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Abstract

We present a simultaneous generalization of the well-known Karhunen-Loéve (PCA) and k-means algorithms. The basic idea lies
in approximating the data with k affine subspaces of a given dimension n. In the case n = 0 we obtain the classical k-means, while
for k = 1 we obtain PCA algorithm. Moreover, by our approach we can obtain clusters with different dimensionality which describe
the structure of date.

We show that for some data exploration problems this method gives better result then either of the classical approaches.
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1. Introduction

Our general problem concerns splitting of a given data-set
W into clusters with respect to their intrinsic dimensionality.
The motivation to create such an algorithm is a desire to cluster
a high dimensional data. More precisely, we present possible
approach to dealing with the curse of dimensionality [1, 2, 3] by
finding affine subspaces S 1, . . . , S k such that every element of
W belongs (with certain error) to one of the spaces S 1, . . . , S k.
To explain it graphically, let us consider following example.
Figure 1(a) represents three lines in the plane, while Figure 1(b)
a circle and an orthogonal line in the space. Our goal is to
construct an algorithm that will split them into three lines and
into a line and a circle.

In recent years various type of algorithms, which try to
deal with this problem, were presented. The most important
are Subspace Clustering, Pattern-Based Clustering, and Corre-
lation Clustering [4, 5]. All of them try to simultaneously deal
with two important problems. The first is the search for the
relevant subspaces and the second focuses on the detection of
the final clusters. The second group of algorithms, which try to
solve the problem of the curse of dimensionality, are kernel and
spectral methods [6, 7, 8, 9, 10]. This algorithms, by use of the
spectrum of the similarity matrix1 of the data, try to reduce the
dimensionality of clusters.

Email addresses: krzysztof.misztal@ii.uj.edu.pl (K. Misztal),
przemyslaw.spurek@ii.uj.edu.pl (P. Spurek),
jacek.tabor@ii.uj.edu.pl (J. Tabor)

1For given a dataset W, the similarity matrix may be defined as a matrix S ,
where S i j represents a measure of the similarity between points of W

(a)

(b)

Figure 1: Our goal is to create algorithm which will interpret Fig. 1(a) as three
groups of one-dimensional points and Fig. 1(b) as two groups of one- and two-
dimensional points.

In this paper we present the method of clustering which is
able to extract groups of points which represent affine subspaces
of different dimension. We have constructed a simultaneous
generalization of the k-means method [11] and the Karhunen-
Loéve transform (called also PCA – Principle Component Anal-
ysis) [12] – we call it (ω, k)-means. Instead of finding k cen-
ters which best represent the data as in the classical k-means,
we find k nearest subspaces. Thanks to weight parameter ω =

(ω1, . . . , ωn) we are able to restrict our algorithm to some class
of affine subspaces (the role of ω, is described in next sections,
see Remark 2.5, Example 5.2, Example 5.3). In analogy to
the case of k-means, we obtain a version of the Voronoi dia-
gram (see next section). In the simplest form our algorithm
needs the number of clusters k and the weight parameter ω (for
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(a) (b)

Figure 2: Example of clustering: Fig. 2(a) for k = 2 clusters which are 1–
dimensional; Fig. 2(b) for classical k-means with k = 2 clusters.

Figure 3: Clustering with (ω, k)-means for ω = (0, 0, 1).

ω = (1, 0, . . . , 0) we obtain the k-means while for k = 1 we
obtain the PCA).

To present our method, consider the points grouped along
two parallel lines – Figure 2 shows the result of our program
on the clustering of this set. Another example is given by the
dataset consisting of two groups of points along circle and in-
terval, see Figure 3. As an outcome of our algorithm, we obtain
two clusters. The first contains the points group along the inter-
nal, which represents one dimensional data (in compression we
need only one parameter for each point) and the second one,
which represents two dimensional data (in this time we need
two parameters to describe each point). Further discussion of
this example we present in Section 5.

