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Abstract

Suppose that we are given two sources S1, S2 and an “error-
control” familyQ. We assume that we lossy-code S1 withQ-acceptable
alphabet P1 and S2 with Q-acceptable alphabet P2. Consider a new
source S which sends a signal produced by source S1 with probability
a1 and by source S2 with probability a2 = 1−a1. We provide a simple
greedy algorithm which constructs a Q-acceptable coding alphabet P
of S such that the entropy h(P) satisfies:

h(P) ≤ a1 h(P1) + a2 h(P2) + 1.

In the proof of the above formula the basic role is played by a new
equivalent definition of entropy based on measures instead of parti-
tions.

As a consequence we obtain an estimation of the entropy and Rényi
entropy dimension of the convex combination of measures. In partic-
ular if probability measures µ1, µ2 have entropy dimension then

dimE(a1µ1 + a2µ2) = a1dimE(µ1) + a2dimE(µ2).

In the case of probability measures in RN this allows to link the up-
per local dimension at point with the upper entropy dimension of a
measure by an improved version of Young estimation:

dimE(µ) ≤
∫
RN

Dµ(x)dµ(x),

where Dµ(x) stands for upper local dimension of µ at point x.
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1 Introduction

The classical entropy introduced by C. E. Shannon [1] and the entropy di-
mension1 defined by A. Rényi [2] play a crucial role in information theory,
coding, study of statistical and physical systems [3–6]. In information theory,
the entropy is understood as an absolute limit of the best possible lossless
compression of any communication. The entropy dimension in turn can be
interpreted as a rate of convergence of the minimal amount of information
needed to encode randomly chosen element with respect to maximal error
decreasing to zero.

1.1 Motivation

To explain our results, let us first recall that given a probability measure µ
on a space X and a countable partition P of X into measurable sets, we
define the entropy of µ with respect to P by the formula

h(µ;P) :=
∑
P∈P

sh(µ(P )), (1)

where sh(x) := −x log2 x. As we know the entropy corresponds to the statis-
tical amount of information given by optimal lossy-coding of X by elements
of partition P , where P plays the role of the coding alphabet. Motivated by
the idea of Rényi realized by the entropy dimension, we generalise the above
formula for arbitrary measurable cover Q of X by

H(µ;Q) := inf{h(µ;P) : P is a partition of X and P ≺ Q}. (2)

The family Q is interpreted as a maximal error we are allowed to make in
the lossy-coding. We accept only such coding alphabets P , in which every
element of P is a subset of a certain element of Q (if this is the case we say
that P is Q-acceptable).

Remark 1.1. The simplest natural case of such error-control family Q for
classical random variables is given by the set Bδ of all intervals in R with
length δ. Then to find H(µ;Bδ) we need to consider the infimum of entropies
of all lossy-codings h(µ;P), where the elements of P have length not greater
than δ.

1It is sometimes called Rényi information dimension.
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A. Rényi considered the above error-control family Bδ in his definition
of entropy dimension [2] (he also studied the more general case of metric
spaces when Bδ denoted the family of all balls with radius δ). One can also
encounter in the general metric spaces the family of sets with diameter δ or
in the case of RN of cubes with edge-length δ.

Our basic motivation in the paper was the following problem:

Problem 1.1. Suppose that we are given an error-control family Q and two
sources S1, S2 in X (represented by probability measures µ1, µ2 on X). Let
us consider a new source S which sends a signal produced by source S1 with
probability a1 and by source S2 with probability a2 = 1− a1. Source S is a
mixture of S1 and S2. The question is what is the entropy of source S with
respect to the error Q?

In other words we are interested in estimation of H(a1µ1 + a2µ2;Q) in
terms of H(µ1;Q) and H(µ2;Q).

Observation 1.1. Observe that if elements of Q are pairwise disjoint then
the answer to the above problem is trivial as by the subadditivity of the func-
tion sh we have

H(µ;Q) = h(µ;Q) =
∑
Q∈Q

sh(µ(Q)) (3)

=
∑
Q∈Q

sh(a1µ1(Q) + a2µ2(Q)) ≤
∑
Q∈Q

sh(a1µ1(Q)) + sh(a2µ2(Q)) (4)

= a1H(µ1;Q) + a2H(µ2;Q) + sh(a1) + sh(a2). (5)

To see that the above estimation is sharp it is sufficient to consider a
source S1 which sends only signal 0 and source S2 which sends signal 1.
Clearly, H(S1) = H(S2) = 0. Then the entropy of the source S which sends
signal generated by S1 with probability a1 and S2 with probability a2 is exactly
a1H(S1) + a2H(S2) + sh(a1) + sh(a2).

