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This paper continues our previous article devoted to quantifier elimination and
the valuation property for the expansion of the real field by restricted quasianalytic
functions. A basic tool developed there was the concept of active and non-active
infinitesimals, whose study relied on transformation to normal crossings by blowing
up, and the technique of special cubes and modifications, introduced in our earlier
papers. However, the theorem on an active infinitesimal, being one of the crucial
results, was proved not in full generality (covering, nevertheless, the classical case
of analytic functions). The main purpose of this paper is to provide a proof of
the general quasianalytic case and, consequently, to legitimize the results of our
previous article. Also given is yet another approach to quantifier elimination and
a description of definable functions by terms (in the language augmented by the
names of rational powers), which is much shorter and more natural with regard to
the techniques applied. Finally, we present some theorems on the rectilineariza-
tion of definable functions, which are counterparts of those from our paper about
functions definable by a Weierstrass system.
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1. Introduction. This paper is a continuation of our article [10], de-
voted to quasianalytic structures, i.e. the expansions RQ of the real field
by restricted quasianalytic functions. That article was intended to establish
quantifier elimination and a description of definable functions by terms in the
language L augmented by the names of rational powers, and the valuation
property. It was achieved by a study of non-standard models R of the uni-
versal diagram T of the structure RQ. Our research made no appeal to the
Weierstrass preparation theorem, because it is not at our disposal in quasi-
analytic geometry. Instead, the fundamental tools applied there were the
concepts of active and non-active infinitesimals (op.cit.) and of special cubes
and modifications (developed in [9, 10]). These techniques relied, to a great
extent, on the method of transformation to normal crossings by blowing up.
We often made use of the following sharper version of this method: a finite
number of Q-analytic function germs f1(x), . . . , fN(x) can be simultaneously
transformed to normal crossings by a finite sequence ϕ of blowings-up so that

fϕn (x′) = x′βn vn(x′), vn(0) 6= 0 for n = 1, . . . , N,

and the monomials x′β1 , . . . , x′βN are totally ordered by the divisibility rela-
tion. This idea, being frequently used by mathematicians (see e.g. [1, 3]),
goes back at least as far as Zariski’s paper [15], § 2.

However, the theorem on an active infinitesimal (Theorem 4.4 from [10]),
being one of the crucial results, was proven not in full generality (covering,
nevertheless, the classical case of analytic functions). The main purpose of
this paper is to provide a proof of the general quasianalytic case and, con-
sequently, to legitimize the results of that article. In the analytic case, we
established the theorem by means of diagonal series, which are apparently
unavailable in quasianalytic function theory. The general proof, given here
in Section 2, consists in an induction procedure which embraces the theo-
rem itself and several other conclusions concerning the infinitesimals under
consideration, as — in particular — the valuation property and exchange
property for L-terms.

We should emphasize that the valuation property is valid in the case
of arbitrary, polynomially bounded, o-minimal structures, as proven in a
different way by van den Dries–Speissegger [6]. From this property, it can
be drawn, through model-theoretic compactness (cf. [5, 8], the preparation
theorem in the sense of Parusiński–Lion–Rolin (cf. [13, 7]).
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Section 3 gives an approach to quantifier elimination and a description
of definable functions by terms in the language augmented by the names of
rational powers, which is much shorter and more natural (in comparison with
the one in [10]) with regard to the techniques applied. Here we make use
of immersion cubes (introduced in [9]) and their sections given piecewise by
terms. In the last section, we present some theorems on the rectilinearization
of L-terms and definable functions, which are counterparts of those from our
paper [11] about functions definable by a Weierstrass system.

2. Proof of the theorem on an active infinitesimal. We begin
with some basic notions introduced in our article [10]. For a model R of the
universal diagram T , v stands for the standard valuation on the field R, i.e.
the valuation induced by the convex hull of the real field R in R. A sequence
λ = (λ1, . . . , λm) of infinitesimals is regular with main part λ1, . . . , λk, i.e.
the valuations

v(λ1), . . . , v(λk) ∈ Γ〈λ1,...,λm〉

form a basis over Q of the valuation group Γ〈λ〉 of the structure 〈λ〉 generated
by the λ’s (op.cit., Section 4).

We shall prove the theorem on an active infinitesimal by induction with
respect to the number of infinitesimals λ. Actually, this theorem will be
combined with several results from our article [10] in one induction procedure,
presented below.

Theorem 1. (In) (op.cit., Theorem 4.4)

For any m ≤ n, consider a regular sequence µ, λ1, . . . , λm of infinitesimals
with main part µ, λ1, . . . , λk and an L-term t(y, x), x = (x1 . . . , xm), such that

ν := t(µ, λ) 6∈ 〈λ〉

is an infinitesimal. If v(µ) 6∈ Γ〈λ〉, then ν is active over the infinitesimals λ.

