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Abstract

Let V be a given (not necessarily convex) subset of a normed space and let
w: Ry — Ry be a given function. We say that f : V — R is w-approximately
midconvex if

fEE) < LDHIW) oy vy evi T e
Our aim is to find/estimate the function
1 N -1 .
sup{f: {0, NN 1} = R| f — w-midconvex, f(0) = f(1) =0},

for N € N. We present a computer assisted approach which given € > 0 and
N € N enables us, under reasonable assumptions, to find the above supremum
with accuracy e¢.
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1 Introduction

The main idea of our investigation lies in joining together the notions of approximate
convexity and convexity on non-convex sets.
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Let us first recall some basic information concerning approximate convexity. The
term “approximate convexity” was introduced by D. H. Hyers and S. M. Ulam [4]
in 1952. Its variation adapted to Jensen convexity can be stated as follows:

Definition 1.1 ([8]). Let X be a normed space, V' be a convex subset of X, and
e be a nonnegative constant. A function f: V — R is said to be e-midconvex (or
e-Jensen convex) if

Jf(z,y) ::f<x—2|—y> < f(x)—;f(y) +¢e forx,yeV: # eV.

A natural generalization of this definition for normed spaces lies in replacing the
constant ¢ by a function w which depends on the norm of the difference ||z — y||:

Definition 1.2. Let V' be a convex subset of a normed space X and let w: R, — R,
be a given function. We say that f: V — R is w(-)-midconver (or w(-)-Jensen
convez) if

f<x+y><f(fv)+f(y) T+y

2

+w(||lz —y||) forz,yeV: eV.
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For some recent results we refer the reader to [9, 11]. The general research ques-

tion lies in verifying how far from convex functions are w(-)-approximately convex
functions. To measure this we will the convexity difference operator defined by

Cfx,y;t) = flte + (1 =t)y) = tf(x) = (1 =) f(y) forz,yecV,t[0,1]

will be useful. The method of attack of this problem in many cases is based on the
reduction to one dimensional case, which is stated in the following trivial observation:

Observation 1.3. Let V' be a convex subset of a Banach space and let f: V' — R be
given. Then f is w(-)-midconvex iff for every x,y € V, the function ¢, , : [0,1] — R
defined by

0ry(t):[0,1] 2t — Cf(z,y;t) € R,

is wy 4 (+)-midconvex, where w, (1) := w(||lz — y||r).
Observe that the above mentioned function ¢, , satisfies ¢, ,(0) = ¢, ,(1) =
0. As in general case to obtain convexity from Jensen convexity we need (local)

boundedness, we see that the study of w(-)-approximately convex functions can be
reduced to investigate of the set

J,([0,1],{0,1}) :={f € B([0,1];{0,1}): f is w(:)-midconvex},



where w: [0,1] — R, is given and by B(V; W) we denote the set of all real-valued
bounded from above functions on set V' which are zero on W. It occurs that the
optimal bound of this set defined by

fW([O’ 1]7 {0’ 1}) = Sup{f S Jw([ov 1]7 {07 1})}

are usually interesting fractal-like functions connected to the classical Takagi func-
tion, see [1, 8, 12].

Our second motivation lies in the recent generalization of (Jensen) convexity to
non-convex sets (or in general arbitrary subsets of groups) proposed and studied by
W. Jarczyk and M. Laczkovich [5, 6]:

Definition 1.4 ([6]). Let G be an Abelian group and let V' be a subset of G. We
say that f: V — R is conver if following inequality holds

f(z+0) + f(z —0)

fla) < .

forz € V,0 € Gsuch that x + 6,2 —d € V.

In our paper we generalize the definition of approximate convexity in the spirit
of the previous definition:

Definition 1.5. Let V be a subset of an Abelian group G and let w : V xV — [0, o0
such that w(x,z) =0 for z € V be given.
We say that a function f: V' — R is w(-, -)-midconvez (or w(-,-)-Jensen conver)
if
flx—0)+ f(z+0)
2

flz) < t+w(x—06x+9) forzeV,deG:z—-dz+5eV.
Similarly to the standard case, the study of such functions and their understand-
ing can be often deduced from the properties of the set

J,(V;W):={feB(\V;W): fis w(,-)-midconvex}.

Our aim in this paper is to present a computer assisted approach which given a finite
set V' can find within a specified error bound the optimal estimation from above of
J,(V, W), that is

fw(V; W) = sup{f S Jw(vv W)}

We illustrate our approach in the simplest case when V' = {0,1/N,..., (N—1)/N,1}
and W = {0, 1}.