The approach can be clearly used in most standard applica-
tions of either the k-means or the Karhunen-Loéve transform.
In particular, (since it is a generalization of the Karhunen-Loéve
transform [13]) one of the possible natural applications of our
method lies in the image compression. Figure 4 presents error2

in image reconstruction of a classical Lena photo (508 × 508
pixels) as a function of k. Observe that just by modifying the
number of clusters from 1 to 3, which makes the minimal in-
crease in the necessary memory, we decrease twice the level of
error in the compression.

2By error in image comparison we understand pixel by pixel image compare
using standard Euclidean norm.

Figure 4: Error in image decompression as a function of number of clusters k
for n = 5.

Except for image compression our method can by applied
in various situations where the classical k-means or PCA where
used, for example in:

• data mining – we can detect important coordinates and
subsets with similar properties;

• clustering – our modification of k-means can detect dif-
ferent, high dimensional relation in data;

• image compression and image segmentation;

• pattern recognition – thanks to detection of relation in
data we can use it to assign data to defined before classes.

2. Generalized Voronoi Diagram

The Voronoi diagram is one of the most useful data struc-
tures in computational geometry, with applications in many ar-
eas of science [14]. For the convenience of the reader and to
establish the notation we shortly describe the classical version
of the Voronoi diagram (for more details see [15]). For N ∈ N
consider RN with the standard Euclidean distance and let S be
a finite set of RN . For p, q ∈ S such, that p , q, let

B(p, q) = {z ∈ RN : ‖p − z‖ = ‖q − z‖}, (1)

D(p, q) = {z ∈ RN : ‖p − z‖ < ‖q − z‖}. (2)

Hyperplane B(p, q) divides RN into two sets, one containing
points which are closer to point p then q (D(p, q)), and the sec-
ond one containing points which are closer to point q then p
(D(q, p)) – see Figure 5(a).

Definition 2.1 ([15]). The set

D(p, S ) :=
⋂

q∈S : q,p

D(p, q)

of all points that are closer to p than to any other element of S
is called the (open) Voronoi region of p with respect to S .
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Figure 5: Graphical presentation of B(p, q), D(p, q) and D(p, S ) in R2.

For N = 2 set D(p, S ) is the interior of a convex, possibly
unbounded polygon (Figure 5(b)).

The points on the contour of D(p, S ) are those that have
more than one nearest neighbour in S , one of which is p.

Definition 2.2 ([15]). The union

V(S ) :=
⋃

∂D(p, S )

of all region boundaries is called the Voronoi diagram of S .

The common boundary of two Voronoi regions is a Voronoi
edge. Two edges meet at a Voronoi vertex such a point has three
or more nearest neighbours in the set S .

Now we proceed to the description of our modification of
the Voronoi diagram. We divide the space RN with respect to
affine subspaces of RN .

Definition 2.3. For n ≤ N let

En(RN) := {(v0, . . . , vn) ∈ (RN)n+1 such that

vi, v j are orthonormal for i, j > 0, i , j}.

Thus v0 denotes a center of affine space we consider, while
v1, . . . , vn is the orthonormal base of its ”vector part”. From
the geometrical point of view the element v = (v0, v1, . . . , vn) ∈
En(RN) represents the affine space

v0 + lin(v1, . . . , vn) = aff(v0, v1, . . . , vn)

or more precisely coordinate system of the affine subspace. We
modify equations (1) and (2), by using distance between a point
and affine subspace generated by linear independence vector
instead of distance between points.

Definition 2.4. Let n < N and let v ∈ En(RN),ω = (ω0, . . . , ωn) ∈

[0, 1]n+1 such that
n∑

j=0
ω j = 1 be given. For x ∈ RN let

DISTω(x; v) :=

 n∑
j=0

ω j dist(x; aff(v0, . . . , v j))2

1/2

, (3)

where dist(x; V) denotes the distance of the point x from the
space V.

In formula 3, ω = (ω0, . . . , ωn) is interpreted as vector of
weights, where ωk denotes the weight of the affine subspace of
dimension k.

Remark 2.5. It is easy to notice, that DIST has following prop-
erties:

• for v ∈ En(RN) and ω = (0, . . . , 0, 1) ∈ [0, 1]n+1 we ob-
tain that DISTω(x; v) is a distance between the point x
and affine space aff(v);

• if v0 = 0 and ω = (0, . . . , 0, 1) then DISTω is a distance
between point and linear space generated by (v1, . . . , vn);

• if ω = (1, 0, . . . , 0) then DISTω is the classical distance
between x and v0:

DISTω(x; v) = ‖x − v0‖.

