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Abstract. As is well-known, the existence of a cone-field with constant orbit
core dimension is, roughly speaking, equivalent to hyperbolicity, and conse-

quently guarantees expansivity and shadowing.

In this paper we study the case when the given cone-field does not have the
constant orbit core dimension. It occurs that we still obtain expansivity even

in general metric spaces.

Main Result. Let X be a metric space and let f : X ⇀ X be a given partial
map. If there exists a uniform cone-field on X such that f is cone-hyperbolic,

then f is uniformly expansive, i.e. there exists N ∈ N, λ ∈ [0, 1) and ε > 0
such that for all orbits x, v : {−N, . . . , N} → X

dsup(x, v) ≤ ε =⇒ d(x0, v0) ≤ λdsup(x, v).

We also show a simple example of a cone hyperbolic orbit in R3 which does

not have the shadowing property.

1. Introduction. The notion of cone condition and cone-field [4, 8] originally ap-
peared in the late 60’s in the works of Alekseev, Anosov, Moser and Sinai. It can
be well applied in the study of hyperbolic systems [2, 3, 8]. In particular Newhouse
[8] gives conditions for existence of dominated and hyperbolic splittings on compact
invariant sets for a diffeomorphism in terms of its induced action on a cone-field
and its complement.

Precise definitions concerning cone-field are presented in the next sections. For
the convenience of the reader we just recall that a cone-field C on a compact subset
Λ of a finite dimensional Banach space E is constructed by a splitting

E = Esx ⊕ Eux for every x ∈ Λ.

We say that a diffeomorphism f : U → E,where Λ ⊂ U , is cone-hyperbolic on Λ if it
is both expanding and co-expanding on C. The cone-field C has the constant orbit
core dimension on Λ if dimEux = dimEuf(x) for all x ∈ Λ. One of the main results

from [8] is as follows:

Theorem N [8, Theorem 1.4]. A necessary and sufficient condition for Λ to be a
uniformly hyperbolic set for diffeomorphism f is that there are an integer N > 0
and a cone-field C with constant orbit core dimension over Λ such that fN is cone-
hyperbolic.

2000 Mathematics Subject Classification. Primary: 37D20.
Key words and phrases. Cone-field, hyperbolicity, dominated splitting, expansive map, shad-

owing property.

1



2 TOMASZ KU LAGA,  LUKASZ STRUSKI AND JACEK TABOR

In [5] we have constructed a global metric analogue of a cone-field which allows
to estimate the fractal dimension of the hyperbolic iterated functions systems. In
this article we define and study its local version. It occurs that a classical cone-field
can be seen as a limit version of our metric modification (see Section 5). Moreover,
our approach is well-suited to examination of the case when we skip the constant
orbit core dimension assumption – in our main result we show that the existence
of a hyperbolic local metric cone-field guarantees a uniform version of expansivity.
For more information about the expansivity in metric spaces we refer the reader to
the results of Lewowicz [6, 7].

Main Result [Theorem 4.1]. Suppose that we are given a cone-field on Λ, where
Λ is a compact subset of a metric space X. Let f : X ⇀ X be cone-hyperbolic on
Λ. Then f is uniformly expansive on Λ.

However, the absence of a constant orbit core dimension eliminates the pseu-
doorbit tracking property (shadowing). In the last section of the paper we show a
simple system consisting of two hyperbolic fixed points with heteroclinic, but not
transversal, connection, which is cone-hyperbolic, but does not have the shadowing
property.

2. Cone-fields for Linear Maps. In this section we generalize and adapt stan-
dard notation (see for example [8]) to our needs. At the beginning we give the
definitions of pair of cones in the normed space through which we define our expan-
sion and contraction rates of linear map.

We begin with the finite dimensional normed space E which is split as

E = Es ⊕ Eu

(Eu corresponds to the forward/unstable and Es to the backward/stable directions).
Given a vector v ∈ E, by vs and vu we denote its stable and unstable components
that is vs ∈ Es, vu ∈ Eu are such that v = vs + vu. From now on we assume that
the norm in E satisfies the condition ‖v‖ = ‖vs + vu‖ := max{‖v‖s, ‖v‖u}, where

‖v‖s := ‖vs‖ and ‖v‖u := ‖vu‖.

Definition 2.1. We define the pair of cones corresponding to expanding and con-
tracting directions

CuE := {v ∈ E : ‖v‖s ≤ ‖v‖u}, CsE := {v ∈ E : ‖v‖s ≥ ‖v‖u}.

We modify the classical definition from [8] to allow the study of non-invertible
maps.