1.2 Main Results

In our main result, Theorem 3.1, we show that the formula calculated in the
above observation:

H(a1µ1 + a2µ2;Q) ≤ a1H(µ1;Q) + a2H(µ2;Q) + sh(a1) + sh(a2) (6)
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is valid in the general case, that is when Q is an arbitrary measurable cover
of X. The proof of our main result relies on a new definition of entropy
based on measures instead of partitions, which we call weighted entropy. We
provide an algorithm, which for given alphabets P1,P2 and measures µ1, µ2

allows to construct “joint” alphabet P satisfying above inequality.

Remark 1.2. We would like to add here that our idea of weighted entropy
is indebted to the notion of weighted Hausdorff measures considered by J.
Howroyd [7, 8]. The advantage of weighted Hausdorff measures over the
classical ones is well-summarised by words of K. Falconer [9, Introduction]:
”Recently, a completely different approach was introduced by Howroyd using
weighted Hausdorff measures to enable the use of powerful techniques from
functional analysis, such as the Hahn-Banach and Krein-Milman theorems.”
Making use of weighted Hausdorff measures Howroyd proves that

dimH(X) + dimH(Y ) ≤ dimH(X × Y ), (7)

where dimH(X) is the Hausdorff-Besicovitch dimension of X.

For the precise definition of weighted entropy we refer the reader to the
next section. We would only like to mention that, roughly speaking, weighted
entropy provides the computation and interpretation of the entropy with re-
spect to “formal” convex combination a1P1 + a2P2, where P1,P2 are par-
titions (which clearly does not make sense in the classical approach). This
operation is crucial in the proof of formula (6), whereas the second impor-
tant part is played by Theorem 2.1, which proves that the weighted entropy
is equal to the classical one.

As an easy consequence of (6) in Theorem 4.1 we obtain an estimation
of the entropy dimension of the convex combination of measures. This result
can be summarised as follows (see Corollary 4.1):

Let µ1 and µ2 be probability measures which have entropy dimension and let
a1, a2 ∈ (0, 1) be such that a1 + a2 = 1. Then a1µ1 + a2µ2 has entropy
dimension and

dimE(a1µ1 + a2µ2) = a1dimE(µ1) + a2dimE(µ2), (8)

where dimE(·) stands for the entropy dimension of a given measure.
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In the case of measures in RN this allows to combine the local upper
dimension Dµ(·) with the upper entropy dimension dimE(·) and improve
Young estimation of the upper entropy dimension [10]:

dimE(µ) ≤
∫
RN

Dµ(x)dµ(x). (9)

2 Weighted Entropy

From now on, if not stated otherwise, we assume that (X,Σ, µ) is a prob-
ability space. The set of probability measures on (X,Σ) will be denoted
by M1(X,Σ). When we consider a set of all measures then we will write
M(X,Σ).

2.1 Shannon Entropy and Deterministic Coding

We begin with the definition of µ-partitions, which will play a role of a coding
alphabet.

Definition 2.1. Let P ⊂ Σ. We say that P is a µ-partition (of X) if P is
countable family of disjoint sets and

µ(X \
⋃
P∈P

P ) = 0. (10)

Consequently every element x ∈ X, which can be randomly drawn (except
for possibly elements of measure zero), is coded deterministically by the
unique P ∈ P such that x ∈ P .

Then the entropy [1] of µ-partition is defined as follows:

Definition 2.2. Let P ⊂ Σ be a µ-partition of X. We define µ-entropy of
P by

h(µ;P) :=
∑
P∈P

sh(µ(P )), (11)

where sh : [0, 1]→ R+ is the Shannon function, i.e.

sh(x) :=

{
−x · log2(x) for x ∈ (0, 1],
0 for x = 0.

(12)
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Let us mention that sh is a continuous, concave and subadditive function.
Classical µ-entropy is defined with use of disjoint sets, which is a very

restrictive condition. It implies that we have fixed one alphabet P in our
lossy-coding. However, this alphabet does not have to be optimal. In other
words, there may exists another Q-acceptable alphabet P ′, which provides
less entropy than P (we assume that P is also Q-acceptable). Thus it would
be better to make a coding with use of P ′ rather than with P . Therefore
we will generalise the entropy for any error-control family. The error-control
family can be an arbitrary family of measurable subsets of X.

We say that family P is finer than Q (which we write P ≺ Q) if for every
P ∈ P there exists Q ∈ Q such that P ⊂ Q. When P is interpreted as a
coding alphabet we may simply say that P is Q-acceptable.

Definition 2.3. Let Q ⊂ Σ. We define the µ-entropy of Q by

H(µ;Q) := inf{h(µ;P) ∈ [0,∞] : P is a µ-partition and P ≺ Q}. (13)

Observe that if there is no µ-partition finer than Q then directly from
the definition2 H(µ;Q) =∞. Moreover, if Q itself is a µ-partition of X then
trivially3 H(µ;Q) = h(µ;Q). This observation implies that µ-entropy H of
Q is defined properly for µ-partitions as well as for families of measurable
subsets of X.

