algebraic addition of subsets of X.
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Observation 2.4. Let A, B ∈ F(X). Then one can easily check that

{x ∈ X : (A⊕B)(x) > 0} = {x ∈ X : A(x) > 0}+ {x ∈ X : B(x) > 0}.

Consequently
supp (A⊕B) = supp A + supp B.

If A, B have compact supports, then

supp (A⊕B) = supp A + supp B.

If one attempts to define the algebraic operations of fuzzy sets then its
definition should generalize the standard algebraic operations of subsets of
X. By Observation 2.4 this requirement is satisfied by the ⊕-sum, that is

1K ⊕ 1L = 1(K+L) = 1K + 1L for K, L ⊂ X.

An analogous observation holds for the �-multiplication

λ� 1K = 1λ·K = λ · 1K for K ⊂ X, λ ∈ (0,∞).

The operations ⊕ and � have the following properties.

Proposition 2.5. Space (F(X),⊕) is a comutative semigroup with neutral
element 1{0}. Moreover for A, B ∈ F(X) and λ, µ ∈ (0,∞) we have the
following equalities:

λ� (A⊕B) = (λ� A)⊕ (λ�B),

(λ · µ)� A = λ� (µ� A).

Proof. We only present the proof of the distributivity of �-multiplication
over ⊕-sum. Other proofs are similar to the presented one.

(λ� (A⊕B))(x) = ((A⊕B)(x/λ))λ = ( sup
a+b=x/λ

A(a) ·B(b) )λ

= ( sup
λa+λb=x

A(a) ·B(b) )λ = ( sup
a+b=x

A(a/λ) ·B(b/λ) )λ

= sup
a+b=x

(A(a/λ))λ · (B(b/λ))λ = ((λ� A)⊕ (λ�B))(x).
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Note that if 1∅ denotes an empty fuzzy set, that is if 1∅(x) ≡ 0 for all
x ∈ X, then

1∅ ⊕B = 1∅ and λ� 1∅ = 1∅

for B ∈ F(X), λ ∈ (0,∞).

We show that ⊕-sum is an internal operation in the class of usc fuzzy
sets.

Theorem 2.6. Let A, B ∈ Fusc(X). Then

A⊕B ∈ Fusc(X).

Proof. We have to show that the result of the ⊕-sum of elements A and B
is an upper semicontinuous mapping with nonempty compact support.

Set x ∈ X. One can easily see that the upper semicontinuity of A and B
ensures that mapping

fx : X 3 y −→ A(x− y) ·B(y) ∈ [0, 1]

is upper semicontinuous. Note that supp fx ⊂ x− supp A is a compact set.
Applying the fact that upper semicontinuous mapping reaches its maximum
on a compact set we obtain that there exists y0 ∈ x− supp A such that

sup
y∈x−supp A

A(x− y) ·B(y) = A(x− y0) ·B(y0). (5)

We want to prove that for any x ∈ X and any sequence xn → x we have

lim sup
n→∞

(A⊕B)(xn) 6 (A⊕B)(x).

Suppose that there exist a point x0 ∈ X and a sequence xn → x0 such that

lim sup
n→∞

(A⊕B)(xn) > (A⊕B)(x0). (6)

By (5) for any n ∈ N there exists yn such that

sup
y∈xn−supp A

A(xn − y) ·B(y) = A(xn − yn) ·B(yn).
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Sequence {yn}n∈N is contained in a compact set (
⋃

n∈N{xn}∪{x0})− suppA.
Thus there exist y0 ∈ X and a subsequence {ynk

}k∈N such that ynk
→ y0.

Then (xnk
− ynk

) → x0 − y0 and

lim sup
k→∞

(A⊕B)(xnk
) = lim sup

k→∞
A(xnk

− ynk
) ·B(ynk

)

6 lim sup
k→∞

A(xnk
− ynk

) · lim sup
n→∞

B(ynk
)

6 A(x0 − y0) ·B(y0) 6 sup
y∈X

A(x0 − y) ·B(y)

= (A⊕B)(x0).