Definition 2.2. Let a linear map A : Es ⊕ Eu → F s ⊕ Fu be given. We define
U(A), the expansion, and S(A), the contraction rates of A by the formulas:

U(A) := sup{R ∈ [0,∞] | ‖Av‖ ≥ R‖v‖ for v ∈ CuE},
S(A) := inf{R ∈ [0,∞] | ‖Av‖ ≤ R‖v‖ for v : Av ∈ CsF }1.

(1)

1Note that U(A) is called in Newhouse [8] the expansion rate but 1/S(A) is exactly the
co-expansion rate. This definitions of expansion and contraction rates are more suited to the

hyperbolic situation , see Proposition 2.1 where mapping A need not to be invertible.



CONE-FIELDS WITHOUT CONSTANT ORBIT CORE DIMENSION 3

In the case when A is invertible one can easily transform formulas (1) into the
commonly encountered form

U(A) = inf
v∈Cu

E\{0}

‖Av‖
‖v‖

, S(A) = sup
v∈Cs

F \{0}

‖v‖
‖A−1v‖

. (2)

Remark 2.1. Let A : Es ⊕ Eu → F s ⊕ Fu be a linear invertible map. We put
Ẽs := Eu, Ẽu := Es, F̃ s := Fu, F̃u := F s and consider the map B̃ : F̃ s ⊕ F̃u 3
x→ A−1x ∈ Ẽs ⊕ Ẽu. Then trivially

S(A) = 1/U(B̃), U(A) = 1/S(B̃).

The above equalities are useful, as for example one can directly obtain formula for
S(A) in (2) from the formula for U(A).

A is called dominating [8] if

S(A) < U(A).

We say that A is cone-hyperbolic2 if

S(A) < 1 < U(A).

Proposition 2.1. Let E−1, E0, E1, F−1, F0, F1 be given. Consider a invertible
linear map A : E−1 ⊕ E0 ⊕ E1 → F−1 ⊕ F0 ⊕ F1 given in a block matrix form by

A :=

 A−1 0 0
0 A0 0
0 0 A1

 .
We assume that for x = x−1 + x0 + x1 ∈ E we have ‖x‖ = max{‖x−1‖, ‖x0‖, ‖x1‖}
and that the same holds for F .

If Es := E−1 ⊕ E0, Eu := E1, F s := F−1, Fu := F0 ⊕ F1 then

U(A) = ‖A−1
1 ‖−1, S(A) = ‖A−1‖.

Proof. At first we prove that S(A) = ‖A−1‖. Let v = v−1 +v0 +v1 ∈ E−1⊕E0⊕E1

be such that ‖Av‖u ≤ ‖Av‖s. We know that

‖Av‖ = max{ ‖Av‖u, ‖Av‖s} = ‖Av‖s = ‖A−1v−1‖ ≤ ‖A−1‖ · ‖v−1‖ ≤ ‖A−1‖‖v‖.
Hence S(A) ≤ ‖A−1‖.

Now let ε > 0. We know that there exists vε−1 ∈ E−1 \ {0} such that

‖A−1v
ε
−1‖ > (‖A−1‖ − ε)‖vε−1‖.

Observe that Avε−1 = A−1v
ε
−1 ∈ CsF . Therefore we get S(A) ≥ ‖A−1‖ − ε.

Now take v = v−1 + v0 + v1 ∈ E such that v ∈ CuE . Observe that ‖v‖ = ‖v1‖.
Now we get

‖Av‖ ≥ ‖A1v1‖ ≥ ‖A−1
1 ‖−1‖v1‖ = ‖A−1

1 ‖−1‖v‖.
Therefore U(A) ≥ ‖A−1

1 ‖−1.
Now again let ε > 0. There exists vε1 ∈ E1 \ {0} such that

‖A1v
ε
1‖ < (‖A1‖ − ε)−1‖vε1‖.

Obviously vε1 ∈ CuE and ‖Avε1‖ < (‖A1‖ − ε)−1‖vε1‖ which completes the proof.

As a direct corollary of Proposition 2.1 putting E0 = {0} = F0 we get the
following.

2In the notation from [8] A is cone-hyperbolic iff A is both expanding and co-expanding.
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Corollary 2.1. Consider a invertible linear map A : E−1 ⊕ E1 → F−1 ⊕ F1 given
in a block matrix form by

A :=

[
A−1 0

0 A1

]
.

We assume that for x = x−1 + x1 ∈ E we have ‖x‖ = max{‖x−1‖, ‖x1‖} and that
the same holds for F .

If Es := E−1, Eu := E1, F s := F−1, Fu := F1 then

U(A) = ‖A−1
1 ‖−1, S(A) = ‖A−1‖.