2 Estimate of optimal w(-,-)-midconvex functions.

In this section we discuss the construction of optimal w-Jensen convex functions.
Let V be a given subset of an Abelian group G. By Ay we understand the
diagonal in V' x V, that is Ay := {(v,v) : v € V'}. From now on we assume that
w:V xV —[0,00], w(Ay) = 0 is fixed.
First of all, we introduce the operation P, : [—00,00)" — [—00,00)" as follows

+ f(z+0)
2

P,f(x):= inf{f<x_6) +w(x—0,z+6)0eG:x—0,x+deV},

for f € [—00,00)".

Proposition 2.1. Let f,g € [—00,00)" be arbitrary functions and w : V x V —
[0, 00], w(Ay) = 0 be fixed function. Then operation P, has following properties:

L. F.g <y,

2. if g > f, then P,g > P,f,
3. P,(0) =0,

4. P,g > 0 for g > 0.

Proof. Ad 1. Suppose the assertion of this properties is false, so there exists x € V
such that P,g(z) > ¢g(z). Thus according to the definition of P, for all § € G: = —
d,x + 90 € V we have w +w(x — 6,z +0) > g(x). Which lead us to
contradiction because by setting § = 0 we get g(x) > g(x).

Other properties are obvious and can be proved similarly to the first one. Il

Furthermore, the operation P> : [—00,00)" — [—00,00)"

PXf:=1lim Pf
is well-defined, because operation P, is decreasing. Thus according to Proposition

2.1 we get that P°g > 0 for g > 0.
Using this we can make observation:

Lemma 2.2. Let f, g € [~00,00)" be arbitrary functions and w : V x V — [0, o0},
w(Ay) = 0 be fixed. If f is w(-,-)-midconvex, then P, f = f. Thus, if g > f, then
f=P,f < P,g, and consequently

[ < PXy.



Proof. Let f and w fulfills lemma assumptions. If f is w(-,-)-midconvex, then

(v—=20)+ f(v+9)
2

P,f(v) = inf{f

:M +w(v,0) = f(v) forveV.

twv—0v+d)deG:v—0v+deV}

Second assertion is obvious. O

We are interested in the class of approximately convex functions which are zero
on W, (W C V). We want to find the optimal estimation (from above) of elements
of this class. We put

Jo(V; W) i=sup{f € JL(V;W)}.

There appears a question how to compute the function f,(V;W).

As in many cases the estimation of the w(:,-)-Jensen convex function we are
interested in, can be deduced from the knowledge of f,(V;W) — for example if
we want to find an estimate of f (which we assume to be bounded and w-Jensen
convex) on the interval [a, b], by subtracting the respective affine function (namely
r — f(a) + 372[f(b) — f(a)]) we can reduce to the case when f(a) = f(b) = 0. So
we can restrict to investigation of bounded approximately Jensen convex functions
on the interval [0, 1], which are zero at 0 and 1 (so V' =[0,1] and W = {0, 1}).

Next theorem give us the way to estimate upper bound of f,,(V; ). We use the
notation

1 forveV\W,

IV?W:V“_}{O for v € W

Theorem 2.3. Let V and W C V be given subsets of an Abelian group G. We
assume that
JA>0VY fe J,(V;W): f<A (1)

Then
fw<v§ W) = Pu?(A]lV;W)

and f, is w(-, -)-midconvex.

Proof. By the assumptions
fo(V; W) < Alyw

and consequently the inequality
fo(ViW) < PFR(Alv,w)

holds.



We prove the opposite inequality. For n € NU {cc} we put
gn ‘= P(_:L(A]lvy[/)

Clearly, g, converges pointwise, as n — 00, t0 goo := lim,, . g,. On the other hand
directly from the definition we know that

gn(v = 8) + gn(v +0)
gn+1(1}) S 9

By taking the limit we get

Goo(V — 6) + goo(v + )
2
which implies that g is w(+, -)-Jensen convex, and consequently g, € J,(V;W). O

+wlv—=56v+d)oeGv—35v+deV.

+wlv—5v+d)|deG:v—-5v+0d€V,

goo(V) <

Example 2.4. The assumption (1) is not redundant. Consider V' = {0} U [3, 1]y
and W = {0,1} subsets of R. This situation allows us to calculate P, on set V.
However, for set V = {0, 3,1} and W = {0, 1} (subsets of R) we cannot established
operator P,,, because we cannot calculate the value Pw(%), so it could be arbitrary

large.
Now we can easily obtain lower bound of optimal w(-, -)-midconvex function.

Theorem 2.5. Let V and W C V be given subsets of an Abelian group G. We
assume that
JA>0V fe J,(V;W): f<A

Let h: V — R be such that
h > PX(Aly.w).

If (1 —¢)his w(-,-)-midconvex for some ¢ € (0, 1), then
(I—e)h < f,(V;W) < h.

Proof. According to Theorem 2.3 we have that f,, < h, because function P°(Aly.w)
is w(-, -)-midconvex. Lower bound is consequence of definition f,, as a supremum of

set J(V; W) while directly from the assumptions (1 —e)h € J(V; W). O

3 Strict numerical verification

In this section we give two algorithms which help us to encode the results obtained
in the previous section and create application which founds bounds of f,,(V; W) for
V and W C V finite subsets of an Abelian group G.

