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Abstract. Let X be a normed space and V be a convex subset of X. Let
α : R+ → R+. A function f : V → R is called α-midconvex if

f(
x + y

2
)− f(x) + f(y)

2
≤ α(‖x− y‖) for x, y ∈ V.

It can be shown that every continuous α-midconvex function satisfies
the following estimation:

f(tx+(1−t)y)−tf(x)−(1−t)f(y) ≤
∞X

k=0

1

2k
α(d(2kt‖x−y‖)) for t ∈ [0, 1]

where d(t) := 2dist(t, Z) for t ∈ [0, 1].

An important problem lies in verifying for which functions α the
above estimation is optimal. The conjecture of Zs. Páles that this is the
case for functions of type α(r) = rp for p ∈ (0, 1), was proved by J.
Mako and Zs. Páles in [Approximate convexity of Takagi type function,
JMAA, 545–554 2010].

In this paper we present a computer assisted method to verifying
optimality of this estimation in the class of piecewise linear functions α.
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1. Introduction

Let V be a convex subset of a normed space X. The function f : V → R is
convex, if

Cf(x, y; t) := f(tx+(1−t)y)−tf(x)−(1−t)f(y) ≤ 0 for x, y ∈ V, t ∈ [0, 1]

This work was completed with the support of our TEX-pert.
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and f : V → R is midconvex if

Jf(x, y) := f

(
x + y

2

)
− f(x) + f(y)

2
≤ ε‖x− y‖p for x, y ∈ V.

One of the natural generalization of convexity is (ε, p)-midconvexity [5, 7].

Definition 1.1. Let X be a normed space, V be a convex subset of X. Let
ε ≥ 0 and p ≥ 0 be fixed. A function f : V → R is (ε, p)-midconvex if

Jf(x, y) ≤ ε‖x− y‖p for x, y ∈ V.

The relation between approximate midconvexity and convexity is one
of the most important questions in the study of generalized convexity. Some
results in this direction should be mentioned. We start with the Bernstein-
Doetsch Theorem [8, Chapter 6.4], which tells that every locally bounded
midconvex function is convex. In all results quoted below we assume that f
is locally bounded.

In 1979 S. Rolewicz [12] proved that each (ε, p)-midconvex function for
p ∈ (2,∞) is convex. C.T. Ng and K. Nikodem [10] found that the optimal
bound for Cf(x, y; t), when p = 0 is given by the following inequality:

Cf(x, y; t) ≤ ε

∞∑
k=0

1
2k
1Z(2kt) for t ∈ [0, 1],

where 1Z denotes the characteristic function of Z.
A. Hazy and Zs. Páles considered first the case p = 1 in [11], and later

in [7] the case p ∈ [0, 1] and proved that

Cf(x, y; t) ≤ ε

∞∑
k=0

dp(2kt)
2k

‖x− y‖p for t ∈ [0, 1], (1.1)

where
d(t) := 2dist(t;Z) for t ∈ [0, 1].

In the case where p = 1 Z. Boros [3] showed that inequality (1.1) is optimal.
Note that for p = 0 (1.1) reduces to the estimation obtained by C. T. Ng
and K. Nikodem. The case p ∈ [1, 2] was completely solved in [13], where
authors showed that the optimal estimation for the convexity differences of
(ε, p)-midconvex functions is given by

Cf(x, y; t) ≤ ε

∞∑
k=0

dp(2kt)
2k

‖x− y‖p for r ∈ [0, 1].

To present the following results we need the generalization of the notion
of (ε, p)-midconvexity:

Definition 1.2. Let X be a normed space, V be a convex subset of X and
let α : [0,diam V ] → R+ be a given function. A function f : V → R is
α-midconvex if

Jf(x, y) ≤ α(‖x− y‖) for x, y ∈ V.
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In [14] the authors showed that to check optimality of estimation (1.1)
in the class of α-midconvex functions it suffices to check two inequalities.

To quote this result it is convenient to formulate Condition T.