We say that A : Es ⊕Eu → F s ⊕ Fu has a constant core dimension if dimEs =
dimF s, dimEu = dimFu. We show a cone-hyperbolic linear map A which does
not have the constant core dimension.

Corollary 2.2. Let

Es = R2 × {0} , Eu = {(0, 0)} × R

and

F s = R× {(0 0)} , Fu = {0} × R2.

Consider map A given in a block matrix from by

A :=

 1
2 0 0
0 a 0
0 0 2

 ,
where a ∈ R. Then A is cone-hyperbolic.

Clearly dimEs = 2 6= 1 = dimF s and dimEu = 1 6= 2 = dimFu. Using the
Proposition 2.1 we have U(A) = 2 and S(A) = 1/2. Therefore A is cone-hyperbolic
but does not have the constant orbit core dimension.

After studying linear maps we proceed to diffeomorphisms.

Definition 2.3. Let (E, ‖ · ‖) be a finite dimensional normed space and Λ ⊂ E be
nonempty. By a splitting on Λ we understand that for each x ∈ Λ we are given a
pair of subspaces (Esx, ‖ · ‖sx) ,(Eux , ‖ · ‖ux) of E such that

E = Esx ⊕ Eux .

Note that we do not assume continuity in the above definition.

Definition 2.4. Let (E, ‖ · ‖) be a finite dimensional normed space with splitting
on Λ ⊂ E. If there exists K > 0 such that:

1

K
‖vs + vu‖ ≤ max{‖vs‖sx, ‖vu‖ux} ≤ K‖vs + vu‖ for x ∈ Λ, vs + vu ∈ Esx ⊕ Eux ;

then we call it K-splitting or uniform splitting.

Cones at x ∈ Λ are defined as follows

Cux := {vs + vu ∈ Esx ⊕ Eux : ‖vs‖sx ≤ ‖vu‖ux},

Csx := {vs + vu ∈ Esx ⊕ Eux : ‖vs‖sx ≥ ‖vu‖ux}.
Gathering together all such cones over x ∈ Λ forms a cone-field on Λ.
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Definition 2.5. Let U , V be open subsets of finite dimensional Banach spaces and
f ∈ C1(U, V ) and Λ ⊂ U be nonempty. Assume that we are given splittings on Λ
and f(Λ).

For x ∈ U we put

Ux(f) := U(dxf), UΛ(f) := inf
x∈Λ
{U(dxf)}

Sx(f) := S(dxf), SΛ(f) := sup
x∈Λ
{S(dxf)}.

Remark 2.2. Let A : Es ⊕ Eu → F s ⊕ Fu be a linear map and Λ ⊂ Es ⊕ Eu be
given. Spaces Es, Eu and their norms are fixed with respect to x ∈ Λ. Then

Ux(A) = UΛ(A) = U0(A) for x ∈ Λ.

3. Cone-fields on Metric Spaces. Before we generalize the notion of cone-field
to metric spaces, let us emphasise the benefits we get from it. First, we can study
Lipschitz maps as we do not need differential structure. Moreover we have control
over behavior of the orbits since we do not to work in tangent spaces but in the
space itself.

Let us now explain how we define cone fields on metric spaces. The basic idea
lies in ”exchanging” the map dxf with f |B(x,δ) for some small δ > 0 where B(x, δ)
denotes an open ball of radius δ centered at x.

Let (X, d) be a metric space and let Λ be a closed subset of X. For δ > 0 we put

∆δ(Λ) :=
⋃
x∈Λ

{x} ×B(x, δ).

Definition 3.1. Let δ > 0 and Λ ⊂ X be nonempty. We say that a pair of functions
cs, cu : U → R+ for U ⊂ X × X form a δ-cone-field on Λ if ∆δ(Λ) ⊂ U . If there
exists K such that:

1

K
d(x, v) ≤ max{cs(x, v), cu(x, v)} ≤ Kd(x, v) for (x, v) ∈ U

then we call it (K, δ) cone-field on Λ or uniform δ-cone-field on Λ. We put

c(x, v) := max{cs(x, v), cu(x, v)}.

For each point x ∈ Λ we introduce unstable and stable cones by the formula

Cux (δ) := {v ∈ B(x, δ) : cs(x, v) ≤ cu(x, v)},

Csx(δ) := {v ∈ B(x, δ) : cs(x, v) ≥ cu(x, v)}.