It contradicts (6) and proves upper semicontinuity of A⊕B.
Sets supp A and supp B are nonempty and compact. This implies that

the set supp A + supp B is also nonempty and compact. By Observation 2.4
we know that

supp (A⊕B) = supp A + supp B.

Thus supp (A⊕B) is nonempty and compact.

In the following we show that the compactness of supports of A, B ∈
Fusc(X) is an essential assumption in Theorem 2.6. In general the ⊕-sum
of two usc mapppings without compact supports does not have to be an usc
mapping.

Example 2.7. Put G = {(x, tan(π
2
x)) ∈ R2 : x ∈ (−1, 1)}. Consider A, B ∈

F(R2) given by
A = 1{0}×R and B = 1G.

Both A and B are upper semicontinuous, however the mapping

A⊕B = 1(−1,1)×R

is lower semicontinuous and not upper semicontinuous.

3 Fuzzy convex sets

Let us first observe that there is another way to formulate the classical
convexity condition (4).

Observation 3.1. A fuzzy set A is convex iff λA + (1 − λ)A ⊂ A for λ ∈
(0, 1).
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It seems that Observation 3.1 is a known fact, however we did not come
across it in the literature. Thus for the convenience of the reader we include
its proof.

Proof. First observe that inclusion A ⊂ λA+ (1−λ)A always holds. Indeed,

(λA + (1− λ)A)(w) = sup
x+y=w

λA(x) ∧ (1− λ)A(y)

= sup
x+y=w

A(x/λ) ∧ A(y/(1− λ))

= sup
λx+(1−λ)y=w

A(x) ∧ A(y)

(7)

Taking x = y = w we obtain

(λA + (1− λ)A)(w) > A(w).

Set λ ∈ (0, 1). Now it is time to show the equivalence

A(λx+ (1−λ)y) > A(x)∧A(y) for x, y ∈ X ⇐⇒ λA+ (1−λ)A ⊂ A.

Assume that the convexity condition holds. It is equivalent to the fact that

A(w) > sup
λx+(1−λ)y=w

A(x) ∧ A(y) for w ∈ X.

By (7) the last can be rewritten as

A(w) > (λA + (1− λ)A)(w) for w ∈ X.

This ends the proof of the equivalence.

One can easily check the following characterization of fuzzy convex sets.
The proof of the equivalence between 1 and 3 can be found in [18].

Theorem C. Let A ∈ F(X). The following conditions are equivalent:

1. Set A is fuzzy convex.

2. Mapping A : X → [0, 1] is quasi-concave.

3. Sets [A]α are convex subsets of X for all α ∈ [0, 1].

4. (λ + µ) · A = (λ · A) + (µ · A) for all λ, µ ∈ (0, 1).
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Now we present the analogs of Observation 3.1 and Theorem C for mod-
ified algebraic operations.

Definition 3.2. We say that fuzzy set A is log-convex if

λ� A⊕ (1− λ)� A ⊂ A for λ ∈ (0, 1).

Before we proceed with an analog of Theorem C let us introduce the
notion of hypograph of a mapping. Let W : X −→ [−∞,∞). By a hypograph
of W we understand the set

hyp (W ) := {(x, r) ∈ X × R : r 6 W (x)}. (8)

Theorem 3.3. Let A ∈ F(X). The following conditions are equivalent:

1. Fuzzy set A is log-convex.

2. Mapping ln A : X → [−∞, 0] is concave.

3. Set hyp (ln A) is a convex subset of X × R.

4. (λ + µ)� A = (λ� A)⊕ (µ� A) for all λ, µ ∈ (0, 1).

Proof. Note that the equivalence between 2 and 3 follows immediately from
the definition of convex set, whereas the equivalence between 1 and 4 is
a simple consequence of Proposition 2.5. Thus we only show the equivalence
between 1 and 2.

Assume that fuzzy set A is log-convex. Set λ ∈ (0, 1). By the definition
of ⊕-sum the condition for fuzzy log-convexity can be rewritten as

sup
x+y=z

(λ� A)(x) · ((1− λ)� A)(y) 6 A(z) for z ∈ X.

By the definition of �-multiplication we have

sup
x+y=z

(A(x/λ))λ · (A(y/(1− λ)))1−λ 6 A(z) for z ∈ X.