• if ω =

0, . . . , 0︸  ︷︷  ︸
k

,
1

l − k
, . . . ,

1
l − k︸             ︷︷             ︸

k−l

, 0, . . . , 0

 for k < l, then

DISTω describes the mean distance between x and sub-
spaces of dimension from k to l.

Remark 2.6. Formula 3 can be computed as follows

(DISTω(x; v))2 =

n∑
j=0

ω j

‖x − v0‖
2 −

j∑
i=1

〈x − v0; vi〉
2


=

n∑
j=0

ω j‖x − v0‖
2 −

n∑
j=0

ω j

j∑
i=1

〈x − v0; vi〉
2.

To optimize calculations we define

v̄1 = 〈x − v0; v1〉
2,

v̄ j = v̄ j−1 + 〈x − v0; v j〉
2,

and since
∑
ω j = 1 thus we simplify our computation to

(DISTω(x; v))2 =‖x − v0‖
2 −

n∑
j=0

ω jv̄ j.

Now we are ready to define our generalization of the Voronoi
diagram. Let S be a finite subset of En(RN) and ω ∈ [0, 1]n+1,∑
ω j = 1, where n ≤ N. For p, q ∈ S such, that p , q, let

Bω(p, q) := {z ∈ RN : DISTω(z; p) = DISTω(z; q)},

Dω(p, q) := {z ∈ RN : DISTω(z; p) < DISTω(z; q)}.

The set Bω(p, q) divides the space RN into two sets, first con-
taining points which are closer to p then to q (Dω(p, q)) and
second contain points which are closer to q then p (Dω(q, p)).

Definition 2.7. Let n ∈ N, n < N be fixed. Let S be finite subset
of En(RN) and ω ∈ [0, 1]n+1,

∑n
j=0 ω j = 1 be given. For p ∈ S

the set
Dω(p, S ) :=

⋂
q∈S : q,p

Dω(p, q)

of all points that are closer to p than to any other element of S
is called the (open) generalized Voronoi region of p with respect
to S .

4



(a) two lines (b) three lines (c) four lines

Figure 6: Generalized Voronoi diagram for ω = (0, 1) and two, three and four
lines on plane.

(a) (b) (c)

(d) (e)

Figure 7: Generalized Voronoi diagram for clustering of 3 clusters for different
weight vectors Fig. 7(a), ω = (1, 0); Fig. 7(b), ω = ( 3

4 ,
1
4 ); Fig. 7(c), ω =

( 1
2 ,

1
2 ); Fig. 7(d), ω = ( 1

4 ,
3
4 ); Fig. 7(e), ω = (0, 1).

Figure 8: Generalized Voronoi diagram for ω = (0, 1) and two lines.

Applying this definition we obtain a new type of Voronoi
diagram. As we can see in Figure 6, if ω = (0, 1) we divide the
plane into (not necessarily convex) polygons (similar situation
to the classical Voronoi diagram). Figure 7 presents a general-
ized diagram on the plane for different weights changing from
ω = (1, 0) to ω = (0, 1). In general we obtain that the boundary
sets usually are not polygons but zeros of quadratic polynomi-
als. The same happens in R3 even for ω = (0, 1) see the Figure
8, where we show points with equal distance from two lines.

3. Generalization of the k-means method

Clustering is a classical problem of the division of the set
S ⊂ RN into separate clusters, or in other words, into sets show-
ing given type of behaviour.

3.1. k-means
One of the most popular and basic method of clustering is

the k-means algorithm. By this approach we want to divide S
into k clusters S 1, . . . , S k with minimal energy. For convenience
of the reader and to establish the notation we shortly present the
k-means algorithm.

For a cluster S and r ∈ RN we define

E(S , r) :=
∑
s∈S

‖s − r‖2.

The function E(S , r) is often interpreted as an energy. We say
that the point r best ”describe” the set S if the energy is mini-
mal, more precisely, if

E(S , r) = inf
r∈RN
{E(S , r)}.