2.2 Weighted Entropy and Random Coding

Motivation of the weighted entropy is the following observation. Given error-
control family Q in the classical approach we consider only Q-acceptable
deterministic codings P . More precisely we always code a point x ∈ X by
the unique Px ∈ P such that x ∈ Px.

However, if we do not insist on being deterministic in our coding, we
could alternatively encode point x by another set P ′ ∈ Σ such that x ∈ P ′
and for which there exists Q′ ∈ Q : P ′ ⊂ Q′. In this subsection we formalise
this idea, namely we do not fix a Q-acceptable alphabet P but we allow
any random coding demanding only that x can be encoded by Q ∈ Q iff
x ∈ Q. Such a random coding might theoretically give lower entropy than
the original one.

2We put inf(∅) =∞.
3We can consider another µ-partition P ≺ Q of X but due to subadditivity of sh we

get h(µ;Q) ≤ h(µ;P).
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We make it precise in the following way. We define the space of functions
from a family of measurable subsets of X into a set of measures on X:

W (µ;Q) := {m : Q 3 Q→ mQ ∈M(X,Σ) :

mQ(X \Q) = 0 for every Q ∈ Q and
∑

Q∈QmQ = µ}. (14)

Thus given m ∈ W (µ;Q) and Q ∈ Q, the value of mQ(X) denotes the
probability that an arbitrary point x ∈ X is coded by Q (and in that case
x ∈ Q with probability one). Observe also that every function m ∈ W (µ;Q)
is non-zero on at most countable sets of Q.

Finally we define weighted µ-entropy of a given m ∈ W (µ;Q):

Definition 2.4. Let Q ⊂ Σ. We define the weighted µ-entropy of m ∈
W (µ;Q) by

hW (µ;m) :=
∑
Q∈Q

sh(mQ(X)). (15)

The weighted µ-entropy of Q is

HW (µ;Q) := inf{hW (µ;m) ∈ [0,∞] : m ∈ W (µ,Q)}. (16)

The following remark explains the importance of the formulation of weighted
entropy.

Remark 2.1. Given functions m1,m2 ∈ W (µ;Q) and numbers a1, a2 ∈ [0, 1]
such that a1 +a2 = 1 we are allowed to perform convex combinations a1m1 +
a2m2 in the space W (µ;Q). Therefore we can compute the weighted µ-
entropy of a combination hW (µ; a1m1 + a2m2) while the symbol h(µ; a1P1 +
a2P2) does not make sense for µ-partitions P1,P2. This property will help us
to find an estimation of entropy of convex combination of measures H(a1µ1+
a2µ2;Q) for Q ⊂ Σ.

2.3 Classical Entropy Equals Weighted

In this section we show that the classical µ-entropy of a family of measurable
sets Q equals to the weighted µ-entropy of Q, i.e.

HW (µ;Q) = H(µ;Q). (17)

It seems natural that every deterministic coding is a particular case of a
random one. We will show it in the following proposition.
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Let us denote the restriction of measure µ to A ∈ Σ by

µ|A(B) := µ(A ∩B) (18)

for every B ∈ Σ.

Proposition 2.1. Random way of coding allows possibly more freedom than
the deterministic one, i.e.

HW (µ;Q) ≤ H(µ;Q) (19)

for every family Q ⊂ Σ.

Proof. Let us first observe that if there is no µ-partition finer than Q then

H(µ;Q) =∞ and the inequality holds trivially.
Thus let P be a µ-partition finer than Q. As P ≺ Q, for every P ∈ P

there exists Q ∈ Q such that P ⊂ Q. Hence we obtain a mapping π : P → Q
satisfying P ⊂ π(P ). We define the family

PQ := {PQ}Q∈Q, (20)

where PQ :=
⋃

P :π(P )=Q

P . Let us notice that PQ is a µ-partition and P ≺

PQ ≺ Q. Finally, we put m : Q 3 Q→ µ|PQ
∈M(X,Σ).

Since PQ is a µ-partition and PQ ⊂ Q for every Q ∈ Q then∑
Q∈Q

mQ(X) =
∑
Q∈Q

µ|PQ
(Q) =

∑
Q∈Q

µ(PQ) = µ(X). (21)

Moreover, for every Q ∈ Q

mQ(X \Q) = µ|PQ
(X \Q) ≤ µ|Q(X \Q) = 0. (22)

Thus m ∈ W (µ;Q). Making use of subadditivity of sh we obtain

hW (µ;m) =
∑
Q∈Q

sh(mQ(X)) =
∑
Q∈Q

sh(µ|PQ
(X)) (23)

=
∑
Q∈Q

sh(µ(PQ)) =
∑
Q∈Q

sh(µ(
⋃

P :π(P )=Q

P )) (24)

≤
∑
Q∈Q

∑
P :π(P )=Q

sh(µ(P )) =
∑
P∈P

sh(µ(P )) = h(µ;P). (25)

We conclude that HW (µ;Q) ≤ H(µ;Q).
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The opposite inequality is more difficult to prove. To do this we will
need an additional proposition. Given m ∈ W (µ;Q) we will construct a
µ-partition P finer than Q with not greater entropy.