Remark 3.1. Let E be a normed space, let Λ ⊂ E and assume that we are given
a uniform splitting on Λ. For x ∈ Λ and v ∈ E we put

cs(x, v) := ‖(v − x)s‖sx, cu(x, v) := ‖(v − x)u‖ux, (3)

where v − x = (v − x)s + (v − x)u ∈ Esx ⊕ Eux .
Then (3) defines a uniform δ-cone-field on Λ for any δ > 0.

We consider a partial map f : X ⇀ Y between metric spaces X and Y and
Λ ⊂ domf . Assume that X is equipped with uniform δ-cone-field on Λ and Y is
equipped with uniform δ-cone-field on a closed subset Z of Y such that f(Λ) ⊂ Z.

For every x ∈ domf we put

Bf (x, δ) := {v ∈ B(x, δ) ∩ domf : f(v) ∈ B(f(x), δ)}.
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Definition 3.2. Let x ∈ domf and δ > 0 be given. We define

ux(f ; δ) := sup{R ∈ [0,∞] | c(f(x), f(v)) ≥ Rc(x, v), v ∈ Bf (x, δ);
v ∈ Cux (δ)},

sx(f ; δ) := inf {R ∈ [0,∞] | c(f(x), f(v)) ≤ Rc(x, v), v ∈ Bf (x, δ);
f(v) ∈ Csf(x)(δ)}.

Let uΛ(f ; δ) := inf
x∈Λ
{ux(f ; δ)} and sΛ(f ; δ) := sup

x∈Λ
{sx(f ; δ)}.

Remark 3.2. Let A : Es ⊕ Eu → F s ⊕ Fu be a linear map and Λ ⊂ Es ⊕ Eu be
given. For x0 ∈ Es⊕Eu we define a function f : Es⊕Eu → F s⊕Fu by a formula

f(x) := Ax+ x0.

Spaces Es, Eu and their norms are fixed with respect to x ∈ Λ and the same holds
for F s, Fu whit respect to y ∈ f(Λ). Let δ > 0 and uniform δ-cone-fields on Λ and
f(Λ) be given by (3). Then for any x ∈ Λ we have

ux(f ; δ) = uΛ(f ; δ) = U0(A)

and

sx(f ; δ) = sΛ(f ; δ) = S0(A).

Definition 3.3. We say that f is δ-dominating on Λ if

sΛ(f ; δ) < uΛ(f ; δ),

and f is δ-cone-hyperbolic on Λ if

sΛ(f ; δ) < 1 < uΛ(f ; δ).

Trivially, a δ-cone-hyperbolic mapping is δ-dominating. The next proposition shows
a simple analogue of [8, Lemma 1.1].

Proposition 3.1. Every δ-dominating mapping is δ-cone-invariant, i.e. for x ∈ Λ
and v ∈ Bf (x, δ) we have

v ∈ Cux (δ) =⇒ f(v) ∈ Cuf(x)(δ),

and

f(v) ∈ Csf(x)(δ) =⇒ v ∈ Csx(δ).

Proof. To prove the first implication, suppose that there exist x ∈ Λ and v ∈ Cux (δ)
such that f(v) /∈ Cuf(x)(δ). This implies that f(x) 6= f(v) and therefore c(x, v) > 0.

We also know that f(v) ∈ Csf(x)(δ). From Definition 3.2 we obtain

c(f(x), f(v)) ≤ sx(f ; δ)c(x, v) ≤ sΛ(f ; δ)c(x, v)

but on the other hand

c(f(x), f(v)) ≥ ux(f ; δ)c(x, v) ≥ uΛ(f ; δ)c(x, v).

Thus sΛ(f ; δ) ≥ uΛ(f ; δ) which leads to contradiction.
The second implication is proved similarly.
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4. Cone-fields and Expansivity. In this section we show that the cone-hyperbolicity
implies uniform expansivity. First we show that cone structure allows to estimate
the distance between orbits for cone-hyperbolic mappings.

Let a partial map f : X ⇀ X be given. We call a sequence x : I → X defined on
a subinterval3 I of Z an orbit of f if

xn ∈ domf and xn+1 = f(xn) for n, n+ 1 ∈ I.

Definition 4.1. Let N ∈ N, ε > 0 and α ∈ (0, 1) be given. We say that f :
X ⇀ X is (N, ε, α)-uniformly expansive on a set Λ ⊂ X if for any two orbits
x : {−N, . . . , N} → Λ, v : {−N, . . . , N} → X we have

dsup(x, v) ≤ ε =⇒ d(x0, v0) ≤ αdsup(x, v),

where

dsup(x, v) := sup
−N≤n≤N

d(xn, vn).

As we will see uniform expansiveness is stronger than the classical expansiveness.