It is easy to show that barycentre (mean) of S minimizes the
function E(S , ·) (for more information see [16, 17]). The above
consideration can be precisely formulated as follows:

Theorem 3.1 (k-means). Let S be a finite subset of RN . We
have

E(S , µ(S )) = inf
r∈RN
{E(S , r)}

where µ(S ) := 1
cardS

∑
s∈S s denotes the barycentre of S .

Thus in the k-means the goal is to find such clustering S =

S 1 ∪ . . . ∪ S k that the function

E(S 1, . . . , S k) =

k∑
j=1

E(S j, µ(S j))

is minimal. k-means algorithm for the set S after S. Lloyd [18,
19, 20] proceeds as follows:

stop condition
choose ε > 0

initial conditions
choose randomly points {s1, . . . , sk} ⊂ S
obtain first clustering (S 1, . . . , S k) by matching each of
the point s ∈ S to the cluster S j specified by s j such
that ‖s − s j‖

2 is minimal
repeat

let E = E(S 1, . . . , S k)
compute new points s1, . . . , sk which best ”describe”
the clusters (s j = µ(S j) for j = 1, . . . , k)
obtain new clustering (S 1, . . . , S k) by adding each of
the points s ∈ S to the cluster such that ‖s − s j‖

2 is
minimal

until E − E(S 1, . . . , S k) < ε

Lloyd’s method guarantees a decrease in each iteration but
does not guarantee that the result will be optimal.
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3.2. (ω, k)-means
In this chapter we consider generalization of k-means simi-

lar to that from the previous section concerning the Voronoi di-
agram. Instead of looking for the points which best ”describe”
clusters we seek n dimensional subspaces of RN .

Let S ⊂ RN and ω ∈ [0, 1]n+1,
∑
ω j = 1 be fixed. For

v ∈ En(RN) let

Eω(S , v) :=
∑
s∈S

DIST2
ω(s, v).

We interpret the function Eω(S , v) as an energy of the set S
respectively to the subspace generated by v. If the energy is
zero, the set S is subset of affine space generated by v. We say
that v best ”describes” the set S if the energy is minimal, more
precisely if

Eω(S , v) = inf
v∈En(RN )

{Eω(S , v)}.

To obtain an optimal base we use a classical Karhunen-Loev́e
transform (called also Principal Component Analysis, shortly
PCA), see [12]. The basic idea behind the PCA is to find the
coordinate system in which the first few coordinates give us a
”largest” possible information about our data.

Theorem 3.2 (PCA). Let S = {s1, . . . , sm} be a finite subset of
RN . Let

M(S ) := (v0, . . . , vN) ∈ EN(RN)

be such that

• v0 = µ(S );

• v1, . . . , vN are pairwise orthogonal eigenvectors of [s1 −

v0, . . . , sm − v0] · [s1 − v0, . . . , sm − v0]T arranged in de-
scending order (according to the eigenvalues)3.

For every n < N and ω ∈ [0, 1]n+1 we have

Eω(S ,Mk(S )) = inf
v∈En(RN )

{Eω(S , v)},

whereMk(S ) := (v0, . . . , vk).

Thus given ω ∈ [0, 1]n+1,
∑
ω j = 1, in (w, k)-means our

goal is to find such clustering S = S 1∪ . . .∪S k that the function

Eω(S 1, . . . , S k) :=
k∑

j=1

Eω(S j,Mn(S )) (4)

is minimal. Consequently (ω, k)-means algorithm can be de-
scribed as follows:

stop condition
choose ε > 0

initial conditions
choose randomly points {s1, . . . , sk} ⊂ S
obtain first clustering (S 1, . . . , S k) by matching each of
the points s ∈ S to the cluster such that ‖s − s j‖

2 is

3[s1 − v0, . . . , sm − v0] is a matrix with columns s j − v0, for j = 1, . . . ,m.