Proposition 2.2. Let Q = {Qi}i∈I be a family of measurable subsets of X,
where either I = N or I = {1, . . . , N} for a certain N ∈ N. Let m ∈ W (µ;Q).
We assume that

• µ(X \
⋃
i∈I
Qi) = 0,

• the sequence I 3 i→ mQi
(X) is nonincreasing.

We define the family P = {Pi}i∈I ⊂ Σ by the formula

P1 := Q1, Pi := Qi \
i−1⋃
k=1

Qk for i ∈ I, i ≥ 2. (26)

Then P is a µ-partition, P ≺ Q and

hW (µ;m) ≥ h(µ;P). (27)

Proof. Let us observe that by the definition of P , we have P ≺ Q. Moreover,
since µ(X \

⋃
i∈I
Qi) = 0 and

⋃
i∈I
Pi =

⋃
i∈I
Qi, we get that P is a µ-partition.

To prove (27) we define sequences (xi)i∈I ⊂ [0, 1] and (yi)i∈I ⊂ [0, 1] by
the formulas

xi := mQi
(X) = mQi

(Qi), yi := µ(Pi) (28)

for i ∈ I. Then ∑
i∈I

xi = µ(X) =
∑
i∈I

yi. (29)

Directly from the assumption we conclude that (xi)i∈I is a nonincreasing
sequence. Moreover, for every n ∈ I:

n∑
i=1

xi =
n∑
i=1

mQi
(Qi) = (

n∑
i=1

mQi
)(Q1 ∪ . . . ∪Qn) (30)

≤ µ(Q1 ∪ . . . ∪Qn) =
n∑
i=1

µ(Pi) =
n∑
i=1

yi. (31)
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We have obtained that
n∑
i=1

xi ≤
n∑
i=1

yi for n ∈ I. (32)

By applying the version of Hardy-Polya-Littlewood Theorem (see Appendix
A for details) for sequences (xi)i∈I , (yi)i∈I and the concave function sh we
conclude that

hW (µ;m) =
∑
i∈I

sh(mQi
(X)) =

∑
i∈I

sh(xi) (33)

≥
∑
i∈I

sh(yi) =
∑
i∈I

sh(µ(Pi)) = h(µ;P). (34)

As a direct corollary we obtain that both random and deterministic coding
provide the same entropy.

Theorem 2.1. Let Q ⊂ Σ. Then weighted entropy coincides with the clas-
sical entropy, i.e.

HW (µ;Q) = H(µ;Q). (35)

Proof. Clearly by Proposition 2.1, we get HW (µ;Q) ≤ H(µ;Q).
To obtain the opposite inequality, let us first observe that if W (µ;Q) = ∅

then HW (µ;Q) =∞ and trivially HW (µ;Q) ≥ H(µ;Q).
We discuss the case when W (µ;Q) 6= ∅. Let m ∈ W (µ;Q) be arbitrary.

We define the family of measurable subsets of X by

Q̃ := {Q ∈ Q : mQ(X) > 0}. (36)

Let us notice that Q̃ is a countable family since
∑
Q∈Q̃

mQ(X) = 1. Clearly,

m̃ := m|Q̃ ∈ W (µ; Q̃). Moreover, Q̃ ≺ Q and hW (µ; m̃) = hW (µ;m).

As Q̃ is countable, we may find a set of indices I ⊂ N such that Q̃ =
{Qi}i∈I and the sequence I 3 i → mQi

(X) is nonincreasing. Making use of
Proposition 2.2 we construct a µ-partition P ≺ Q̃, which satisfies

hW (µ; m̃) ≥ h(µ;P) (37)

This completes the proof since P ≺ Q̃ ≺ Q and hW (µ;m) = hW (µ; m̃) ≥
h(µ;P).
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As we proved the equality between classical and weighted entropy, we will
use one notation H(µ;Q) to denote both classical and weighted µ-entropy of
Q ⊂ Σ.

3 Entropy of the Mixture of Sources

3.1 Estimation of the Entropy

We return to Problem 1.1. We are given two sources S1, S2, which are rep-
resented by probability measures µ1, µ2 respectively. Suppose that we have
fixed error-control family Q ⊂ Σ, which defines the precision in the lossy-
coding elements of X. Let us consider a new source S which sends a signal
produced by S1 with probability a1 and produced by S2 with probability a2.
We are interested in estimation of the entropy of S (mixture of S1 and S2)
with respect to Q in terms of H(µ1;Q) and H(µ2;Q). In other words we
would like to measure how much memory we need to reserve for informa-
tion from source S providing that we know the mean amount of information
needed to encode elements sent by S1 and S2 separately.

We will consider a general case: we assume n ∈ N sources S1, . . . , Sn. Let
us begin with a proposition.