Definition 1.3 (Condition T ). Let α : [0, 1] → R+ be a non-decreasing function
and let ω = α ◦ d. We say that function α satisfies the Condition T if

ω

(
x + y

2

)
−ω(x) + ω(y)

2
+

ω(x + y)− ω(2x)+ω(2y)
2

2
+

ω(2x− 2y)
4

≤ ω

(
x− y

2

)
(1.2)

for (x, y) ∈ B := conv{
(
0, 1

2

)
,
(

1
2 , 1

2

)
, (0, 1)}, and

ω

(
x + y

2

)
− ω(x) + ω(y)

2
+

1
2
ω(x− y) ≤ ω

(
x− y

2

)
(1.3)

for (x, y) ∈ D := conv{(0, 0), ( 1
2 , 1

2 ), (0, 1),
(
− 1

2 , 1
2

)
} \B.

Now the main result from [14] (see Proposition 3.1) can be reformulated
in the following form:

Theorem TT ([13]). Let α : [0, 1] → R+ be a non-decreasing function.
We assume that the function α satisfies the Condition T . Then the

estimation

Cf(x, y; t) ≤
∞∑

k=0

1
2k

α(d(2kt)‖x− y‖) for t ∈ [0, 1] (1.4)

is optimal in class of α-midconvex functions.

A crucial result in this direction was obtained in 2010 J. Mako and
Zs. Páles [9, Theorem 9] who showed that the estimation (1.4) is optimal
for the class of functions α(r) = rp for p ∈ (0, 1). In fact the even showed
the optimality in the large class of C1 functions satisfying some additional
assumptions. The idea was based on verifying a nontrivial condition similar
in nature to Condition T, which the authors checked analytically for α.

In this paper, a different approach to this problem will be presented,
which allows to verify the optimality in the class of continuous piecewise
linear functions. In order of do that, a theorem from [14] and an algorithm
based on interval arithmetic will be used.

In the next chapter we demonstrate how to numerically verify Condition
T. In the last chapter of the paper results similar to those in [9] for continuous
piecewise linear functions will be achieved.

2. Optimality in the class of continuous piecewise linear
functions

In this chapter we show how to numerically verify optimality. Let us first
introduce some notation.
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For [a, b] ⊂ R and N ∈ N let

[a, b]N : = {a +
k(b− a)

N
: k = 0, . . . , N}

and let

AffN ([a, b]) : = {f ∈ C([a, b],R) : f |
[a+

k(b−a)
N ,a+

(k+1)(b−a)
N ]

is affine for k = 0, . . . , N−1}.

Remark 2.1. In this article for simplicity the segment [a, b] is divided into
equal is but analogous reasoning can be performed on any finite division of
the interval [a, b].

We say that P ⊂ R2 is a convex polygon if there exist n ∈ N (n > 3) and
W = {wi}i∈Zn

⊂ R2 such that P is convex hull of W (P = conv(W )) and for
all i ∈ Zn (where Zn cyclic group) points wi−1, wi, wi+1 are not collinear. The
set W will be called the set of vertices of the polygon P . Moreover, from now
on we assume that the sequence W is chosen so that W is minimal (which
means wi 6= wj for i 6= j) and

[wi, wi+1] : = {twi + (1− t)wi+1 : t ∈ [0, 1]} ⊂ ∂P for i ∈ Zn.

The collection of intervals

∂P := {[wi, wi+1]}i∈Zn

will be called algebraic border of P . For a convex polygon P we consider
restrictions of affine and linear functions to P :

AffP := {f |P | f : R2 → R is affine},
LinP := {f |P | f : R2 → R is linear and f 6= 0}.

For F ⊂ LinP , S finite subset of R and convex polygon P let

LinesP (F , S) : = ∂P ∪ {f−1(s) ∩ P : f ∈ F , s ∈ S}.
Observe that LinesP (F , S) is a finite collection of line-segments with ends
in ∂P . Let

PointsP (F , S) =
⋃
{k ∩ l : k, l ∈ LinesP (F , S), k 6= l}.