Observation 4.1. Let N ∈ N, ε > 0, α ∈ (0, 1), Λ ⊂ X and f : X ⇀ X be given.
If f is (N, ε, α)-uniformly expansive on Λ it is also expansive on Λ.

Proof. Take any two orbits x : Z→ Λ, v : Z→ X such that

d(xn, vn) ≤ ε for n ∈ Z.

We can take any pair of points (xn, vn) on which we will start iterate. From (N, ε, α)-
uniform expansiveness we get

d(xn, vn) ≤ αdsup(x, v) for n ∈ Z.

Thus

dsup(x, v) ≤ αdsup(x, v)

and as a consequence

dsup(x, v) = 0 =⇒ x = v.

Observation 4.2. Let k,N ∈ N, ε > 0, α ∈ (0, 1), Λ ⊂ X and f : X ⇀ X
be given. If f is (N, ε, α)-uniformly expansive on Λ then for any two orbits x :
{−kN, . . . , kN} → Λ i v : {−kN, . . . , kN} → X such that dsup(x, v) ≤ ε we have

d(xn, vn) ≤ αε for n ∈ {−(k − 1)N, . . . , (k − 1)N},

d(xn, vn) ≤ α2ε for n ∈ {−(k − 2)N, . . . , (k − 2)N},
...

d(xn, vn) ≤ αk−1ε for n ∈ [−N,N ].

Proof. Take any two orbits x : {−kN, . . . , kN} → Λ, v : {−kN, . . . , kN} → X such
that

d(xn, vn) ≤ ε for n ∈ {−kN, . . . , kN}.
We can take any pair of points (xn, vn) for n ∈ {−(k−1)N, . . . , (k−1)N} on which
we will start iterate. From (N, ε, α)-uniform expansiveness we get

d(xn, vn) ≤ αε for n ∈ {−(k − 1)N, . . . , (k − 1)N}.

3We say the I is a subinterval of Z if [k, l] ∩ Z ⊂ I for any k, l ∈ I.
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Now again we use uniform expansiveness to obtain

d(xn, vn) ≤ α2ε for n ∈ {−(k − 2)N, . . . , (k − 2)N}.

Continuing this way we eventually get

d(xn, vn) ≤ αk−1ε for n ∈ {−N, . . . , N}.

Given a set Λ ⊂ X we define δ neighborhood of Λ as

Λδ :=
⋃
x∈Λ

B(x, δ).

Theorem 4.1. Suppose that for K > 0 and δ > 0 we are given a (K, δ) cone-field
on Λ ⊂ X. Let f : Λδ ⇀ X be δ-cone-hyperbolic on Λ and let λ > 1 be chosen such
that

sΛ(f ; δ) ≤ λ−1, uΛ(f ; δ) ≥ λ.
Then f is (N, δ,K2/λN )-uniformly expansive on Λ for every N ∈ N, N > 2 logλK.

Proof. From Proposition 3.1 we know that f is δ-cone-invariant. Let us take two
orbits x : {−N, . . . , N} → Λ, v : {−N, . . . , N} → X such that

dsup(x, v) ≤ δ.

Since v0 ∈ B(x0, δ) = Csx0
(δ) ∪ Cux0

(δ) it is enough to consider two cases.
Let v0 ∈ Csx0

(δ). From the cone-invariance we know that vn ∈ Csxn
(δ), n < 0.

From Definition 3.2 we get c(x0, v0) ≤ λ−1c(x−1, v−1) ≤ · · · ≤ λ−Nc(x−N , v−N ).
Finally

d(x0, v0) ≤ Kc(x0, v0) ≤ K2λ−Ndsup(x, v).

If v0 ∈ Cux0
(δ) then from the cone-invariance we obtain vn ∈ Cuxn

(δ), n > 0 and
consequently

d(x0, v0) ≤ Kc(x0, v0) ≤ Kλ−Nc(xN , vN ) ≤ K2λ−Ndsup(x, v).

5. Limiting Case. Let us return to the function f : E ⇀ F between finite dimen-
sional Banach spaces E and F and Λ ⊂ domf . We show that for diffeomorphism f
constants uΛ(f ; δ), sΛ(f ; δ) converge to UΛ(f), SΛ(f) as δ → 0. Let us begin with
the following observation.

Observation 5.1. Let E = Es ⊕ Eu, F = F s ⊕ Fu, δ > 0 and a linear map
A : E → F be given. Assume that Λ ⊂ E and the uniform δ-cone-field on Λ is
defined by (3). Then for any x ∈ Λ we have

uΛ(A; δ) = ux(A; δ) = U0(A),

sΛ(A; δ) = sx(A; δ) = S0(A).