(IIn) (op.cit., Proposition 4.7)

For any m ≤ n, consider a regular sequence λ1, . . . , λm of infinitesimals
with main part λ1, . . . , λk and an infinitesimal µ with v(µ) 6∈ Γ〈λ〉. Then
dim Γ〈µ,λ〉 = k+1 whence µ, λ1, . . . , λm is a regular sequence of infinitesimals
with main part µ, λ1, . . . , λk.
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Remark 1. The proof of Proposition 4.7 (loc.cit.) applies Theorem 4.4
indicating the inference

(In) =⇒ (IIn+1).

We recall the following two assertions about analytically independent
infinitesimals µ, λ1, . . . , λm.

(IIIn) Valuation Property for L-terms (op.cit., Corollary 4.8):

Whenever m ≤ n, we have the following dichotomy: either
• µ is non-active over λ, and then Γ〈λ,µ〉 = Γ〈λ〉; or
• µ is active over λ, and then dim Γ〈λ,µ〉 = dim Γ〈λ〉 + 1.

In the latter case, one can find an L-term t(x) such that

v(µ− t(λ)) 6∈ Γ〈λ〉 and Γ〈λ,µ〉 = Γ〈λ〉 ⊕Q · v(µ− t(λ)).

(IVn) Exchange Property (op.cit., Corollary 4.9):

Whenever m ≤ n, if ν ∈ 〈λ, µ〉 and ν 6∈ 〈λ〉, then µ ∈ 〈λ, ν〉.

The exchange property (IVn) allows one to define the concept of rank and
basis for substructures generated by ≤ n+1 infinitesimals (op.cit., Section 5).
We still need some results referring to this topic, recalled below. Consider
two sequences of analytically independent infinitesimals λ = (λ1, . . . , λm) and
λ′ = (λ′1, . . . , λ

′
m), and an infinitesimal µ.

(Vn) On Analytically Independent Infinitesimals (op.cit., Proposition 5.1
and Corollary 5.2):

Whenever m ≤ n, if 〈λ〉 ⊂ 〈λ′〉, then 〈λ〉 = 〈λ′〉. The infinitesimals
(λ1, . . . , λm, µ) are analytically independent iff µ 6∈ 〈λ〉.

Remark 2. The proofs of the foregoing theorems (op.cit.) indicate the
following inferences:

(IIn) =⇒ (IIIn) and (In) ∧ (IIIn) =⇒ (IVn+1) =⇒ (Vn+1).

Having disposed of this pattern of induction, we can readily turn to the
proof of the theorem on an active infinitesimal.

PROOF. When m = 0, then 〈λ〉 = 〈∅〉 = R and the conclusion is
evident. So take m > 0 and assume the theorem holds provided that the
number of infinitesimals λ is smaller than m.
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In [10], we have reduced the problem to the case where

ν := t(µ, λ) = f(µ, λ1/µ, λ̃),

where f(u, v, x̃) is a function Q-analytic at 0 ∈ Rm+1; here x̃ = (x2, . . . , xm)
and λ̃ = (λ2 . . . , λm).

The valuation group Γ〈λ,µ〉 is a vector space over Q of dimension ≤ (m+1)
(op.cit., Corollary 3.4). It is a direct sum of finitely many archimedean
subgroups

Γ〈λ,µ〉 = G1 ⊕ . . .⊕Gr with G+
1 > . . . > G+

r ,

where G+
i stands for the semigroup of all positive elements of Gi. It is

well-known that every archimedean ordered abelian group is isomorphic to a
subgroup of the ordered additive group R of real numbers.

Let ε = (ε1, . . . , εp) denote those infinitesimals from among λ for which

v(ε1), . . . , v(εp) > G2 ⊕ . . .⊕Gr

and δ = (δ1, . . . , δq) the remaining λ’s; obviously, p+q = m. The valued field
〈λ, µ〉 can be completed with respect to the standard valuation v, and the
completion has the same valuation group. Notice that the topology induced
by v is metrizable with basis of zero neighbourhoods consisting of sets of the
form

{t(µ, δ, ε) : v(t(µ, δ, ε)) > γ}, γ ∈ G1.

In the completion, one can deal with formal power series in the infinitesimals
ε with Q-analytic coefficients taken on the infinitesimals δ.

We encounter two cases:

Case A, where λ1 is one of the ε’s, say λ1 = ε1;

or

Case B, where λ1 is one of the δ’s, say λ1 = δ1.