Example. Let T be a triangle with vertices w0, w1, w2. Let functions f1, f2

and points a1, a2 be such that lines l1 := f−1
1 (a1), l2 := f−1

2 (a2) intersect
triangle T as in the picture below.

w0 w1

w2

l1 l2

p4

p1 p2

p3

c
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Then LinesT ({f1, f2}, {a1, a2}) = {[w0, w1], [w1, w2], [w2, w0], [p1, p3], [p2, p4]}
and PointsT ({f1, f2}, {a1, a2}) = {w0, w1, w2, p1, p2, p3, p4, c}.

Given any family of sets P by its support we understand

supp(P) =
⋃

P∈P
P.

To proceed further we will need some technical results.

Proposition 2.2. Assume that P ⊂ R2 is a convex polygon and [a, b] ⊂ R,
N ∈ N. Let ωi ∈ AffN ([a, b]) and fi ∈ LinP be such that fi(P ) ⊂ [a, b] for
i ∈ {1, . . . ,m}.

Let F : P → R be defined by the formula

F (x) =
m∑

i=0

ωi(fi(x)) for x ∈ P.

Then for every connected component U of P \ supp(LinesP ({fi}m
i=1, [a, b]N ))

(a) U is a convex polygon;
(b) the set of vertices of U is a subset of PointsP ({fi}m

i=1, [a, b]N );
(c) F |U ∈ AffU .

Proof. Let U be a connected component of P \supp(LinesP ({fi}m
i=1, [a, b]N )).

(a) For every i ∈ {1, . . . ,m} there exists ki ∈ {1, . . . , N − 1} such that

fi(x) ∈ (a +
ki

N
(b− a), a +

ki + 1
N

(b− a)) for x ∈ U.

Then

U =
N−1⋂
i=1

f−1
i

(
(a +

ki

N
, a +

ki + 1
N

)
)

.

Clearly f−1
i

(
[a + ki

N , a + ki+1
N ]

)
∩ P is a convex polygon. Hence, U is a

convex polygon as an intersection of finite family of convex polygons.
(b) Let w be a point from set of vertices of U . Then w is an intersection of

two edges e1, e2 of U . Then ei (for i = 1, 2) is either a subinterval of an
edge of P or ei is subinterval of f−1

k (c), for a certain k ∈ {1, . . . , N − 1}
and c ∈ [a, b]N . Consequently we obtain that

w ∈ PointsP ({fi}m
i=1, [a, b]N ).

(c) For every i ∈ {1, . . . ,m} there exists ki ∈ {1, . . . , N − 1} such that

fi(x) ∈ (a +
ki

N
(b− a), a +

ki + 1
N

(b− a)) for x ∈ U.

Since for i ∈ {1, . . . ,m} functions ωi ∈ AffN ([a, b]), so ωi(fi|U ) ∈
AffN ([a, b]). We obtain that F |U ∈ AffU as a sum of affine functions.

�

Remark 2.3. Let P ⊂ R2 be a convex polygon. It is well-known that an
affine function F : P → R attains its maximum (and minimum) in one of the
vertices of P .
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Now we can prove the theorem:

Theorem 2.4. Let P ⊂ R2 be a convex polygon and [a, b] ⊂ R. Let N ∈ N,
ωi ∈ AffN ([a, b]) and let fi ∈ LinP be such that fi(P ) ⊂ dom(ωi) for i =
1, . . . ,m. Let F : P → R be given by:

F (x) =
m∑

i=0

ωi(fi(x)).

Then the following conditions are equivalent:
(a) F (x) ≤ 0 for x ∈ P ,
(b) F (x) ≤ 0 for x ∈ PointsP ({fi}m

i=1, [a, b]N ).

Proof. Implication a) ⇒ b) is obvious. We show the opposite one.
Assumptions of Proposition 2.2 are met. To check condition a), it is

sufficient to show that the maximum of the function F (x) is attained on

PointsP ({fi}m
i=1, [a, b]N ).