Proposition 5.1. Let δ > 0, A : Es⊕Eu → F s⊕Fu be a linear map, x ∈ Es⊕Eu
and p : B(x, δ) ⇀ F s ⊕ Fu be Lipschitz.

Then

ux(A+ p; δ) ∈ [U0(A)− lip(p),U0(A) + lip(p)].
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Proof. From the equation (2), Remark 2.2 and the above observation we have

ux(A+ p; δ) = inf
v∈Cu

E\{x}∩B(x,δ)

‖A(v−x)+p(v−x)‖
‖v−x‖

≤ inf
v∈Cu

E\{x}∩B(x,δ)

‖A(v−x)‖+‖p(v−x)‖
‖v−x‖

= inf
v∈Cu

E\{x}∩B(x,δ)

‖A(v−x)‖
‖v−x‖ + inf

v∈Cu
E\{x}∩B(x,δ)

‖p(v−x)‖
‖v−x‖

≤ ux(A; δ) + inf
v∈Cu

E\{x}∩B(x,δ)

lip(p)‖v−x‖
‖v−x‖

= U0(A) + lip(p)

and

ux(A+ p; δ) = inf
v∈Cu

E\{x}∩B(x,δ)

‖A(v−x)+p(v−x)‖
‖v−x‖

≥ inf
v∈Cu

E\{x}∩B(x,δ)

‖A(v−x)‖−‖p(v−x)‖
‖v−x‖

≥ ux(A; δ) + inf
v∈Cu

E\{x}∩B(x,δ)

−lip(p)‖v−x‖
‖v−x‖

= U0(A)− lip(p).

Proposition 5.2. Let δ > 0, E and F be Banach spaces, U be an open subset of
E, Λ be such that Λδ ⊂ U and f ∈ C1(U,F ). Assume that x 7→ dxf is uniformly
continuous on Λδ and its modulus of continuity on Λ is equal to ω(δ). Then

uΛ(f ; δ) ∈ [UΛ(f)− ω(δ),UΛ(f) + ω(δ)].

Proof. Let x ∈ Λ. We put

pδx(v) := f(v)− f(x)− dxf(v − x) for v ∈ B(x, δ).

By uniform continuity of x 7→ dxf on Λδ we have

‖pδx(v)‖ = ‖f(v)− f(x)− dxf(v − x)‖

≤ sup{‖dξf − dxf‖ : ξ ∈ B(x, δ)}‖v − x‖

= ω(δ)‖v − x‖.

Using the Proposition 5.1 we get

ux(f ; δ) = ux(dxf + pδx; δ) ∈ [Ux(f)− ω(δ),Ux(f) + ω(δ)].

Observation 5.2. Let f : X → Y be an invertible map, Λ ⊂ X and δ > 0.
Assume that functions cs, cu create uniform δ-cone-field on Λ and Cs, Cu yield
uniform δ-cone-field on Λ̃ = f(Λ).

Then

s(f ; δ) = 1/u(f̃ ; δ),

u(f ; δ) = 1/s(f̃ ; δ),

where f̃ := f−1 : Y → X with c̃s := Cu, c̃u := Cs which form uniform δ-cone-field
on Λ̃ and C̃s := cu, C̃u := cs which form uniform δ-cone-field on f̃(Λ̃).
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Theorem 5.1. Let U ⊂ E, V ⊂ F be open, Λ be a compact subset of U and
f ∈ C1(U, V ).

Then

uΛ(f ; δ)↗ UΛ(f) as δ → 0,

and

sΛ(f ; δ)↘ SΛ(f) as δ → 0.

Proof. Directly from the definition of ux(f ; δ) it is non-decreasing as δ tends to
zero and therefore uΛ(f ; δ) is also non-decreasing. The first convergence follows
from Proposition 5.2, the second one is a consequence of Observation 5.2.

6. Cone-hyperbolic Orbit Without POTP. We are going to show an example
of a cone-hyperbolic connection between two hyperbolic fix points which does not
have the shadowing property. The idea is based on the Corollary 2.2.

Let p−1 = (0, 0,−1), p0 = (0, 0, 0) and p1 = (1, 0, 0). We are going to define a
function in neighborhood of these points. In R3 we consider the maximum metric.