CASE A. Consider the Taylor coefficients

1

i!j!
· ∂

i+jf

∂ui∂vj
(0, 0, x̃) =: aij(x̃), i, j ∈ N,

which are Q-analytic functions at zero. A crucial role is played by the fol-
lowing
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Lemma 1. Under the assumptions of Theorem 1, we must have

∞∑
i=0

ai,i+s(λ̃) · εi1 6= 0 or
∞∑
j=0

aj+s,j(λ̃) · εj1 6= 0

for some s ∈ N \ {0}.

Suppose Lemma 1 were false. Then

∞∑
i=0

ai,i+s(λ̃) · εi1 = 0 and
∞∑
j=0

aj+s,j(λ̃) · εj1 = 0

for all s ∈ N \ {0}.
But we can find a model of the universal diagram T with the infinitesimals

λ and an infinitesimal µ∗ such that they are analytically independent and

v(µ∗), v(ε1/µ
∗) > G2 ⊕ . . .⊕Gr.

Indeed, by Remarks 1 and 2, it follows from the induction hypothesis that the
assertion (Vm) holds. The infinitesimals λ and µ∗ are therefore analytically
independent iff µ∗ 6∈ 〈λ〉. Consequently, it suffices to find a model of the
universal diagram T along with the diagram of the structure 〈λ〉 and the
sentences of the form

c 6= t(λ) where t(x) are L-terms

and the sentence
1

2

√
ε1 < c < 2

√
ε1 ;

here c denotes a new constant construed as µ∗. Its existence can be immedi-
ately deduced through model-theoretic compactness.

Under the conditions stated above, we have

t(µ∗, λ) = f(µ∗, λ1/µ
∗, λ̃) =

∞∑
i=0

ai,i(λ̃) · εi1+

+
∞∑
s=1

(ε1/µ
∗)s ·

∞∑
i=0

ai,i+s(λ̃) · εi1 +
∞∑
s=1

(µ∗)s ·
∞∑
j=0

aj+s,j(λ̃) · εi1 =
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=
∞∑
i=0

ai,i(λ̃) · εi1,

and thus we get
∂t/∂u (µ∗, λ) = 0.

Therefore the Q-analytic function

∂t/∂u (u, x) = ∂/∂u f(u, x1/u, x̃)

vanishes on an open special cube in Ru×Rx1×Rm−1
x̃ . By the identity principle

for quasianalytic functions, this function vanishes identically, and thus

t(u, x) = f(u, x1/u, x̃) = g(x),

where, for some r > 0 small enough, g(x) := f(r, x1/r, x̃) is a Q-analytic
function at 0 ∈ Rm

x . Hence

ν := t(µ, λ) = g(λ) ∈ 〈λ〉,

and this contradiction completes the proof of Lemma 1.

Since µ · ε1/µ = ε1, we see that

v(µ) ≥ 1/2 v(ε1) or v(ε1/µ) ≥ 1/2 v(ε1).

By symmetry, we may assume that the former condition holds. Then the
series

ν0 :=
∞∑

i=j=0

aij(λ̃) · µi ·
(
ε1

µ

)j
=
∞∑
i=0

aii(λ̃) · εi1,

ν+ :=
∞∑
i=0

∑
j<i

aij(λ̃) · µi ·
(
ε1

µ

)j
=
∞∑
i=0

∑
j<i

aij(λ̃) · µi−j · εj1

and

ν− :=
∞∑
i=0

(
1

i!
· ∂

if

∂ui
(0,

ε1

µ
, λ̃) · µi −

∑
j≤i

aij(λ̃) · µi ·
(
ε1

µ

)j)
=

=
∞∑
i=0

(
1

i!
· ∂

if

∂ui
(0,

ε1

µ
, λ̃)−

∑
j≤i

aij(λ̃) ·
(
ε1

µ

)j)
· µi
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are well defined elements of the completion of the valued field 〈λ, µ〉 with
respect to the standard valuation v. We have ν = ν+ +ν0 +ν−. Observe that
the Q-analytic function which occurs in the i-th summand of the last series
is of the form(

1

i!
· ∂

if

∂ui
(0, v, x̃)−

∑
j≤i

aij(x̃) · vj
)
· ui = gi(v, x̃) · vi+1 · ui

for some function gi q-analytic at zero.

Lemma 2. If, for some s ∈ N \ {0},
∞∑
i=0

ai,i+s(λ̃) · εi1 6= 0 or
∞∑
j=0

aj+s,j(λ̃) · εj1 6= 0,

then, respectively, we have

ν− 6= 0 and v(ν−) ∈ Γ〈λ〉 − (N \ {0}) · v(µ)

or
ν+ 6= 0 and v(ν+) ∈ Γ〈λ〉 + (N \ {0}) · v(µ).