Proposition 3.1. Let n ∈ N and let ak ∈ (0, 1) for k ∈ {1, . . . , n} be such

that
n∑
k=1

ak = 1. Let {µk}nk=1 ⊂M1(X,Σ). We put µ :=
n∑
k=1

akµk ∈M1(X,Σ).

• If P is a µ-partition of X then P is a µk-partition of X for k ∈
{1, . . . , n} and

h(µ;P) ≥
n∑
k=1

ak h(µk;P). (38)

• If Q ⊂ Σ and mk ∈ W (µk;Q) for k ∈ {1, . . . , n} then m :=
n∑
k=1

akm
k ∈

W (µ;Q) and

hW (µ;m) ≤
n∑
k=1

ak hW (µk;m
k) +

n∑
k=1

sh(ak). (39)
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Proof. Clearly, P is a µk-partition for every k ∈ {1, . . . , n}. As a direct
consequence of the concavity of the Shannon function we obtain that

h(µ;P) =
∑
P∈P

sh(µ(P )) =
∑
P∈P

sh(
n∑
k=1

akµk(P )) (40)

≥
∑
P∈P

n∑
k=1

ak sh(µk(P )) =
n∑
k=1

ak h(µk;P) (41)

which proves (38).
It is easy verify that m ∈ W (µ;Q). To prove (39) we use subadditivity

of the Shannon function and property: sh(ax) = a sh(x) + x sh(a).

hW (µ;m) =
∑
Q∈Q

sh(
n∑
k=1

akm
k
Q(X)) ≤

∑
Q∈Q

n∑
k=1

sh(akm
k
Q(X)) (42)

=
n∑
k=1

∑
Q∈Q

[ak sh(mk
Q(X)) + sh(ak)m

k
Q(X)] =

n∑
k=1

ak hW (µk;m
k) +

n∑
k=1

sh(ak).

(43)

Making use of Proposition 3.1 we can estimate the entropy of convex
combination of measures, which is the main result of the paper:

Theorem 3.1. Let n ∈ N and let ak ∈ [0, 1] for k ∈ {1, . . . , n} be such that
n∑
k=1

ak = 1. Let {µk}nk=1 ⊂M1(X,Σ). If Q ⊂ Σ then

H(
n∑
k=1

akµk;Q) ≥
n∑
k=1

akH(µk;Q) (44)

and

H(
n∑
k=1

akµk;Q) ≤
n∑
k=1

akH(µk;Q) +
n∑
k=1

sh(ak). (45)

Proof. We consider the case when all considered entropies are finite because
if H(µk;Q) = ∞ for a certain k ∈ {1, . . . , n} then also H(µ;Q) = ∞ and
the proof is completed. Moreover, without loss of generality, we may assume
that ak 6= 0 for every k ∈ {1, . . . , n}.
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We denote µ :=
n∑
k=1

akµk. Let ε > 0 be arbitrary. By the definition of

entropy, we find a µ-partition P finer than Q such that

H(µ;Q) ≥ h(µ;P)− ε. (46)

Then by Proposition 3.1, we have

h(µ;P) = h(
n∑
k=1

akµk;P) ≥
n∑
k=1

ak h(µk;P) ≥
n∑
k=1

akH(µk;Q). (47)

Consequently by (46),

H(µ;Q) ≥ h(µ;P)− ε ≥
n∑
k=1

akH(µk;Q)− ε. (48)

We prove the second inequality. Again by the definition, for each k ∈
{1, . . . n} we find mk ∈ W (µk;Q) such that

hW (µk;m
k) ≤ H(µk;Q) +

ε

n
. (49)

Then by Proposition 3.1 and (49), we obtain

H(µ;Q) ≤ hW (µ;
n∑
k=1

akm
k) ≤

n∑
k=1

[ak hW (µk;m
k) + sh(ak)] (50)

≤
n∑
k=1

[akH(µk;Q) + sh(ak)] + ε, (51)

which completes the proof as ε > 0 was an arbitrary number.

Clearly,
n∑
k=1

sh(ak) ≤ log2(n). Thus the assertion (45) of Theorem 3.1 can

be also rewritten as

H(
n∑
k=1

akµk;Q) ≤
n∑
k=1

akH(µk;Q) + log2(n). (52)

When we consider a combination of two probability measures then we get
directly:

Corollary 3.1. Let a1, a2 ∈ (0, 1) be such that a1 +a2 = 1. Given probability
measures µ1, µ2 and a family of measurable subsets Q of X, we have

H(a1µ1 + a2µ2;Q) ≥ a1H(µ1;Q) + a2H(µ2;Q), (53)

H(a1µ1 + a2µ2;Q) ≤ a1H(µ1;Q) + a2H(µ2;Q) + 1. (54)
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3.2 Practical Algorithm for Finding “Joint” Coding
Alphabet of the Mixture of Sources

A practical question is how to construct Q-acceptable coding alphabet P
form given alphabets P1 and P2 such that

h(a1µ1 + a2µ2;P) ≤ a1 h(µ1;P1) + a2 h(µ2;P2) + sh(a1) + sh(a2). (55)

For the case of simplicity we consider only the case when P1 and P2 are finite
families.