Let

Q−1 :=

[
−1

5
,

1

5

]2

×
[
−6

5
,−2

5

]
and

Q1 :=

[
−1

5
,

6

5

]
×
[
−1

5
,

1

5

]2

be pairwise disjoint cuboids, X = Q−1 ∪Q1 and F : X → R3 be given by a formula

F (x) :=

{
A−1(x− p−1) + p−1 for x ∈ Q−1,

A1(x− p1) + p1 for x ∈ Q1,
(4)

where

A−1 =

 1
2 0 0
0 1

2 0
0 0 2

 and A1 =

 1
2 0 0
0 2 0
0 0 2

 .
(see Figure 1(a)). By the partial map f : X ⇀ X we denote the restriction of F to
the set dom(f) := {x : F (x) ∈ X}.

Two-dimensional stable or unstable subspaces of p−1 and p1 are marked by double
arrows while one-dimensional subspaces by single ones.

Observation 6.1. The partial map f has the following properties:

1. points p−1 and p1 are hyperbolic fixed points;
2. for k ∈ Z fk(p0) ∈ X; consequently O(p0) := {fk(p0) ∈ X : k ∈ Z} ⊂ domf ;
3. point p0 belongs to the unstable manifold of p−1 and to the stable manifold of

p1 (see Figure 1(b))

p0 ∈Wu(p−1) := {x : fk(x)→ p−1 as k → −∞},

p0 ∈W s(p1) := {x : fk(x)→ p1 as k → +∞};

As one can see from the Figure 1(a) tangent spaces to Wu(p−1) and W s(p1) at
point p0 generate a two-dimensional space and not a three-dimensional one. Thus we
have a non-transversal heteroclinic connection between two hyperbolic fixed points.
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p0

p1

Q1

p−1

Q−1

(a)

p−1 p0

p1

(b)

Figure 1

Let as define a splitting on X. For x ∈ Q−1 we put Esx = R2×{0}, Eux = {0}2×R
and for x ∈ Q1 we put Esx = R × {0}2, Eux = {0} × R2. Using Remark 3.1 and
formulas (3) we define a cone structure on X. For v = (v1, v2, v3) ∈ R3 we put

cs(x, v) :=

{
max{|x1 − v1|, |x2 − v2|} for x = (x1, x2, x3) ∈ Q−1,

|x1 − v1| for x = (x1, x2, x3) ∈ Q1,

and

cu(x, v) :=

{
|x3 − v3| for x = (x1, x2, x3) ∈ Q−1,

max{|x2 − v2|, |x3 − v3|} for x = (x1, x2, x3) ∈ Q1.

Proposition 6.1. Let δ ∈ (0, 1
10 ). Mapping f defined by (4) is δ-cone-hyperbolic

on dom(f).

Proof. It holds that
f−1(Q−1) ∩Q−1 ⊂ Q−1

−1,

and
f−1(Q1) ∩Q−1 ⊂ Q1

−1,

where

Q−1
−1 := R2 ×

[
−6

5
,− 7

10

]
∩Q−1,

and

Q1
−1 := R2 ×

[
− 6

10
,−2

5

]
∩Q−1

(see Figure 2). Therefore dom(f) ⊂ Q−1
−1 ∪Q1

−1 ∪Q1.

Not formally the idea is to first show that f restricted to each setQ ∈ {Q−1
−1, Q

1
−1, Q1}

has a fixed formula and the splittings are alse fixed on the δ-neighborhoods of Q
and f(Q), and then to use Remark 3.2.

Let x ∈ dom(f) ∩ Q−1
−1. Note that f(x) ∈ Q−1 and the function f|B(x,δ) :

B(x, δ) ⇀ B(f(x), δ) ⊂ Q−1 is given by the formula f|B(x,δ)(v) = A−1(v−p−1)+p−1

and therefore is affine. Moreover splitting are the same for each v ∈ B(x, δ) and
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Q−1 Q1

p−1 p0

p1

Q−1
−1 Q−1

1

Figure 2

v′ ∈ B(f(x), δ). Then using Remark 3.2 we get sx(f ; δ) = S0(A−1) and ux(f ; δ) =
U0(A−1) where A−1 : R2 × {0} ⊕ {0}2 × R → R2 × {0} ⊕ {0}2 × R and finally by
Corollary 2.1 it follows that sx(f ; δ) = 1

2 and ux(f ; δ) = 2.
The case when x ∈ dom(f) ∩Q1 is analogous since f(Q1) ∩ dom(f) ⊂ Q1.
Now let x ∈ dom(f) ∩ Q1

−1. It holds that f(x) ∈ Q1 and the function f|B(x,δ) :
B(x, δ) ⇀ B(f(x), δ) ⊂ Q1 is given by the formula f|B(x,δ)(v) = A−1(v − p−1) +
p−1 and therefore is affine. The splittings are constant for v ∈ B(x, δ) and v′ ∈
B(f(x), δ), respectively. By Remark 3.2 we get sx(f ; δ) = S0(A−1) and ux(f ; δ) =
U0(A−1) where A−1 : R2×{0}⊕ {0}2×R→ R×{0}2⊕{0}×R2. From Corollary
2.2 it follows that sx(f ; δ) = 1

2 and ux(f ; δ) = 2.
Therefore f is δ-cone-hyperbolic on dom(f).