Consider first the latter case. Clearly,

ν+ =
∞∑
l=1

(
∞∑
j=0

aj+l,j(λ̃) · εj1

)
· µl,

and the values of (the valuation v taken on) the l-th summands of the above
series are pairwise distinct, unless they are infinity. Consequently, v(ν+) is
the minimum of the values of those summands, because some summands are
non-vanishing (for instance, the s-th one). Hence

v(ν+) <∞ and v(ν+) ∈ Γ〈λ〉 + (N \ {0}) · v(µ),

as desired.

In the former, take n large enough so that

v(µn) > v

(
∞∑
i=0

ai,i+s(λ̃) · µi ·
(
ε1

µ

)i+s)
,
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and write down ν− as follows:

ν− =
s∑
l=1

(
∞∑
i=0

ai,i+l(λ̃) · µi ·
(
ε1

µ

)i+l)
+

+
n−1∑
i=0

(
1

i!
· ∂

if

∂ui
(0,

ε1

µ
, λ̃)−

∑
j≤i+s

aij(λ̃) ·
(
ε1

µ

)j)
· µi +

+
∞∑
i=n

(
1

i!
· ∂

if

∂ui
(0,

ε1

µ
, λ̃)−

∑
j≤i+s

aij(λ̃) ·
(
ε1

µ

)j)
· µi.

Observe again that the Q-analytic functions which occur in the i-th sum-
mands of the second series above are of the form(

1

i!
· ∂

if

∂ui
(0, v, x̃)−

∑
j≤i+s

aij(x̃) · vj
)
· ui = hi(v, x̃) · vi+s+1 · ui

for some functions hi Q-analytic at zero, i = 0, . . . , n. Hence

n−1∑
i=0

(
1

i!
· ∂

if

∂ui
(0,

ε1

µ
, λ̃)−

∑
j≤i+s

aij(λ̃) ·
(
ε1

µ

)j)
· µi =

=

(
ε1

µ

)s+1

·
n∑
i=0

hi(
ε1

µ
, λ̃) · εi1.

By Corollary 2.11, op.cit., we have

v(hi(
ε1

µ
, λ̃)) ∈ Γ〈λ〉 ⊕ N · v(

ε1

µ
).

Since

∞∑
i=0

ai,i+l(λ̃) · µi ·
(
ε1

µ

)i+l
=

(
ε1

µ

)l
·
∞∑
i=0

ai,i+l(λ̃) · εi1·, l = 1, . . . , s,

the values

v

(
∞∑
i=0

ai,i+l(λ̃) · µi ·
(
ε1

µ

)i+l)
, l = 1, . . . , s,
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and

v

(
n−1∑
i=0

(
1

i!
· ∂

if

∂ui
(0,

ε1

µ
, λ̃)−

∑
j≤i+s

aij(λ̃) ·
(
ε1

µ

)j)
· µi
)

are pairwise distinct, unless they are infinity. Consequently, v(ν−) is the
minimum of the above (q + 1) values. Hence

v(ν−) <∞ and v(ν−) ∈ Γ〈λ〉 − (N \ {0}) · v(µ),

which completes the proof of Lemma 2.

Now, take n ∈ N large enough so that

n · v(ε1) > min { v(ν−), v(ν+) }.

Then

v

(
ν −

n−1∑
i=0

ai,i(λ̃) · εi1

)
6∈ Γ〈λ〉.

This means that ν is active over the infinitesimals λ, concluding the proof in
Case A.

CASE B. Let us rename the coordinates in Rm in the following fashion:
the coordinates x = (x1, . . . , xq) correspond to the infinitesimals δ and the
coordinates y = (y1, . . . , yp) correspond to the infinitesimals ε. In the new
variables, the function f can be written down as f(u, v, x̃, y), x̃ = (x2, . . . , xq).
We first establish the following

Reduction Step. We are able to assume that the infinitesimal ν is of
the form ν = f(µ, δ1/µ, δ̃, ε), where f is a function Q-analytic at zero, and

v(ε) > G2 ⊕ . . .⊕Gr and Γ〈δ,µ〉 < G+
1 .