We introduce algorithm that summarizes results obtained in Theorem 2.3 and
Theorem 2.5 which give us that outcome function from our construction is w(-,-)-
midconvex:



choose
A >0suchthatV fe J,(V;W): f<A

e €(0,1) (precision)
n <1
repeat
h, <« upper bound for P} (Aly,w)
n <«n-+1
until (1 — €)h, is not w(-, -)-midconvex
return we get estimation (1 —e)h, < f,(V; W) < h,

As it occurs the above algorithm is inconvenient for implementation because
states calculate h,, and check that (1 —¢€)h,, is w(-,-)-midconvez slow it down. Hence
we try to modify those calculations to make it faster.

But first we have to answer the question: how we can find upper bound for
P (Aly.w) for fixed n € N? To solve this problem we prepared all calculations
using interval aritmetics which allows us to deal with finite precision of computer
calculations and control error value [2, 10] (for implementation see [14]). When we
work with interval arithmetic, instead of considering real number (ex. v/3) we work
with the interval (ex. [1.7320; 1.7321]) which contains our number lies between lower
and upper bound of this interval.

Main algorithm

Let us start with useful notations:
KV)={(w,0)lveV,eG:v—-5§v+de€V},

where V is given finite subset of Abelian group G (card K (V') < (card V)2, because
for pair v,v + d € V we can recover § € G3).

Definition 3.1. Let V' be given finite subset of an Abelian group G and let (v, d) €
K (V). We define operator P, ) : [—00,00)" — [—00,00)" as follows:
min{f(x),w + w(x — 5,x—|—5)} for x = v,
f(z) for x # v,

Posf: V21—
for f € [—00,00)".

As we see for every f € [—00,00)V the operator P(v,5) modifies the function f
only at the point v. Also we get that P, f < f.
Given a sequence S = (s1,...,$,) of elements of K (V') we denote

Ps="Ps, 0...0P.



From now on S = {sy,...,s,} denotes a fixed sequence such that

K(V)= U{Sl} and n = card K (V).

=1

To simplify notation from now on we use the letter P instead of Pg.
As we show, we can apply it for function hs: V 3 v — Aly.y € Ry and obtain
upper bound for P,(Aly.yy).

Lemma 3.2. Let V be a finite subset of Abelian group G. We have PS45MV) £ <
Pf<P,f for f €[-00,+00)".

Proof. Let f € [—00,400)". According to Definition 3.1 we have that P, f < P, 5 f
for all (v,8) € K(V), which implies PS5V ¢ < py.

We check now second inequality, so we want to show that for every v € V:
Pf(v) < P,f(v). Let us choose arbitrary v € V. We have that

(v—=20)+ f(v+9)

P,f(v) :inf{f 5

+wv—0v+d)deG:v—0v+6ecV}

Because V is finite there exists such 0 € G fulfilling those infimum. Thus we
obtain Py, p) shuch that P, ) f(v) < P, f(v). This finishes the proof, because v was
arbitraty choosen.

[

We see that the operator P converges faster then P,,.

What is left is to show that there exists A > 0 such that for all f € J,(V;W): f <
A? In general case it is hard to verify if there exists such A that condition (1) holds
(or even estimate it). However in the case where V = [0, 1]y = {0,1/N,..., (N —
1)/N,1} and W = {0, 1} we can put (see. [11, Corollary 2.1])

A=2 sup w(z,y).
x,yE[OJ]N

Thus we obtain the following observation (special case of Theorem 2.5).

Theorem 3.3. Let w : [0,1]y x [0,1]y — Ry and C' > 2supw be given. Let
h:[0,1]x — R be such that

h = PHClp i 011)
for some k € N. If (1 — ¢)h is w(+, -)-midconvex for some ¢ € (0, 1), then

(1 —e)h < fu([0,1]5:{0,1}) < h.



So we can conclude by presenting full algorithm for finding estimation of f,,([0, 1] v;
{0,1}):
choose
C > 0 such that for fixed w: V xV — R,,C > 2supw
he:Vov—Clyw e Ry
forne {1,2,...,Nyax} do
hc < Phc
end for
return ho — upper bound of P°(Cly.w)

Estimating the error

Using the operator P we can get function he — upper bound of f,([0, 1]5;{0,1}).
To obtain lower bound we calculate the error considered in Observation 3.3 by
choosing ¢ € (0, 1) such that

. ho() _ he=d)tho(te)
> sup C(x) 2
1—¢ w(z — 6,2 +9)

cx—0,r,x+0 € [0,1]N,56R,(57§O}. (2)

Application example

We created application (using Java programming language and following libraries
[13], [14]) which applied operator P to specified function w and present obtained
function plot.