Using Theorem 4.1 we get the following.

Corollary 6.1. Map f is (1, δ, 1
2 )-uniformly expansive on dom(f) for any δ ∈

(0, 1
10 ).

Now let us recall the notion of shadowing.

Definition [4, Definition 18.1.1]. Let (X, d) be a metric space, f : X ⇀ X. Let I be
a subinterval of Z and δ > 0. We say that a sequence x : I → X is a δ-pseudo-orbit
for f if

xn ∈ domf and d(xn+1, f(xn)) ≤ δ for all n ∈ I : n+ 1 ∈ I.
A δ-pseudo-orbit x : I → X for f is said to be ε-shadowed by the orbit y : I → X
of f if

d(xn, yn) ≤ ε for all n ∈ I.

The following definition can be extracted from [4, Theorem 18.1.2].

Definition 6.1. Let (X, d) be a metric space, U ⊂ X open, Λ ⊂ U and f : U → X.
We say that f has the pseudo orbit tracing property on Λ (abbr. POTP4) if there

4POTP may be called shadowing.
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exists r > 0 such that Λr ⊂ U and whenever ε > 0 there is a δ > 0 such that every
δ-pseudo-orbit in Λr is ε-shadowed by an orbit of f .

Shadowing Lemma [4, Theorem 18.1.2]. Let U ⊂ RN be open, f : U → RN be a
diffeomorphism, and Λ ⊂ U be a compact hyperbolic set for f . Then f has POTP
on Λ.

The aim of this section is to show that the function f defined by the equation
(4) does not have shadowing property.

Theorem 6.1. Let f be given by the formula (4) and Λ = {p−1} ∪ O(p0) ∪ {p1}.
Then f does not have POTP on Λ.

Proof. For an indirect proof assume that f has POTP on Λ. We know that there
exists r > 0, as in the Definition 6.1.

Fix ε = r
4 . From the equation (4) we know that the trajectory of any point

w = (w1, w2, w3) in [− 1
5 ,

1
5 ]3 is given by

fk(w) = (1 + 2−k(w1 − 1), 2kw2, 2
kw3) for k ≥ 0,

fk(w) = (2−kw1, 2
−kw2,−1 + 2k(w3 + 1)) for k < 0.

(5)

Take δ ∈ (0, 1) and let us construct the following δ-pseudo-orbit (see Figure
3). We start with forward iterating p0 until ‖fk(p0) − p1‖ ≤ δ. This happens for
k > − log2 δ. Let us fix such k0. Then we jump into p1 = (1, 0, 0) and jump out
to a point (1, δ, 0). Then we again iterate the point (1, δ, 0) using map f to get
obtaining consecutive points (1, 2kδ, 0) until 2kδ > r/2 say for some k1 > log2

r
2δ .

This defines the positive half of δ-pseudo-orbit v as follows

vk =

 (1− 1
2k , 0, 0) for 0 ≤ k ≤ k0

(1, 0, 0) for k = k0 + 1
(1, 2lδ, 0) for k = k0 + 1 + l, 0 < l ≤ k1.

In the similar way we define the negative half

vk =

 (0, 0,−1 + 1
2−k ) for − k0 ≤ k < 0

(0, 0,−1) for k = −k0 − 1
(0,−2lδ,−1) for k = −k0 − 1− l, 0 < l < k1.

Put N := k0+k1+1. Notice that the first point of the constructed δ-pseudo-orbit
v is v−N = (0,−2k1 ,−1) and the last point is vN = (1, 2k1 , 0). Since f has POTP
there exists w ∈ X such that the orbit of w is close to v i.e.

‖fk(w)− vk‖ < ε for k ∈ {−N, . . . , N}.

In particular using (5) we have

|2Nw2 + 2k1δ| ≤ ‖f−N (w)− v−N‖ < ε and |2Nw2 − 2k1δ| ≤ ‖fN (w)− vN‖ < ε.

Now since 2kδ > r/2 and ε = r/4 we get

2Nw2 < −2k1δ + ε < −r/4 and 2Nw2 > 2k1δ − ε > r/4,

which is a contradiction because 2Nw2 is both positive and negative.
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p−1 p0

p1

Figure 3
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