Indeed, we shall first recursively attach the old infinitesimals δ2, . . . , δq,
after performing suitable special modifications, either the new infinitesimals
δ′ or to the new infinitesimals ε′, so as to fulfil the conditions

v(ε′) > G2 ⊕ . . .⊕Gr and Γ〈δ′〉 < G+
1 . (∗)

At the beginning, take as new infinitesimals δ′ those infinitesimals from
δ2, . . . , δq, which lie in the main part of the regular sequence µ, λ1, . . . , λk.
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Having constructed a sequence δ′2, . . . , δ
′
i, consider an infinitesimal δj from

δ2, . . . , δq which has not yet considered in the process. If

Γ〈δ′2,...,δ′i,δj〉 < G+
1 ,

attach δj =: δ′i+1 to the new infinitesimals δ′. Otherwise δj is active over
δ′2, . . . , δ

′
i. By the valuation property (IIIm), which holds by the induction

hypothesis, there is an L-term τ(δ′2, . . . , δ
′
i) such that

v(δj − τ(δ′2, . . . , δ
′
i)) > G2 ⊕ . . .⊕Gr.

Via desingularization of L-terms (op.cit., Corollary 2.6), we can assume, after
a suitable change of the infinitesimals δ′2, . . . , δ

′
i by special modification, that

τ(δ′2, . . . , δ
′
i) = ϕ(δ′2, . . . , δ

′
i),

where ϕ is a function Q-analytic at zero. Then we attach the infinitesimal

ω := δj − ϕ(δ′2, . . . , δ
′
i)

to the new infinitesimals ε. By substitution ω + ϕ(δ′2, . . . , δ
′
i) for δj, we are

done. We continue this process until all infinitesimals δ2, . . . , δq have been
considered.

Next, consider the infinitesimal δ1. If

Γ〈δ′2,...,δ′t,δ1〉 < G+
1 ,

we are reduced by putting δ′1 := δ1. Otherwise δ1 is active over δ′2, . . . , δ
′
t.

As before, by the valuation property (IIIm) and via desingularization of
L-terms, we can assume that

v(ω) > G2 ⊕ . . .⊕Gr with ω := δ1 − ϕ(δ′2, . . . , δ
′
t),

where ϕ is a function Q-analytic at zero. Let δ′ = (δ′2, . . . , δ
′
t). Then, similarly

to op.cit., Section 4, we can replace the function f by some other Q-analytic
functions as follows:

ν = f(µ, (ϕ(δ′) + ω)/µ, δ′, ε′) = f1(µ, ϕ(δ′)/µ, ω/µ, δ′, ε′) =

= f2(µ, ϕ(δ′)/µ, ω/ϕ(δ′), δ′, ε′).
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We can thus attach the infinitesimal ε′s+1 := ω/ϕ(δ′) to the infinitesimals
ε′, and then

ν = f2(µ, ϕ(δ′)/µ, ε′s+1, δ
′, ε′).

For simplicity, we drop the sign of apostrophe over the name of infinites-
imals and renumber the infinitesimals δ = (δ1, . . . , δq). Via transformation
the function ϕ to normal crossings, we may assume that

ν = f3(µ, δ
α/µ, δ, ε)

for some α ∈ Nq. Replacing the infinitesimals µ and δ by their suitable roots,
we may assume that δα = δ1 · . . . ·δk for some k ≤ q. Now, we can successively
lower the number k of these factors as follows. Since v(µ) 6∈ Γ〈δ〉, exactly one
of the two fractions δ1 · . . . · δk−1/µ or µ/δ1 · . . . · δk−1 is an infinitesimal. In
the former case, we get

ν = f3(µ, δ1 · . . . · δk/µ, δ, ε) = f4(µ, δ1 · . . . · δk−1/µ, δ, ε);

and in the latter

ν = f3(µ, δ1 · . . . · δk/µ, δ, ε) = f4(µ, µ/δ1 · . . . · δk−1, δ1 · . . . · δk/µ, δ, ε) =

= f5(µ/δ1 · . . . · δk−1, δ1 · . . . · δk/µ, δ, ε),

and thus, replacing µ by µ′ := µ/δ1 · . . . · δk−1, we get

ν = f5(µ
′, δk/µ

′, δ, ε).

Again, we drop the sign of apostrophe. Eventually, we can assume that

ν = f6(µ, δ1/µ, δ1, δ̃, ε) = f7(µ, δ1/µ, δ̃, ε),

which is the desired result.

Summing up, the above construction yields a new regular sequence of
infinitesimals δ, ε which satisfy conditions (∗). To conclude the reduction
step, we must still show that Γ〈δ,µ〉 < G+

1 . But this follows immediately from
the valuation property (IIIm), which is at our disposal by the induction
hypothesis, applied to the infinitesimals δ and µ.

For the rest of the proof of Theorem 1, we shall keep the conditions
established in the reduction step. In the completion of the valued field 〈λ, µ〉
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with respect to the standard valuation v, we can present the infinitesimal ν
in the following form:

ν =
∑
α∈Np

εα · fα(µ, δ1/µ, δ̃),

where

fα(u, v, x̃) :=
1

α!
· ∂
|α|f

∂yα
(u, v, x̃, 0), α ∈ Np.