Substituting x = λu and y = (1− λ)w we obtain

sup
λu+(1−λ)w=z

(A(u))λ · (A(w))1−λ 6 A(z) for z ∈ X.
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The last inequality is equivalent to the following

(A(u))λ · (A(w))1−λ 6 A(λu + (1− λ)w) for u, w ∈ X.

Mapping ln : (0,∞) → R is strictly increasing, thus by taking the logarithm
of the both sides of the above inequality we obtain

λ · ln(A(u)) + (1− λ) · ln(A(w)) 6 ln(A(λu + (1− λ)w)) for u, w ∈ X.

The last means that mapping ln A is concave.

Observe that fuzzy log-convexity implies fuzzy convexity.

Proposition 3.4. If A ∈ F(X) is fuzzy log-convex then it is fuzzy convex.

Proof. Let A ∈ F(X) be fuzzy log-convex and pick x, y ∈ X and λ ∈ (0, 1).
By Theorem 3.3 we know that fuzzy log-convexity of A implies concavity of
mapping ln A. The definition of a concave mapping gives us the following
condition

ln(A(λx + (1− λ)y)) > λ · ln(A(x)) + (1− λ) · ln(A(y)).

By the properties of mapping ln : (0,∞) → R we have

ln(A(λx + (1− λ)y)) > ln((A(x))λ · (A(y))1−λ).

Mapping ln : (0,∞) → R is strictly increasing, thus

A(λx + (1− λ)y) > (A(x))λ · (A(y))1−λ.

It is left to show that

(A(x))λ · (A(y))1−λ > min(A(x), A(y)).

Assume first that A(x) > A(y). Then

(A(x))λ · (A(y))1−λ = (A(x))λ · A(y) · (A(y))−λ = A(y) ·
(A(x)

A(y)

)λ

> A(y).

Suppose now that A(y) > A(x). Then

(A(x))λ ·(A(y))1−λ = A(x)·(A(x))λ−1 ·(A(y))1−λ = A(x)·
(A(y)

A(x)

)1−λ

> A(x).
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Note that the converse is not true; there are fuzzy convex sets that are
not log-convex.

Example 3.5. Consider fuzzy set A ∈ F(R) given by

A(x) =


1 if x = 0,
1
2

if x ∈ (0, 1],
0 otherwise.

Then A satisfies condition (4) and as a consequence is a fuzzy convex set.
Notice also that the hypograph of ln A is not a convex subset of R2 (e.g. line
segment connecting (0, 0) with (1, ln 1

2
) does not lie in hyp (ln A)), so A is

not fuzzy log-convex.
If one attempts to find log-convex envelope of a given fuzzy set then

he shoud find the convex envelope of the hypograph of its logarithm. The
logarithm of A is given by

(ln A)(x) =


0 if x = 0,
− ln 2 if x ∈ (0, 1],
−∞ otherwise.

The convex envelope of its hypograph is described by

conv (hyp (ln A)) = ({0}× (−∞, 0])∪ {(x, r) ∈ R2 : x ∈ (0, 1], r 6 −x · ln 2}.

By taking the exponent of the above we obtain

(conv A)(x) =


e0 if x = 0,
e−x·ln 2 if x ∈ (0, 1],
0 otherwise,

=


1 if x = 0,
2−x if x ∈ (0, 1],
0 otherwise.

4 Isomorphism

This section contains mostly technical results that will be usefull in section
5.

By a dominium of a mapping W : X −→ [−∞,∞) we understand set
dom W := {x ∈ X : W (x) > −∞}.

We denote by M(X) a class of mappings

W : X −→ [−∞, 0].
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By Musc(X) we understand a subclass of M(X) consisting of upper semi-
continuous mappings W such that dom W is a nonempty compact set.

We introduce two mutually inverse operations between F(X) and M(X).

Definition 4.1. Let A ∈ F(X). We define operation ln : F(X) −→M(X)
by

(ln A)(x) := ln(A(x)).

Function exp maps M(X) −→ F(X) and for W ∈M(X) it is defined by

(exp W )(x) := exp(W (x)).