Let {Ui}l
i=1 for l ∈ N be the collection of connected components of the set P \

supp(LinesP ({fi}m
i=1, [a, b]N )). Thank to Proposition 2.2 a) each element of

{Ui}l
i=1 is convex polygon. By Proposition 2.2 c) we obtain that F |Ui

∈ AffUi

for all i ∈ {1, . . . , l}. Thanks to Remark 2.3 we get that the maximum of the
function F is attained on the one of the vertices of U i for some i ∈ {1, . . . , l}.
To finish this proof it is enough to notice that vertices of U i for i ∈ {1, . . . , l}
are included in PointsP ({fi}m

i=1, [a, b]N ), see Proposition 2.2 b). �

As a corollary from the above theorem we get the following result.

Theorem 2.5. Let α ∈ AffN ([−1, 1]), N ∈ N and let ω = α ◦ d. Then the
function α satisfies the Condition T if and only if

ω

(
x + y

2

)
−ω(x) + ω(y)

2
+

ω(x + y)− ω(2x)+ω(2y)
2

2
+

ω(2x− 2y)
4

≤ ω

(
x− y

2

)
(2.1)

for (x, y) ∈
( Z

4N × Z
4N

)
∩ ([−1, 1]× [0, 1]) ∩B where

B := conv{
(

0,
1
2

)
,

(
1
2
,
1
2

)
, (0, 1)},

and

ω

(
x + y

2

)
− ω(x) + ω(y)

2
+

1
2
ω(x− y) ≤ ω

(
x− y

2

)
(2.2)

for (x, y) ∈
( Z

2N × Z
2N

)
∩ ([−1, 1]× [0, 1]) ∩D where

D := conv{(0, 0), (
1
2
,
1
2
), (0, 1),

(
−1

2
,
1
2

)
} \B.

Proof. The implication Condition T ⇒ inequality (5, 6) is obvious. We show
the opposite implication.

To check the Condition T we need to verify two inequalities (5) and (6)
in two sets D and B. Set B is itself a convex polygon and D is union of convex
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polygons D1 : = conv{
(
− 1

2 , 1
2

)
,
(
0, 1

2

)
, (0, 1)}, D2 : = conv{

(
− 1

2 , 1
2

)
, (0, 0) , (0, 1

2 )},
D3 : = conv{(0, 0) ,

(
1
2 , 1

2

)
, (0, 1

2 )}.

0 0.5-0.5

(0.5,0.5)(-0.5,0.5)

(0,1)

D1 B

D2 D3

We have to show that (2.1) holds for all (x, y) ∈ B and that (2.2) holds
for all (x, y) ∈ D1, (x, y) ∈ D2 (x, y) ∈ D3. We show that (2.1) is valid for
all (x, y) ∈ B, the other inequalities can be shown analogically.

Thanks to Theorem 2.4 we know that to check the inequality (1.2) from
Condition T it is enough to verify

ω

(
x + y

2

)
−ω(x) + ω(y)

2
+

ω(x + y)− ω(2x)+ω(2y)
2

2
+

ω(2x− 2y)
4

−ω

(
x− y

2

)
≤ 0

(2.3)
for (x, y) ∈ PointsB({fi}8i=1, [−1, 1]N ). Let

f1(x, y) = x+y
2 , ω1(x) = ω(x), f2(x, y) = x, ω2(x) = − 1

2ω(x),
f3(x, y) = y, ω3(x) = − 1

2ω(x), f4(x, y) = x + y, ω4(x) = 1
2ω(x),

f5(x, y) = 2x, ω5(x) = − 1
4ω(x), f6(x, y) = 2y, ω6(x) = − 1

4ω(x),
f7(x, y) = 2x− 2y, ω7(x) = 1

4ω(x), f8(x, y) = x−y
2 , ω8(x) = −ω(x).

Then inequality (2.3) can be rewritten as
8∑

i=1

ωi(fi(x, y)) ≤ 0.