Based on Propositions 2.2 and 3.1 it is not difficult to deduce the following
simple, but general, greedy algorithm for constructing such an alphabet P .

ALGORITHM:

1. i = 0;
P0 = P1 ∪ P2;

2. IF P i is empty GOTO STEP 4;
ELSE find a set P̄i ∈ P i which maximises the value of

P i 3 P → a1µ1(P ) + a2µ2(P );

IF maximum equals zero GOTO STEP 4;

3. P i+1 = {P \ P̄i : P ∈ P i};
i = i+ 1;
GOTO STEP 2;

4. P = {P̄0, P̄1, . . . , P̄i−1};
END.

Clearly, this algorithm can be directly adopted for more than two sources in
X.

Let us look how the above algorithm works in practice.

Example 3.1. Let X = [0, 2]. We consider two measures µ1 : [0, 1] → R
and µ2 : [ 1

10
, 11
10

]→ R given by

µ1(A) =

∫
A

1 dx, µ2(A) = 2

∫
A

(x− 1

10
) dx. (56)
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As an error-control family Q we take the family of all intervals contained in
[0, 2] with length not greater than 2

5
. We consider coding alphabets:

P1 = {[0, 2
5
), [2

5
, 3
5
), [3

5
, 4
5
), [4

5
, 1]},

P2 = {[ 1
10
, 1
2
), [1

2
, 7
10

), [ 7
10
, 9
10

), [ 9
10
, 11
10

]}. (57)

Mixture of sources is given by probabilities a1 = 2/5 and a2 = 3/5.
The algorithm presented above produces following Q-acceptable alphabet

of the mixture:

P = {[0, 1
10

), [ 1
10
, 1
2
), [1

2
, 3
5
), [3

5
, 4
5
), [4

5
, 1], (1, 11

10
]}. (58)

We get the entropies:

a1 h(µ1;P1) + a2 h(µ2;P2) ≈ 1.93, (59)

a1 h(µ1;P1) + a2 h(µ2;P2) + sh(a1) + sh(a2) ≈ 2.9, (60)

h(a1µ1 + a2µ2;P) ≈ 2.36. (61)

As we see, we have obtained a reasonable coding method for finding joint
alphabet of the mixture of sources.

4 Rényi Entropy Dimension

From now on we always assume that X is a metric space and Σ contains all
Borel subsets of X.

4.1 Entropy Dimension of Convex Combination of Mea-
sures

Entropy of a probability measure µ with respect to the error-control family
Q ∈ Σ identifies minimal amount of information needed to encode an ar-
bitrary element of X with error Q. Rényi entropy dimension in turn gives
the rate of convergence of this quantity when error is decreasing. Thus it is
also important to estimate the entropy dimension of convex combination of
measures. Making use of Theorem 3.1 it is quite simple.

Given δ > 0 let us denote a family of all balls in X with radius δ by

Bδ := {B(x, δ) : x ∈ X}, (62)
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where B(x, δ) is a closed ball centred at x with radius δ.
We consider Bδ as an error-control family. If we want to code a point

x ∈ X by a certain ball B(q, δ) then we may code it in fact by its centre
q. Thus the error we make, simply equals to the distance between x and
q. Consequently, the family Bδ allows to code points from X with error not
greater than δ.

For the convenience of the reader let us recall the definition of the entropy
dimension [2].

Definition 4.1. The upper and lower entropy dimension of measure µ ∈
M1(X,Σ) are defined by

dimE(µ) := lim sup
δ→0

H(µ;Bδ)
− log2(δ)

, (63)

dimE(µ) := lim inf
δ→0

H(µ;Bδ)
− log2(δ)

. (64)

If the above are equal we say that µ has the entropy dimension and denote
it by dimE(µ).

We apply Theorem 3.1 for estimation of Rényi entropy dimension of con-
vex combination of measures.

Theorem 4.1. Let n ∈ N and let ak ∈ [0, 1] for k ∈ {1, . . . , n} be such that
n∑
k=1

ak = 1. If {µk}nk=1 ⊂M1(X,Σ) then

dimE(
n∑
k=1

akµk) ≥
n∑
k=1

akdimE(µk), (65)

dimE(
n∑
k=1

akµk) ≤
n∑
k=1

akdimE(µk). (66)

Proof. Let δ ∈ (0, 1) be given. By Theorem 3.1, we have

H(
n∑
k=1

akµk; δ) ≥
n∑
k=1

akH(µk; δ) (67)

and

H(
n∑
k=1

akµk; δ) ≤
n∑
k=1

akH(µk; δ) +
n∑
k=1

sh(ak). (68)

16



Dividing by − log2(δ) and taking respective limits as δ → 0, we obtain as-
sertion of the theorem.