The space M(X) may now be seen as the image of F(X) through the
logarithm operation

M(X) = {ln A : A ∈ F(X)}.

In this section we show that mappings exp and log are isomorphisms
between F(X) and M(X) – see Proposition 4.4 – and that there exists a na-
tural isomorphism between the space Musc(X) and the class of hypographs
of elements of Musc(X) – see Theorem 4.5 and Theorem 4.7.

In the following we introduce algebraic operations on the space M(X).

Definition 4.2. Let U,W ∈M(X). A �-sum of U and W is defined by

(U � W )(x) := sup
u+w=x

(U(u) + W (w)) for x ∈ X.

By �-multiplication of an element W by scalar λ ∈ (0,∞) we understand
the operation

(λ � W )(x) := λ ·W (x/λ) for x ∈ X.

After defining the algebraic operations we can investigate the properties
of the space (M(X), �, �). It occures that these are similar to that listed in
Proposition 2.5.

Observation 4.3. Space (M(X), �) is a comutative semigroup with V =
{0} × (−∞, 0] neutral element. Moreover for U,W ∈ M(X) and λ, µ ∈
(0,∞) we have the following equalities:

λ � (U � W ) = (λ � U) � (λ � W ),

(λ · µ) � W = λ � (µ � W ).
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We are now in a position to show that operations exp and ln are isomor-
phisms between F(X) and M(X).

Proposition 4.4. Let A, B ∈ F(X), λ ∈ (0,∞). Then

A⊕B = exp(ln A � ln B)

and
λ� A = exp(λ � ln A).

Proof. To prove the first equation it is sufficient to show that for any U,W ∈
M(X)

exp(U � W ) = (exp U)⊕ (exp W ).

We have

exp(U � W )(x) = exp((U � W )(x)) = exp( sup
u+w=x

(U(u) + W (w)))

= sup
u+w=x

exp(U(u) + W (w)) = sup
u+w=x

exp(U(u)) · exp(W (w))

= sup
u+w=x

(exp U)(u) · (exp W )(w) = ((exp U)⊕ (exp W ))(x).

The proof of the second equation is straightforward

exp(λ � ln A)(x) = exp(λ · (ln A)(x/λ)) = (exp(ln(A(x/λ))))λ

= (A(x/λ))λ = (λ� A)(x).

Given a set C ⊂ X×R, by pX(C) we denote the projection of C onto X,
that is

pX(C) := {x ∈ X | ∃r ∈ R : (x, r) ∈ C}.
Observe that if C = hyp W for W ∈M(X) then pX(C) = dom W .

We have the following representation theorem for the class Musc(X).

Theorem 4.5. Let W ∈Musc(X) and denote C := hyp (W ). Then:

• C is a closed subset of X × (−∞, 0], (9)

• pX(C) is a nonempty compact subset of X, (10)

• if (x, r) ∈ C and s 6 r then (x, s) ∈ C. (11)
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Conversely, if C ⊂ X × R satisfies (9)–(11) then W : X → [−∞, 0]
defined by

W (x) := sup{r ∈ R : (x, r) ∈ C} (12)

is an element of Musc(X) such that hyp (W ) = C.

Proof. The proof of the first part of the theorem follows immediately from
the definition of hypograph (8).

Assume that C satisfies (9)–(11) and let W be defined by (12). By (10) we
have that dom W = pX(C) is a nonempty compact set and (9) and (11) imply
that hyp W = C. It is left to show that mapping W is upper semicontinuous.

The proof goes by a reduction to a contradiction. Suppose that there
exist x0 ∈ X and a sequence xn → x0 such that lim supn→∞ W (xn) >
W (x0). Restricting to a subsequence, denoted also by {xn}n∈N, we have
limn→∞ W (xn) > W (x0).

If x0 ∈ X\pX(C) then we have by (10) that for n sufficiently large also
xn ∈ X\pX(C). Thus limn→∞ W (xn) = −∞ = W (x0), a contradiction.