We need an elementary fact about the standard valuation v.

Lemma 3. Consider a finite number of elements gi, hi ∈ 〈λ, µ〉, i =
1, . . . , n, such that

v(h1), . . . , v(hn) > G2 ⊕ . . .⊕Gr

and

v

(
n∑
i=1

ci · gi

)
< G+

1 , ci ∈ R, i = 1, . . . , n,

for all real linear combinations of the elements g1, . . . , gn. Then there exist
n real linear combinations

Gj =
n∑
i=1

cjigi, Hj =
n∑
i=1

djihi, cji, dji ∈ R, i, j = 1, . . . , n,

such that
n∑
i=1

hi · gi =
n∑
i=1

Hi ·Gi,

and that the valuations v(H1), . . . , v(Hn) are pairwise distinct; then, of course,
the valuations v(H1 ·G1), . . . , v(Hn ·Gn) are pairwise distinct.

The proof is by induction with respect to n. We show the case where
n = 2. If v(h1) 6= v(h1), we are done. Otherwise there are real numbers
d1, d2 6= 0 such that

v(d1h1 − d2h2) > v(h1) = v(h2).

We get
h1 · g1 + h2 · g2 = d1h1 · d−1

1 g1 + d2h2 · d−1
2 g2 =
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= d1h1 · (d−1
1 g1 + d−1

2 g2) + (d2h2 − d1h1) · d−1
2 g2,

which is the required result.

We shall apply Lemma 3 to the elements

hα = εα and gα = fα(µ, δ1/µ, δ̃)gα.

We are now going to recursively define an increasing sequence of positive
integers (Nk) and three sequences of infinitesimals (fk), (φk) and (ψk), k ∈ N.
Let γ ∈ G+

1 , N0 be any positive integer and

A0 := {α ∈ Np : v(εα) < N0γ }, n0 := ]A0.

With the notation of Lemma 3, we get

f0 :=
∑
α∈A0

εα · gα =

n0∑
i=1

Hi ·Gi;

put

ψ0 := 0, ϕ0 :=
∑
{Hi ·Gi : v(Hi) < N0γ } and ψ1 := f0 − ϕ0.

Take N1 so large that v(Hi) < N1γ for all i = 1, . . . , n0. Let

A1 := {α ∈ Np : N0γ ≤ v(εα) < N0γ }

and n1 be the sum of ]A1 and the number of the summands of ψ1. Again,
with the notation of Lemma 3, we get

f1 :=
∑

α∈A1\A0

εα · gα + ψ1 =

n1∑
i=1

Hi ·Gi;

clearly, v(Hi) ≥ N0γ for i = 1, . . . , n1; put

ϕ1 :=
∑
{Hi ·Gi : v(Hi) < N1γ } and ψ2 := f1 − ϕ1.

We continue this process recursively. By construction, each ϕk is a finite sum
of the form

ϕk :=
∑
i

Hi ·Gi , where Nk−1γ ≤ v(Hi) < Nkγ for all i,
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and the values v(Hi) are pairwise distinct. It is easy to check that

ν =
∑
α∈Np

εα · gα =
∞∑
k=0

fk =
∞∑
k=0

ϕk.

We encounter two possibilities: either Gi ∈ 〈δ〉 for each k ∈ N and every
i, or there is a k ∈ N such that Gi 6∈ 〈δ〉 for some i. The former leads to a
contradiction. Indeed, Gi are of the form

Gi(µ, δ1/µ, δ̃) or Gi(µ, ϕ(δ)/µ, δ),

where Gi(u, v, x̃) or Gi(u, v, x), respectively, are functions Q-analytic in a
common neighbourhood of zero. Like in Case A, we thus have the equiva-
lence: Gi ∈ 〈δ〉 iff the function

∂/∂uGi(u, x1/u, x̃)

vanishes for u = µ and x = δ. Therefore, the former possibility implies that
the function

∂/∂u f(u, x1/u, x̃, y)

vanishes for u = µ, x = δ and y = ε. But then, the above partial derivative
with respect to the variable u would vanish on a special cube containing the
infinitesimals µ, δ and ε. By the identity principle for quasianalytic functions,
this partial derivative would vanish identically, because those infinitesimals
are analytically independent. Consequently, the function

f(u, x1/u, x̃, y) or f(u, ϕ(x)/u, x, y),

respectively, coincides with a function g(x, y) Q-analytic at zero. Hence

ν = g(δ, ε) ∈ 〈δ, ε〉 = 〈λ〉,

contrary to the assumption of Theorem 1.