(a) local minimum (b) global minimum

Figure 9: Circle clustering in R2 for 4 clusters with ω = (0, 1). (ω, k)-means
method strongly dependents on initial conditions.

minimal
repeat

let E = Eω(S 1, . . . , S k)
compute vectors v1, . . . , vk, which best ”describe” the
clusters, by the PCA method (v j =Mn(S j))
obtain new clustering (S 1, . . . , S k) by adding each of
the point s ∈ S to the cluster such that DISTω(s, v j)
is minimal

until E − Eω(S 1, . . . , S k) < ε

As is the case in the classical k-means, our algorithm guar-
antees a decrease in each iteration but does not guarantee that
the result will be optimal (cf. Example 3.3).

Example 3.3. As already mentioned in Section 2, the k-means
do not find a global minimum and strongly depends on initial
selection of clusters. In our case, this effect can be even more
visible. Consider the case of circle C in R2 with 4 clusters
and ω = (0, 1). The picture, see Figure 9(a), shows clustering
obtained by use (ω, k)-means algorithm. Of course it is a local
minimum of EC

ω, however as we see at Figure 9(b) it is far from
being the global minimum.

Initial cluster selection in our algorithm is the same as in
k-mean algorithm, but it is possible to consider others ways:

• k-means++ algorithm [21];

• starting from a given division (not from random distribu-
tion);

• repeating the initial choice of clusters many times.

Each of above approaches usually solves the problem described
in Example 3.3.

Remark 3.4. Let S ⊂ RN and v ∈ En(RN). It is easy to notice
that the above method has following properties:

• for ω = (1, 0, . . . , 0) we obtain the classical k-means,

• for n = 1 we get Karhunen-Loéve transform.

As an algorithm’s outcome we get:

• division of the data into clusters {S 1, . . . , S k};
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(a) (b) (c)

(d) (e)

Figure 10: (ω, k)-means method for clustering into 4 clusters of set
{ 0

1000 ,
1

1000 , . . . ,
1000
1000 } × {

0
1000 ,

1
1000 , . . . ,

1000
1000 } for different weight vectors: Fig.

7(e), ω = (1, 0); Fig. 7(d), ω = ( 3
4 ,

1
4 ); Fig. 7(c), ω = ( 1

2 ,
1
2 ); Fig. 7(b),

ω = ( 1
4 ,

3
4 ); Fig. 7(a), ω = (0, 1).

(a) (b)

Figure 11: Clustering with: Fig. 11(a) – k-means; Fig. 11(b) – (ω, k)-means.

• for each cluster an affine space of dimension n obtained
by the Karhunen-Loéve method which best represents the
given cluster.

Example 3.5. If we apply our algorithm for regular plane sub-
set (ex. square) we obtain generalized Voronoi diagram (cf.
Fig. 7) – Figure 10 present clustering for different weight vec-
tor changing from ω = (1, 0) to ω = (0, 1).

4. Applications

4.1. Clustering

Clustering, by (ω, k)-means algorithm, gives a better de-
scription of the internal geometry of a set, in particular it found
a reasonable splitting into connected components of consider
the points grouped along two parallel sections (see Figure 2).
Similar effect we can see in next example, when we consider
the points grouped along circle and interval, see Figure 11.

Concluding, in many cases the (ω, k)-means method can be
very useful in seeking n-dimensional (connected) components
of given data sets.
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(b)

Figure 12: Linear component of the data structure. Fig. 12(a) – decay curve
(original data). Fig. 12(b) – outcome from (ω, k)-means algorithm for k = 2,
ω = (0, 1) we extract two linear components in data (black dots match clus-
ters centers with the corresponding lines describing those clusters, vertical line
separate sound and background noise – after 4.3 s).

4.2. Analysis of Functions
In this subsection we consider real data from acoustics. Acous-

tical engineers [22] study reverberation which is observed when
a sound is produced in an enclosed space causing a large num-
ber of echoes to build up and then slowly decay as the sound is
absorbed by the walls and the air. Reverberation time is crucial
for describing the acoustic quality of a room or space. It is the
most important parameter for describing sound levels, speech
intelligibility and the perception of music and is used to cor-
rect or normalize building acoustics and sound power measure-
ments.