Assume that x0 ∈ pX(C). Again if for n sufficiently large xn ∈ X\pX(C)
then limn→∞ W (xn) = −∞ < W (x0), a contradiction. So we have that
there exists a subsequence, that we also denote by {xn}n∈N, such that xn ∈
pX(C) for all n. We have by (9) that x ∈ pX(C) iff (x, W (x)) ∈ C. Thus
{(xn, W (xn))}n∈N is a convergent sequence contained in C. By (9) its limit
(x0, limn→∞ W (xn)) is also an element of C. By the definition of mapping
W we obtain

lim
n→∞

W (xn) 6 sup{r ∈ R : (x0, r) ∈ C} = W (x0),

a contradiction.
The last case to consider holds when x0 ∈ (X\pX(C)) ∩ pX(C). If again

for n sufficiently large xn ∈ X\pX(C) then limn→∞ W (xn) = −∞ = W (x0),
a contradiction. So assume that xn ∈ pX(C) for all n. It is sufficient to
prove that limn→∞ W (xn) = −∞. Suppose that the last does not hold, that
is limn→∞ W (xn) > −∞. Then {(xn, W (xn))}n∈N is a convergent sequence
contained in C. By (9) its limit (x0, limn→∞ W (xn)) is also an element of
C. On the other hand, as x0 ∈ X\pX(C), we have that (x0, limn→∞ W (xn))
does not belong to C, a contradiction.

There is a method to represent the algebraic operations on Musc(X) in
a simpler form. Before we proceed we need the following observation.
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Observation 4.6. For U ∈Musc(X) and α ∈ (−∞, 0] denote

[hyp U ]α := {(x, r) ∈ hyp U : r > α}.

Let U,W ∈Musc(X) and λ ∈ (0,∞). Then for all α ∈ (−∞, 0]

[hyp U + hyp W ]α = [[hyp U ]α + [hyp W ]α]α

and
[λ · hyp U ]α = λ · [hyp U ]α/λ.

The following theorem describes the algebraic operations as operations
on hypographs.

Theorem 4.7. Let U,W ∈Musc(X), λ ∈ (0,∞). Then

hyp (U � W ) = hyp U + hyp W

and
hyp (λ � W ) = λ · hyp W,

where + stands for algebraic sum of sets, and · denotes usual multiplication
of set by scalar.

Proof. We start with the proof that algebraic sum of hypographs is also
a hypograph. We want to show that hyp U + hyp W satisfies conditions
(9)–(11) of Theorem 4.5.

For the proof that hyp U + hyp W is a closed subset of X ×R let us pick
{(xn, rn)}n∈N a convergent sequence contained in hyp U + hyp W . We want
to show that limn→∞(xn, rn) belongs to hyp U + hyp W . By Observation
4.6 we have {(xn, rn)}n∈N ⊂ [hyp U + hyp W ]α = [[hyp U ]α + [hyp W ]α]α

for α = minn∈N rn. Sets [hyp U ]α and [hyp W ]α are compact, so [[hyp U ]α +
[hyp W ]α]α is also compact. This implies in particular that [hyp U +hyp W ]α

is a closed subset of X × R. Thus limn→∞(xn, rn) ∈ [hyp U + hyp W ]α ⊂
hyp U + hyp W .

Nonemptiness and compactness of dom U + dom W follows from the alge-
braic properties of compact sets. We have that dom U + dom W ⊂ dom U +
dom W . An algebraic sum of two compact sets is a compact set. Thus set
dom U + dom W is nonempty and compact, as a nonempty closed subset of
compact set dom U + dom W .
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For the proof of (11) let (x, r) ∈ hyp U +hyp W and let s 6 r. There exist
(x1, r1) ∈ hyp U and (x2, r2) ∈ hyp W such that x = x1 + x2 and r = r1 + r2.
Denote s1 = r1 and s2 = r2 − r + s. By s 6 r we have s2 6 r2, thus
(x1, s1) ∈ hyp U and (x2, s2) ∈ hyp W . Then (x, s) = (x1 + x2, s1 + s2) =
(x1, s1) + (x2, s2) ∈ hyp U + hyp W .

By Theorem 4.5 there exists Z ∈ Musc(X) such that hyp Z = hyp U +
hyp W . So it is left to show that Z = U �W . We have by Theorem 4.5 that
Z has the following form

Z(x) = sup{r ∈ R : (x, r) ∈ hyp U + hyp W}.