In this fashion, we may assume the latter possibility. Then the set

J := {i ∈ N : Gi 6∈ 〈δ〉 6= ∅

is non-empty. There is a unique i0 ∈ J such that

v(Hi0) = min {v(Hi) : i ∈ J},
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because the values v(Hi) are pairwise distinct and for any γ ∈ G1 there are
only finitely many i for which v(Hi) < γ. Let

I := {i ∈ N : v(Hi) < v(Hi0)}.

Now, it follows from the induction hypothesis that there is an element
τ(δ) ∈ 〈δ〉 such that

v(Gi0 − τ(δ)) 6∈ Γ〈δ〉.

Then
Λ := Hi0 · τ(δ) +

∑
i∈I

Hi ·Gi ∈ 〈δ, ε〉 = 〈λ〉,

because Hi ∈ 〈ε〉 and Gi ∈ 〈δ〉 for all i ∈ I. It is not difficult to check that

v(ν − Λ) = v(Hi0) + v(Gi0 − τ(δ)) 6∈ Γ〈δ,ε〉 = Γ〈λ〉.

This means that ν is active over the infinitesimals λ, which completes the
proof of Theorem 1.

3. Quantifier elimination and description of definable functions
by terms. In this section we are going to develop an approach to quantifier
elimination and a description of definable functions by terms in the language
augmented by the names of rational powers, which is much shorter and more
natural than the one in [10]. Observe first that one can introduce a well-
defined notion of the dimension of sets defined piecewise by L-terms. Indeed,
every such set E is a finite union of special cubes Si (op.cit., Theorem 2.1
and Corollary 2.3), and one can put

dim E := max dim Si.

Remark 3. It is easy to check that the dimension of a set E does not
depend on the decomposition into special cubes Si.

We now establish a generalization of op.cit., Proposition 5.4.

Proposition 1. Consider a mapping f : Rd −→ Rm given piecewise
by L-terms and such that for every special cube S ⊂ Rm or, equivalently, for
every subset E of Rm given piecewise by L-terms, we have

dim f−1(S) ≤ dim S or dim f−1(E) ≤ dim E.
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Then f admits a section given piecewise by L-terms, i.e. there is a function
ξ : Rm −→ Rd given piecewise L-terms such that f(ξ(y)) = y for every point
y ∈ Rm.

We may, of course, assume that f : (0, 1)d −→ (0, 1)m. We first show that
there exists a family (tι(y))ι∈I of L-terms, tι(y) = (tι,1(y), . . . , tι,d(y)), such
that the infinite disjunction∨

ι∈I

[(
b = f(a) ∧ a ∈ (0, 1)d

)
=⇒ b = f(tι(b))

]
holds for any tuples a ∈ (0, 1)d and b ∈ (0, 1)m in an arbitrary model R of
the theory T . So take any elements a ∈ (0, 1)d and b ∈ (0, 1)m for which
b = ϕ(a). We may, of course, confine our analysis to the case where a = λ
and b = µ are infinitesimals. Let k := rk 〈λ〉; then the infinitesimals λ lie on
a special cube of dimension k, but lie on no special cube of dimension < k.
Obviously,

〈µ〉 ⊂ 〈λ〉 and rk 〈µ〉 ≤ rk 〈λ〉.

Were rk 〈µ〉 < k = rk 〈λ〉, then the infinitesimals µ would lie on a special
cube S of dimension < k, and thus it follows from the assumption that
the infinitesimals λ would lie on the set f−1(S) of dimension < k, which is
impossible. Consequently,

rk 〈µ〉 = rk 〈λ〉 and 〈µ〉 = 〈λ〉.

Therefore the infinitesimals λ can be expressed by L-terms taken on the
infinitesimals µ, and the assertion follows.

Now, through model-theoretic compactness, one can find a finite set
ι1, . . . , ιn ∈ I of indices for which the finite disjunction∨

k=1,...,n

[(
b = f(a) ∧ a ∈ (0, 1)d

)
=⇒ b = f(tιk(b))

]
holds for any tuples a and b in an arbitrary model R of the theory T . In par-
ticular, this finite disjunction is satisfied in the standard model R, concluding
the proof of Proposition 1.

Remark 4. The assumption of Proposition 1 is satisfied by every function
f given piecewise by L-terms which is an immersion. More generally, consider
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a decomposition of Rd into finitely many leaves Fj given piecewise by L-terms,
and a function f given piecewise by L-terms whose restriction to each Fj is
an immersion. Then f satisfies that assumption too.

Corollary 1. Under the assumptions of Proposition 1, the image f(Rd)
is given piecewise by L-terms.