Corollary 4.1. Let n ∈ N and let ak ∈ [0, 1] for k ∈ {1, . . . , n} be such that
n∑
k=1

ak = 1. Let {µk}nk=1 ⊂ M1(X,Σ). If every µk has entropy dimension for

k ∈ {1, . . . , n} then
n∑
k=1

akµk also has entropy dimension and

dimE(
n∑
k=1

akµk) =
n∑
k=1

akdimE(µk). (69)

We generalise Theorem 4.1 for the case of countable families of measures
under an additional assumption that the upper box dimension of X is finite.
It will allow us to prove stronger version (see Corollary 4.2) of theorem proved
by A. Rényi [2, page 196] concerning the entropy dimension of discrete mea-
sure. It is worth mentioning first the definition of upper box dimension [11].

The upper box dimension of any non-empty bounded subset S of X is
defined by

dimB(S) := lim sup
δ→0

logNδ(S)

− log δ
, (70)

where Nδ(S) denotes the smallest number of closed balls of radius δ that
cover S.

Theorem 4.2. We assume that dimB(X) < ∞. Let {µk}∞k=1 ⊂ M1(X,Σ)

and let a sequence (ak)
∞
k=1 ⊂ [0, 1] be such that

∞∑
k=1

ak = 1. Then

dimE(
∞∑
k=1

akµk) ≥
∞∑
k=1

akdimE(µk) (71)

and

dimE(
∞∑
k=1

akµk) ≤
∞∑
k=1

akdimE(µk). (72)

Proof. To prove first inequality we use Theorem 4.1. For every N ∈ N we
have:

dimE(
∞∑
k=1

akµk) = (73)
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= dimE((
N∑
i=1

ai)
N∑
k=1

ak∑N
j=1 aj

µk + (
∞∑

i=N+1

ai)
∞∑

k=N+1

ak∑∞
j=N+1 aj

µk) (74)

≥ (
N∑
i=1

ai)dimE(
N∑
k=1

ak∑N
j=1 aj

µk)+(
∞∑

i=N+1

ai)dimE(
∞∑

k=N+1

ak∑∞
j=N+1 aj

µk) (75)

≥ (
N∑
i=1

ai)
N∑
k=1

ak∑N
j=1 aj

dimE(µk) =
N∑
k=1

akdimE(µk). (76)

Since N ∈ N was arbitrary then

dimE(
∞∑
k=1

akµk) ≥
∞∑
k=1

akdimE(µk). (77)

We prove second inequality. It is well known that if ν ∈M1(X,Σ) then

dimE(ν) ≤ dimB(X). (78)

As dimB(X) <∞, for every ε > 0 we find N ∈ N such that

∞∑
k=N+1

ak ≤
ε

dimB(X)
. (79)

Thus by Theorem 4.1, we get:

dimE(
∞∑
k=1

akµk) ≤ (80)

≤ (
N∑
i=1

ai)dimE(
N∑
k=1

ak∑N
j=1 aj

µk)+(
∞∑

i=N+1

ai)dimE(
∞∑

k=N+1

ak∑∞
j=N+1 aj

µk) (81)

≤
N∑
k=1

akdimE(µk) + ε ≤
∞∑
k=1

akdimE(µk) + ε. (82)

Given a point x ∈ X, let δx be an atomic measure at x, i.e.

δx(A) :=

{
1, if x ∈ A,
0, if x /∈ A for every A ∈ Σ. (83)

Clearly, dimE(δx) = 0 for every x ∈ X. Making use of Theorem 4.2 we obtain
the following corollary:
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Corollary 4.2. We assume that dimB(X) < ∞. Let (xk)
∞
k=1 ⊂ X and let

(ak)
∞
k=1 ⊂ [0, 1] be sequence such that

∞∑
k=1

ak = 1. Then dimE(
∞∑
k=1

akδxk) = 0.

4.2 Improved Version of Young Theorem

Finding the Rényi entropy dimension of a given measure is quite hard task
in practice. It is much easier to calculate its local dimension.

The local upper dimension of µ ∈ M1(X,Σ) at point x ∈ X, is defined
by

Dµ(x) := lim sup
δ→0

log µ(B(x, δ))

log δ
. (84)

Fan [10] obtained an estimation of upper entropy dimension of Borel
probability measure on RN by the supremum of local upper dimension, which
can be seen as a version of Young Theorem [12]:

Consequence of Young Theorem (see [10, Theorem 1.3.]) For a Borel
probability measure µ on RN , we have

dimE(µ) ≤ ess supDµ(x). (85)

We show that this estimation can be improved:

Theorem 4.3. For a Borel probability measure µ on RN , we have

dimE(µ) ≤
∫
RN

Dµ(x)dµ(x). (86)

Proof. Let us first observe that Dµ(x) is a measurable function, as the map-
ping x→ µ(B(x, δ)) is measurable.