Let x ∈ dom U + dom W . Then

Z(x) = sup{r1 + r2 ∈ R : (x1, r1) ∈ hyp U, (x2, r2) ∈ hyp W, x1 + x2 = x}
= sup

x1+x2=x
sup{r1 ∈ R : (x1, r1) ∈ hyp U}+ sup{r2 ∈ R : (x2, r2) ∈ hyp W}

= sup
x1+x2=x

U(x1) + W (x2) = (U � W )(x).

For the proof of the second assertion of the theorem notice that for λ ∈
(0,∞)

• λ · (hyp W ) is a closed subset of X × (−∞, 0],

• λ · dom W is a compact subset of X,

• if (x, r) ∈ λ·(hyp W ) and s 6 r then (x, s) = λ·(x/λ, s/λ) ∈ λ·(hyp W ).

Thus conditions (9)–(11) of Theorem 4.5 are satisfied and as a consequence
there exists Z ∈Musc(X) such that hyp Z = λ · hyp W . Theorem 4.5 states
that Z has the following form

Z(x) = sup{r ∈ R : (x, r) ∈ λ · hyp W}.

Let x ∈ λ · (dom W ). Then

Z(x) = sup{r ∈ R : r = λ · s, x = λ · y, (y, s) ∈ hyp W}
= sup{λs ∈ R : x = λ · y, (y, s) ∈ hyp W}
= λ · sup{s ∈ R : (x/λ, s) ∈ hyp W}
= λ ·W (x/λ) = (λ � W )(x).
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5 Logarithmic metric and embedding theo-

rem

The definition of metric in the space Fusc(X) is closely related to the
concept of the distance in Musc(X).

We equip Musc(X) with a metric given as a Hausdorff distance between
hypographs of elements of Musc(X). We apply the maximum metric in the
cartesian product X×R. From the properties of the Hausdorff distance on the
space of nonempty closed subsets of the Banach space X ×R it follows that
metric dH is positively homogeneous and that (Musc(X), dH) is a complete
metric space.

The distance between elements of Fusc(X) is given as a distance between
their images in the space Musc(X).

Definition 5.1. Let A, B ∈ Fusc(X). Logaritmic distance between fuzzy
sets A and B is defined by

dlog(A, B) := dH(hyp (ln A), hyp (ln B)).

Equipping spaces Fusc(X) and Musc(X) with mertics dlog and dH respec-
tively one sees that operations exp and ln are isometries. Indeed

dlog(exp U, exp W ) = dH(hyp (ln(exp U)), hyp (ln(exp W )))

= dH(hyp U, hyp W ).

Because cancelation law does not hold without convexity assumption put
on elements of Fusc(X), logarithmic metric is not invariant under translation.

Example 5.2. Let

A = B = [0, 1]× (−∞, 0], C = {0, 1} × (−∞, 0].

Then sets A, B and C are hypographs of elements of Musc(R). One sees that
A + B = [0, 2]× (−∞, 0] = A + C, but B 6= C.

Although logarithmic metric dlog on Fusc(X) is not invariant under trans-
lation it is possible to deduce its weaker property.

Observation 5.3. Let A, B, C ∈ Fusc(X). Then

dlog(A⊕B, A⊕ C) 6 dlog(B, C).
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Observation 5.3 allows to show that ⊕-sum is Lipschitz continuous.

Corollary 5.4. The ⊕-sum satisfies Lipschitz condition, that is for A, B, C,
D ∈ Fusc(X)

dlog(A⊕ C, B ⊕D) 6 2 ·max(dlog(A, B), dlog(C, D)).

Proof. The proof follows simply from Observation 5.3 and the triangle in-
equality

dlog(A⊕ C, B ⊕D) 6 dlog(A⊕ C, A⊕D) + dlog(A⊕D, B ⊕D)

6 dlog(C, D) + dlog(A, B)

6 2 ·max(dlog(A, B), dlog(C, D)).

An important subclass of Fusc(X) consists of fuzzy log-convex sets.

Definition 5.5. We denote by Elog(X) a class of usc fuzzy log-convex sets
with nonempty compact supports.