This application is available to download from:

http://www.ii.uj.edu.pl/~misztalk/index.php?page=convex
Plots prepared in this program are presented on Figures 1 and 3. All this pictures
presents not one but two functions — lower and upper bound of J,([0, 1]x; {0,1}),
however the distance between them is so small that we cannot separate them from
each other.

Numerical experiments

Let us fix w(z,y) = |z — y| for z,y € [0, 1]1024.

We investigate how many iteration of the operator P we need to obtain small
e. So we apply operator P and then calculate ¢ according to equation (2). The
results are presented on Figure 2. Surprising is that we need such few iterations to

get high precision level — in this case it is sufficient to take 10 iterations to obtain
e =5.684-10"11,

4 Estimation of optimal midconvexity on [0, 1]y

In this section we will recall estimation of optimal midconvex function applied for

[0, 1]y for fixed N € N.
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Figure 1: Iteration of operator P for different functions w: (a) w(z,y) = |z — y|>*,
z,y € [0, 1]1024. We obtain e = 2.22-107'6. (Compare with [8]). (b) w(z,y) = |z —y|,
z,y € [0,1]1024, € = 4.663 - 107'°. For this w we have Takagi-like function [1]. (c)
w(x,y) = (cos|zr—1y|)®, = € [0, 1]1024, € = 8.882-10716. (d) w(z,y) = sin(exp |z —yl),
x e [0, 1]1024, € =222 ]_0_16.
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Figure 2: Error € as a function of iteration the operator P for w(z,y) = |z — y|

under interval [0, 1]1924.
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We recall two estimations for locally bounded a(-)-midconvex functions on [0, 1] x
But firstly let us denote d(x) := 2dist(z, Z) for x € R. Then estimation can be stated
as follows:

Theorem 4.1 ([11, Corollary 2.1, Proposition 3.1]). Let N = 2* for certain k € N.
Let h: [0,1]xy — R, ~(0) = h(1) = 0 be an «a(-)-midconvex function. Then

Zik D, Y a(l/2d2e) } forge 0,1y, (3)

J/ J/
—~ N

E1l E2

Observation 4.2. Let V and W C V be given subsets of an Abelian group G. If
V C V, then f,(V;W)|y < f(V;W).

Theorem 4.3. Let V = [0,1]y for N = 2% k € N, k > 3 and W = {0,1}. For
w(z,y) = sin(cos(|x — y|)) approximations of f,([0,1]y,{0,1}) obtained by (3) are
not optimal (see Figure 3).

r"""ww-—l—vr——-r"""\ \_/T

0 02 04 06 08 10 0 02 04 06 08 10 0 02 04 06 08 10
(a) (b) (c)

=2 e =] L L
L R
=S = B W

Figure 3: Graph of comparison of three estimators: (a) P, (b) E1, (c) E2 for
w(z,y) = sin(cos(|z — y|)) on the set [0, 1]256.

References

[1] Z. Boros, An inequality for the Takagi functions, Math. Inequal. Appl. 11
(2008), 757-765.

[2] G. Dahlquist, A. Bjorck, Numerical methods in scientific computing, Society
for Industrial and Applied Mathematics, (2008), 263 — 264

[3] D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in
Several Variables, Birkhauser, Basel, 1998.

[4] D. H. Hyers, S. M. Ulam, Approzimately convex functions, Proc. Amer. Math.
Soc. 3 (1952), 821-828.

11



[5] W. Jarczyk, M. Laczkovich, Almost convex functions on locally compact Abelian
groups, Journal of Inequalities and Applications 13 (1) (2010), 217225

6] W. Jarczyk, M. Laczkovich, Convezity on abelian groups, Journal of Convex
Analysis (2009), 33-48

[7] R.E Moore, R.B. Kearfott, M.J. Cloud, Introduction to interval analysis, Soci-
ety for Industrial Mathematics (2009)

[8] C.T. Ng, K. Nikodem, On approximately convex functions, Proc. Amer. Math.
Soc. 118 (1993), 103-108.

9] Zs. Péles, On approzimately convex functions, Proc. Amer. Math. Soc. 131 (1)
(2002), 243-252.

[10] M. Petkovié¢, L. Petkovié, Complex interval arithmetic and its applications,

Wiley-VCH, 1998.

[11] Jacek Tabor, J6ozef Tabor, Generalized approximate midconvezity, Control and
Cybernetics, 38 (2009), 655-669.

[12] Jacek Tabor, Jézef Tabor, Takagi functions and approrimate midconverity,
JMAA, 356 (2009), 729-737.

[13] NetBeans  Pack  for  OpenGL  Java  Development: http://
netbeans-opengl-pack.dev. java.net/

[14] Interval Arithmetics Library —ia_math: http://interval.sourceforge.net/
interval/index.html

12