Thanks to equality

PointsB({fi}8i=1, [−1, 1]N ) =
8⋃

i,j=1,i 6=j

PointsB({fi, fj}, [−1, 1]N )

and the fact that ∂B ⊂ LinesB({fi}8i=1, [−1, 1]N ), to calculate PointsB({fi}8i=1, [−1, 1]N )
it is enough to solve for i, j ∈ {1, . . . , 8} and a, b ∈ [−1, 1]N the equations{

fi(x, y) = a,
fj(x, y) = b,
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and take the union of points which are unique solutions of above equations.
Thus our aim is to show that all unique solutions of the equations{

Ax + By = a,
Cx + Dy = b,

(2.4)

for (A,B), (C,D) ∈ {( 1
2 , 1

2 ), (1, 0), (0, 1), (1, 1), (0, 2), (2, 0), (2,−2), (1,−1)}
and a, b ∈ [−1, 1]N , lie in the set

Z
4N

× Z
4N

.

Without loss of generality we can consider (A,B), (C,D) ∈ {(2,−2), (0, 2), (2, 0), (1, 1)},
because for given r1, r2 ∈ R and n ∈ Z, n 6= 0 we have

{(x, y) : r1x + r2y ∈ Z} ⊂ {(x, y) : nr1x + nr2y ∈ Z}).
We consider only coefficients A,B, C, D such that (2.4) has unique solution;
so AD −BC 6= 0. Then

x =
Ab− Ca

AD −BC
, y =

aD − bB

AD −BC
.

Since AD − BC is an element of {−4,−2,−1, 1, 2, 4} and a = k
N , b = l

N

(for some l, k ∈ {1, . . . , N}) we obtain that PointsB({fi}8i=1, [−1, 1]N ) ⊂
Z

4N × Z
4N . �

We can see that to verify Condition T it is enough to check finite number
of inequalities. In order to do this, a computer program will be used.

3. Strict numerical verification

3.1. Interval arithmetic and reduction of similar terms

In this chapter it will be shown how to strictly verify Condition T using a
computer assisted approach.

One of the greatest problems concerning strict numerical calculations is
caused by the rounding errors connected with the computer representation
of real numbers. Interval arithmetic helps to deal with them, unfortunately
it also causes some complications.

For the convenience of the reader we give a short description of the
interval arithmetic. Interval arithmetic [4, chapter 2.5.3] is based on the op-
erations on segments. Let P be a finite subset of R consisting of numbers
which we interpret as representable. Let P = P ∪ {−∞,+∞}. For x ∈ R let

xP : = sup{a ∈ P : a ≤ x} and xP : = inf{a ∈ P : a ≥ x}.
Interval approximation of a real numbers we define by

[x]P : = [xP , xP ]. (3.1)

Directly from definition we have x ∈ [x]P , but for x /∈ P we have {x}  [x]P .
It is obvious that the use of interval arithmetic does not usually give accurate
results.
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The collection of representable intervals we denote as

IP : = {[x, y] : x, y ∈ P}.

Example. Let P = {−1, 0, 1, 2}, then [−6]P = [−∞,−1], [0.5]P = [0, 1].

Example. If P = {x ∈ R : 103x ∈ Z} ∩ [−2, 2], then [
√

2]P = [1.414, 1.415].

In the collection of segments some operations can be defined.

Definition 3.1. Let f : Rn ⇀ R where ”⇀” means that f is a partial map.
We say that the operation fP : IP → IP is a P–extension of f : Rn ⇀ R iff

f(x1, . . . , xn) ∈ fP([x1]P , . . . , [xn]P) for (x1, . . . , xn) ∈ domf.

From now on by fP we denote extension of f : Rn → R for n ∈ N.

Example. Let P be given and let IP be the set of intervals. Operation
+P : IP × IP → IP defined by the formula

[x]P +P [y]P : = [(x + y)P , (x + y)P ]

is a well-defined P–extension of +: R× R→ R.