We analyse the decay curve (see Figure 12(a)) which presents
measurement of sound level in time and describe way in which
sound impulse vanishing into background noise. Based on this
we want to recover reverberation time. In particular we know
that we have two linear component: first connected with sound
absorption by the space and second – background noise. To use
statistical analysis, we have to extract both of them, so we fix
k = 2 (the number of cluster). Moreover, we are looking for
two dimensional cluster so we choose ω = (0, 1) (see Remark
2.5 and Figure 12(b)).

Results obtained using our algorithm are comparable with

7



(a) k-means: k = 5, n = 0 (b) PCA: k = 1, n = 1

(c) (ω, k)-means: k = 5, n = 1 (d) (ω, k)-means: k = 5, n = 5

Figure 13: Compressed version of Lena picture. Subimage compare: Fig. 13(a)
– classical k-means; Fig. 13(b) – Karhunen-Loéve Transform; Fig. 13(c) and
Fig. 13(d) – (ω, k)-means algorithm.

those obtained by classical methods and give more opportuni-
ties for further research.

4.3. Image compression

Our algorithm can be used to compress image. First, we
interpret photo as a matrix. We do this by dividing it into 8
by 8 pixels, where each pixel is described (in RGB) by using
3 parameters. Each of the pieces is presented as a vector from
R192. By this operation we obtain dataset from R192.

Taking into consideration the classical Lena picture (508 ×
508 pixels), let us present its compressed version with the use
of k-means method (Figure 13(a), k = 5, n = 0), Karhunen-
Loéve Transform (Figure 13(b), k = 1, n = 1) and (ω, k)-means
algorithm (Figures 13(c) and 13(d)). As we can see the algo-
rithm allows to reconstruct with great accuracy compressed im-
ages while reducing the amount of needed information to save
(in our example we remember ex. only 5 coordinates in 192-
dimensional space).

Table 4.3 presents error in image reconstruction for Lena
picture. We run (ω, k)-means algorithm 16 times and each run
improve clustering quality 50 times.

5. Memory compression

In this section we present a method of compression based
on our algorithm. Let k (the number of clusters) and ω (weight
parameter) be fixed. As a result of the (ω, k)-means algorithm
for the dataset S we obtain k clusters {S 1, . . . , S k} and k coordi-
nate systems {v1, . . . , vk} ⊂ En(RN).

n
k 0 1 2 3 4 5
1 40328 19499 16358 12452 10160 8149
2 27502 17193 13031 10382 9082 7913
3 23261 15437 11631 9612 8350 7358
4 20990 14454 11004 9192 7922 7095
5 20150 13740 10602 8867 7745 6814

Table 1: Error in image decompression for certain k and n.

For v ∈ En(RN) and n0 ≤ n we define sub–base of dimen-
sion n0 by

vn0 = (v0, . . . , vn0 ).

We choose n1, . . . , nk ∈ {1, . . . ,N} and we compress the data
of S by replacing each element s ∈ S i by its orthogonal projec-
tion on a suitable subspace spanned on vni .

Let S 1, . . . , S k and {v1, . . . , vk} ⊂ En(RN) be a result of the
(ω, k)-mean algorithm. For parameters n1, . . . , nk we consider
the compression error

Comp err(n1, . . . , nk) :=

 k∑
i=1

∑
s∈S i

dist2(s; vi
ni

)


1/2

.

Let ε > 0 be given. The procedure of determining n1, . . . , nk

of clusters, such that

Comp err(n1, . . . , nk) < ε

can be formulated as follows:

1. Apply the (ω, k)–means algorithm with arbitrary given k
(in general this parameter should be chosen respectively
to data structure) and ω (which describe possible dimen-
sions of clusters.

2. In each cluster S 1, . . . , S k determinate eigenvalue of co-
variance matrix

λ
j
1, . . . , λ

j
N for j = 1, . . . , k.

3. Put
Λ :=

{
λl1

1 , . . . , λ
lkN
kN

}
.

4. Sort the eigenvalues increasingly

Λ(·) =
{
λ

l(1)

(1), . . . , λ
l(kn)

(kn)

}
.

5. Let

n̄ := sup

n :
n∑

i=1

λ
l(i)
(i) · ml(i) ≤ ε

 ,
where mi = card(S i), for i = {1, . . . , k}.