A significant result for our considerations on the class Elog(X) comes from
[1].

Theorem E. Let Y be a Banach space and V be a closed convex cone3 in
Y . Let us denote by CV the class of nonempty closed convex subsets of Y
such that their Hausdorff distance from V is finite. We equip CV with the
following algebraic operations:

U u W := {u + w ∈ Y : u ∈ U,w ∈ W},
λ ·W := {λ · w : w ∈ W},

for U,W ∈ CV , λ ∈ (0,∞). Then

• Hausdorff metric dH on CV is positively homogeneous and invariant
under translations.

• The class (CV , dH) is a complete metric space.

3By a cone in a Banach space Y we understand a convex subset V of Y such that
λx ∈ V for x ∈ V , λ ∈ (0,∞).
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• The class (CV , u) is a commutative semigroup with cancellation law
and with neutral element V .

As a consequence, CV can be embedded isometrically and isomorphically
as a closed convex cone into a Banach space.

As a direct conclusion of Theorem E we obtain

Theorem 5.6. The following statements holds true:

• Logarithmic metric dlog on the space Elog is positively homogeneous and
invariant under translations.

• The class (Elog(X), dlog) is a complete metric space.

• The class (Elog(X),⊕) is a commutative semigroup with cancellation
law and with neutral element 1{0}.

As a consequence, space Elog(X) can be embedded isometrically and iso-
morphically as a closed convex cone into a Banach space.

Proof. Let us denote V = {0}×(−∞, 0] ⊂ X×R. Then V is a closed convex
cone in a Banach space X × R.

Let CV be defined as in the Theorem E. Then the class of hypographs of
logarithms of elements of Elog(X) is a closed subclass of CV and as a conse-
quence the asserts of Theorem E apply to it.

Let h denote a mapping from Musc(X) to the class of hypographs of
elements of Musc(X) defined by

h(W ) := hyp (W ) for W ∈Musc(X).

By Theorem 4.5 mapping h is one-to-one and by Theorem 4.7 we have

h(U � W ) = h(U) + h(W ) and h(λ � W ) = λ · h(W ),

for U,W ∈Musc(X), λ ∈ (0,∞). Thus h is an isomorphism. As the metric in
the space Musc(X) measures the Hausdorff distance between corresponding
hypographs, we obtain that mapping h is an isometry.

Note that by Proposition 4.4 and by the definition of logarithmic me-
tric mapping ln|Fusc(X) : Fusc(X) → Musc(X) is also an isometric isomor-
phism. Thus mapping (h◦ln|Fusc(X)) is an isometric isomorphism between the
space (Fusc(X), dlog) and the class of the hypographs of elements of Musc(X)
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equipped with the Hausdorff metric. Restriction of (h ◦ ln|Fusc(X)) to Elog(X)
gives an isometric isomorphism between the space (Elog(X), dlog) and the
class of hypographs of logarithms of elements of Elog(X). As a consequence,
the asserts of Theorem E apply to Elog(X).

The importance of the last theorem follows from the fact that this allows
another method of defining integration of fuzzy log-convex-valued mappings.

Remark 5.7. Let i denote the embedding isomorphism from Theorem 5.6.
Then one can study the integral of fuzzy log-convex-valued mapping f given
by ∫

f(t) dt := i−1
( ∫

i(f(t)) dt
)
.

Note that the integral is defined correctly. Structure of the cone and its
completeness ensure that integration in the Banach space does not move
i(f(t)) out of the cone.

One can investigate the fuzzy differential equations in an analogous way.

Problem. It is well-known that a closed set is convex iff A + A = 2A.
This allows to define convexity for arbitrary associative continuous opera-
tion. Two most important examples of such operations are given by the
min(x, y) operation and by g−1(g(x)g(y)) for a continuous strictly increasing
g : [0, 1] → [0, 1], see [8, Figure 2]. Clearly, the semigroup [0, 1] with the
operation x ∗ y → g−1(g(x)g(y)) is isomorphic with the semigroup [0, 1] with
the standard multiplication operation. That is why in our paper we restrict
our attention to multiplication. However, it remains a problem of the study
in the general case.
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