Let P be given and let +P , ·P be P–extantion of standard operation on
real numbers. Instead of writing +P , ·P for the shortness of notation we will
write +, ·. Let n ∈ N and ω : R ⇀ R be given. Let R be a finite subset of R.
Interval arithmetic will be used to obtain estimation of the value of:

n∑
i=1

kiω(ri) (3.2)

for ri ∈ R and ki ∈ Z.
By direct use of interval arthmetic we get the following approximation

of (3.2):
n∑

i=1

kiω(ri) ∈
n∑

i=1

[ki]P · ωP([ri]P). (3.3)

This approach, as will be shown in the next example, is insufficient for our
needs.

Example. Let r = 1
3 , P = {x ∈ R : 103x ∈ Z} ∩ [−2, 2]. Then [r0]P =

[
1
3

]
P =

[0.333, 0.334] and R = { 1
3}. Let ω : R→ R be such that ω(x) = x and k1 = 1,

k2 = −1, r1 = r2 = r. By (3.3) we obtain

r1 − r2 ∈ [r1]P − [r2]P =
[
1
3

]
P
−
[
1
3

]
P

=

[0.333, 0.334]− [0.333, 0.334] = [−0.001, 0.001] 6= [0]P .

Consequently [r1]P − [r2]P is not always zero.
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To obtain better approximation of (3.2) reduction of similar terms can
be used. By simple change of summation in (3.2) we get

n∑
i=1

kiω(ri) =
∑
r∈R

( ∑
i : ri=r

ki

)
ω(r) ∈

∑
r∈R

( ∑
i : ri=r

[ki]P

)
ωP(r). (3.4)

As we can see in the following examples, by this simple operation we obtain
better estimation. In the next example we assume that {−1, 0, 1} ⊂ P.

Example. Let R = { 1
3 , 1

4 , 1
6}, P = {x ∈ R : 103x ∈ Z} ∩ [−2, 2] and ω(x) = x.

We put

r1 = 1
3 , k1 = 1, r2 = 1

4 , k2 = −1,
r3 = 1

6 , k3 = 1, r4 = 1
3 , k4 = −1,

r5 = 1
4 , k5 = 1, r6 = 1

6 , k6 = 1.

By (3.3) we get

n∑
i=1

kiω(ri) =
1
3
− 1

4
+

1
6
− 1

3
+

1
4

+
1
6
∈

∈
[
1
3

]
P
−
[
1
4

]
P

+
[
1
6

]
P
−
[
1
3

]
P

+
[
1
4

]
P

+
[
1
6

]
P

=

=
[
1
3

]
P
−
[
1
3

]
P

+ [0.25]P − [0.25]P +
[
1
6

]
P

+
[
1
6

]
P

=

=
[
1
3

]
P
−
[
1
3

]
P

+ [2]P ·
[
1
6

]
P

=

= [−0.001, 0.001]P + [2]P ·
[
1
6

]
P

.

while the (3.4) gives

n∑
i=1

kiω(ri) =
1
3
− 1

4
+

1
6
− 1

3
+

1
4

+
1
6

=

= (1− 1)
1
3

+ (1− 1)
1
4

+ (1 + 1)
1
6
∈
∑
r∈P

( ∑
i : ri=r

[ki]P

)
ωP(r) = [2]P ·

[
1
6

]
P

.

Example. Let us come back to situation from Example 3.1. By use of (3.4)
we get

1
3
− 1

3
∈ ([1]P − [1]P) ·

[
1
3

]
P

= [0]P ·
[
1
3

]
P

= [0]P .
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3.2. Algorithm

To implement the algorithm the boost interval library [2] and map standard
library from C++ will be used(map standard library is used to reduce similar
terms).

Let N ∈ N. The algorithm will check the Condition T for f ∈ AffN ([−1, 1]).
Thanks to Theorem 2.5 it is enough to show inequalities (2.1) and (2.2) from
assertion of this theorem. We present algorithm only for inequality (2.2) (in-
equality (2.1) can be verified analogically). For the convenience of the reader
we recall inequality (2.2). Let ω = f ◦ d and let

Gω(x, y) := ω

(
x + y

2

)
− ω(x) + ω(y)

2
+

1
2
ω(x− y)− ω

(
x− y

2

)
.