Since for µ-almost all x ∈ RN : Dµ(x) ≤ N then we divide the segment
[0, N ] into n ∈ N parts and denote sets

Ank := {x : Dµ(x) ∈ (
k − 1

n− 1
N,

k

n− 1
N ]} (87)

for n ∈ N and k ∈ {0, . . . , n− 1}. Let us define probability measures

µni :=

{ 1
µ(An

i )
µ|An

i
, if µ(Ani ) > 0,

0 , if µ(Ani ) = 0
(88)
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for n ∈ N and i ∈ {0, . . . , n− 1}. Since Ani ⊂ X then

Dµni
(x) ≤ Dµ(x) ≤ i

n− 1
N (89)

for µ-almost all the points x ∈ Ani . Making use of Consequence of Young
Theorem and (89), we have

dimE(µni ) ≤ ess supDµni
(x) ≤ i

n− 1
N. (90)

By the definition of µni , we represent measure µ as a convex combination of
µni , i.e.

µ =
n−1∑
i=0

µ(Ani )µni (91)

for each n ∈ N. Applying Theorem 4.1 and (90), we get

dimE(µ) = dimE(
n−1∑
i=0

µ(Ani )µni ) (92)

≤
n−1∑
i=0

µ(Ani )dimE(µni ) ≤
n−1∑
i=0

µ(Ani )
i

n− 1
N. (93)

Finally taking limits as n→∞, we obtain

dimE(µ) ≤
∫
RN

Dµ(x)dµ(x). (94)

We were unable to verify whether a similar estimation holds for the lower
entropy dimension, i.e. if

∫
RN Dµ(x)dµ(x) ≤ dimE(µ).

5 Conclusion

Our paper investigates the problem of joint lossy-coding of information from
combined sources. The main result gives the estimation of the entropy of
mixture of sources by the combination of their entropies. The proof is based
on the new equivalent definition of the entropy, which allows to obtain a
convex combination of partitions contrary to the classical definition. We
also present a practical and easy to implement algorithm of constructing
joint coding alphabet for above problem. As a corollary we generalise some
results concerning the Rényi entropy dimension.
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6 Appendix A: Hardy-Polya-Littlewood The-

orem

We generalise the classical Hardy-Littlewood-Polya Theorem [13, Theorem
1.5.4.] for infinite sequences.

Hardy-Littlewood-Polya Theorem. Let a > 0 and let ϕ : [0, a] → R+,
ϕ(0) = 0 be a continuous concave function. Let (xi)i∈I , (yi)i∈I ⊂ [0, a] be
given sequences where either I = N or I = {1, . . . , N} for a certain N ∈ N.
We assume that

n∑
i=1

xi ≤
n∑
i=1

yn for n ∈ I (95)

and ∑
i∈I

xi =
∑
i∈I

yi. (96)

If (xi)i∈I is nonincreasing sequence then∑
i∈I

ϕ(xi) ≥
∑
i∈I

ϕ(yj). (97)

Proof. The classical Hardy-Littlewood-Polya Theorem [13, Theorem 1.5.4]
covers exactly the finite sequence case, that is when I = {1, . . . , N} for a
certain N ∈ N. We will show that the case when I = N follows from the case
when I is finite.

To prove (97) it is sufficient to show that for every n ∈ N there exist
kn ∈ N such that

kn∑
i=1

ϕ(xi) ≥
n∑
i=1

ϕ(yi), (98)

since all sequences under considerations are nonnegative. Let n ∈ N be
arbitrary and let kn > n be chosen so that

rn+1 :=
kn∑
i=1

xi −
n∑
i=1

yi ≥ 0. (99)

Such a choice is possible since (xi)i∈I and (yi)i∈I are nonnegative sequences
which have equal sum.
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Consider two finite sequences of equal length kn:

x̃ = (x1, . . . , xkn) and ỹ = (y1, . . . , yn, rn+1, 0, . . . , 0).

Observe that the above sequences have equal sum and that x̃ is nonincreasing.
We show that for every k ≤ kn

k∑
i=1

x̃i ≤
k∑
i=1

ỹi. (100)

If k ≤ n, this follows from the assumptions made on sequences (xi)i∈I and
(yi)i∈I . If k > n then

k∑
i=1

x̃i ≤
kn∑
i=1

x̃i =
kn∑
i=1

xi =
n∑
i=1

yi + rn+1 =
k∑
i=1

ỹi. (101)

Since (xi)i∈I is a nonincreasing we can apply to sequences x̃, ỹ and function
ϕ the finite sequence version of the classical Hardy-Littlewood-Polya and
obtain that

kn∑
i=1

ϕ(xi) =
kn∑
i=1

ϕ(x̃i) ≥
kn∑
i=1

ϕ(ỹi) (102)

=
n∑
i=1

ϕ(yi) + ϕ(rn+1) + (kn − (n+ 1))ϕ(0) ≥
n∑
i=1

ϕ(yi). (103)
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