6. We define n1, . . . , nk by

n j = card
{
λ

l(i)
(i) : such that l(i) = j and (i) > n̄

}
.

Before we show that this algorithm gives good accuracy we
present following theorem
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S 1 S 2

µ(S i) (-0.048, -0.027, 0.0) (-0.004, 0.002, -0.012)

eigenvector
 0.0 0.534 −0.845

0.0 −0.845 −0.534
1.0 0.0 0.0


 0.692 −0.722 0.001

0.722 0.692 0.002
0.003 0.0 −1.0



eigenvalue (9.241, 0.040, 0.001) (2.124,1.885,0.001)

Table 2: Outcome

Lemma 5.1 ([12]). Let S = {x1, . . . , xn} be subset of RN . By
{λ1, . . . , λn} we denote eigenvalues corresponding to eigenvec-
tors {v1, . . . , vn} of matrix cov([x1, . . . , xn]).

Then ∑
x∈S

dist2(x, vk) =

n∑
i=k+1

λi · n,

where vk = {v0, v1, . . . , vk}.

Now by simple calculations we have

Comp err(n1, . . . , nk) =

 k∑
i=1

∑
s∈S i

dist(s; vni )
2


1/2

=

 k∑
i

mi∑
j=ni+1

λi
j · mi


1/2

=

 n̄∑
i=1

λ
l(i)
(i) · ml(i)

1/2

< ε.

Lets us consider extension of example presented in Subsec-
tion 4.1 (which was also mentioned in the Introduction to this
paper).

Example 5.2. Consider the dataset from Subsection 4.1 mod-
ified by adding same noise (ex. white Gaussian noise) – see
Figure 3. In first step we fix epsilon ε = 2.87 (which gives 5.5%
of total error4). Then to start our algorithm, we have to choose
the parameters k and ω. In our example we want to obtain two
cluster, so we fix k = 2. Moreover the first cluster should repre-
sent the one–dimension data and the second two–dimension. So
we put not zero elements at ω1, ω2

5 for example ω = (0, 1
2 ,

1
2 ).

Outcome obtained at the end of calculation is presented in Ta-
ble 5.2. Cluster S 1 corresponds to point grouped along interval,
and the S 2 – along circle.

Now by steps 3–6 we have

Λ(·) = {0.001, 0.001, 0.040, 1.885, 2.124, 9.241} ,

n̄ = 3,

4By total error we understand error obtained in the worst case of compres-
sion, when we replace each element in each cluster by barycenter of all data.

5Indexes of parameters ω are shifted respectively to elements of v ∈ En(RN )
so ω1 corresponds with zero-dimension subspace (barycenter of cluster v0).

n1 = 1, n2 = 2.

Consequently, we get 2 · 199 parameters for S 2 and 1 · 201 for
S 1.

At the end of this section we back to example of the Lena
picture.

Example 5.3. Consider the Lena image from Subsection 4.3.
Let ε = 427 (which gives 1% of total error) be fixed. We use
k = 5. Then we have to choose ω. If we do not have any
intuition about possible dimension of cluster we can put

ω =

(
1

192
, . . . ,

1
192

)
.

Since in picture compression we expect the data to have lower
dimensional structure6, we narrow our consideration to sub-
spaces of dimension between 10–20 by choosing, according to
Remark 2.5,

ω =

0, . . . , 0︸  ︷︷  ︸
1−10

,
1
10
, . . . ,

1
10︸       ︷︷       ︸

11−20

, 0, . . . , 0︸  ︷︷  ︸
21−192

 .
By applying points 3–6 we obtain:

• 1 · 2375 parameters for the first cluster,

• 2 · 151 parameters for the second cluster,

• 5 · 880 parameters for the third cluster,

• 4 · 229 parameters for the fourth cluster,

• 3 · 461 parameters for the fifth cluster.

As we see by use our method we have to remember 9376 param-
eters. If we fix n1 = . . . = n5 such that Comp err(n1, . . . , n5) < ε
(4 first eigenvalues for each cluster) we obtain 16384 parame-
ters – which is all most twice as much as in our method.

6. Implementation

Sample implementation of (ω, k)-means algorithm prepared
in Java programming language is available at [23].
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