Our aim is to show that

2Gω(x, y) ≤ 0 for (x, y) ∈
(
Z

2N
× Z

2N

)
∩ ([−1, 1]× [0, 1]) ∩D,

where

D = conv{(0, 0), (
1
2
,
1
2
), (0, 1),

(
−1

2
,
1
2

)
} \ conv{

(
0,

1
2

)
,

(
1
2
,
1
2

)
, (0, 1)}.

We consider the inequality 2Gω(x, y) ≤ 0 instead of Gω(x, y) ≤ 0 since the
first has integer coefficients, and consequently we do not have errors caused
by division.

The algorithm consists of two parts. First, we reduce similar terms in
2Gω. Then we calculate segments containing strict values of Gω by using
interval arithmetic. At the end we verify the above inequality. The source
code is available on website [1].

for i j from 0 to 2*N do
if ( i/2*N , j/2*N ) in D
reduce_similar_terms( 2G ( i/2*N , j/2*N ) )
if upper_bound of interval( 2G ) > 0 then
print( "The Condition was not verified" )
break

print( "The Condition was verified" )

3.3. Verification for affine approximation of the function αp(x) = xp

In this chapter we show similar result to that from [9] but for continuous
piecewise linear approximations of function αp = xp for p ∈ (0, 1).

Definition 3.2. For continuous function α : [0, 1] → R let [α]N ∈ AffN ([0, 1])
be the unique function satisfying

[α]N |[ k
N , k+1

n ] is affine for k = 0, . . . , N.

Example. Let α 1
2
(x) = x

1
2 . On the picture we can see comparison of function

α 1
2

and [α 1
2
]N for N = 10 and N = 100.
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Figure 1. Above plots show graphs of α 1
2

and [α 1
2
]N .

Observe that the functions α and [α]N are close, for N sufficiently large.
Thanks to Theorem 2.5 and above algorithm we can verify optimality of
function [αp]N , where as we recall αp(r) = rp for p ∈ [0, 1].

Example. We show that for N ∈ N we have

‖α 1
2
− [α 1

2
]N‖sup =

1
4
√

N
. (3.5)

To prove that, we consider the interval [k/N, (k + 1)/N ]. Clearly

‖α 1
2
|[k/N,(k+1)/N ] − [α 1

2
]N |[k/N,(k+1)/N ]‖sup = sup

x∈[k/N,(k+1)/N ]

|qk(x)|,

where

qk(x) :=
√

x−
√

N√
k +

√
k + 1

x−
√

k
√

k + 1√
N(
√

k +
√

k + 1)
To find the desired extreme let’s calculate the derivative of the function qk.
Comparing it to zero and solving the equation 1

2
√

x
−

√
N√

k+
√

k+1
= 0, we get

that qk has the maximum at xk = 1
4

(
√

k+
√

k+1)2

N , which equals

qk(xk) =
(
√

k −
√

k + 1)2

4
√

N(
√

k +
√

k + 1)
.
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Since the function x → (
√

x−
√

x+1)2

(
√

x+
√

x+1)
is decreasing for x ∈ [0,∞), to find

‖α− [α]N‖ we take k = 0 and get q0( 1
4N ) = 1

2

√
1
N − 1

4
√

N
, which proves (3.5).

Thanks to our algorithm [1] we can get optimality of [αp]1000 for ev-
ery p ∈ [0.1, 0.9]. To do so we verify that inequalities (2.1) and (2.2) from
Theorem 2.5 are valid for every p ∈ P , where P ∈ [0.1, 0.9]1000 is arbitrary:

Corollary 3.3. Let N = 1000 and let p ∈ [0.1, 0.9] be arbitrary. Then the
estimation (1.4) is optimal in the class of [αp]N -midconvex functions.
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