Indeed, suppose the section ξ is given by a finite number of L-terms

τi(y) = (τi1(y), . . . , τid(y)), i = 1, . . . , s, y = (y1, . . . , ym),

i.e.

x = ξ(y) ⇔
s∨
i=1

x = τi(y).

Then

y ∈ f(Rd) ⇔
s∨
i=1

f(τi(y)) = y,

and thus the image f(Rd) is given by L-terms f(τi(y)) − y, i = 1, . . . , s, as
desired.

By an immersion cube C ⊂ Rm we mean image ϕ((0, 1)d where ϕ is a
Q-mapping in a neighbourhood of the compact cube [0, 1]d, whose restriction
to (0, 1)d is an immersion. As demonstrated in our paper [9], the theorem
on decomposition into special cubes along with the technique of fiber cut-
ting make it possible to decompose every bounded Q-subanalytic set into
finitely many immersion cubes (op. cit., Corollary 1). This, in turn, and the
above corollary, immediately yield quantifier elimination for the expansion
RQ of the real field with restricted quasianalytic functions in the language
L augmented by the names of rational powers (cf. [10], Theorem 5.8):

Theorem 2. (Quantifier Elimination) Every set definable in the struc-
ture RQ is given piecewise by a finite number of L-terms.

A fortiori, the structure RQ is model complete, and we can recover, via
e.g. the decomposition of Q-semianalytic sets into finitely many special cubes,
a well-known result that it is a polynomially bounded, o-minimal structure
which admits Q-analytic cell decomposition (cf. [14, 9]).

We now wish to turn to the problem of a description of definable function
by L-terms.
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Theorem 3. Each definable function f : Rm −→ R is piecewise given
by a finite number of L-terms.

Indeed, consider the graph F ⊂ Rm+1 = Rm
x × Ry of the function f and

denote by
p : F −→ Rm

x and q : F −→ Ry

the canonical projections. Via cell decomposition (of class C1), the graph F
can be partitioned into finitely many cells Ci defined by L-terms such that the
restriction of p to each cell Ci is an immersion and, in fact, a diffeomorphism
onto the image p(Ci). It follows from Proposition 1 (cf. Remark 4) that each
inverse

p−1 : p(Ci) −→ Ci, i = 1, . . . , s,

is given piecewise by finitely many L-terms, and thus so is the restriction of
f = q ◦ p−1 to each set p(Ci). This completes the proof.

We immediately obtain the following three corollaries.

Corollary 2. The structure RQ admits cell decompositions defined
piecewise by L-terms, and hence Skolem functions (of choice) given piecewise
by L-terms.

Corollary 3. The structure RQ is universally axiomatizable. Hence its
universal diagram T admits quantifier elimination (in the language L) and
RQ can be embedded as a prime model into each model of T . Consequently,
in every model of T , each definable function is defined piecewise by a finite
number of L-terms.

Corollary 4. (Valuation Property for Definable Functions) Consider a
simple (with respect to definable closure) extensionR ⊂ R〈a〉 of substructures
in a fixed model of the theory T . Then we have the following dichotomy:

either dim ΓR〈a〉 = dim ΓR or dim ΓR〈a〉 = dim ΓR + 1.

In the latter case, one can find an element r ∈ R such that

v(a− r) 6∈ ΓR and ΓR〈a〉 = ΓR ⊕Q · v(a− r).

19



4. Rectilinearization of definable functions. By induction with re-
spect to the complexity of terms, we can establish the rectilinearization of
L-terms in quasianalytic structures exactly in the same way as it was done in
our paper [11] about functions definable by a Weierstrass system. Therefore,
since functions definable in RQ are given piecewise by L-terms (Theorem 3),
we immediately obtain several results about Q-subanalytic functions, pre-
sented in this section. We begin with some suitable terminology. By a
quadrant in Rm we mean a subset of Rm of the form:

{x = (x1, . . . , xm) ∈ Rm : xi = 0, xj > 0, xk < 0 for i ∈ I0, j ∈ I+, k ∈ I−},

where {I0, I+, I−} is a disjoint partition of {1, . . . ,m}; its trace Q on the
cube [−1, 1]m shall be called a bounded quadrant. The interior Int (Q) of
the quadrant Q is its trace on the open cube (−1, 1)m. A bounded closed
quadrant is the closure Q of a bounded quadrant Q, i.e. a subset of Rm of
the form:

Q := {x ∈ [−1, 1]m : xi = 0, xj ≥ 0, xk ≤ 0 for i ∈ I0, j ∈ I+, k ∈ I−}.

In this section, by a normal crossing on a bounded quadrant Q in Rm we
mean a function g of the form

g(x) = xα · u(x),

where α ∈ Nm and u is a function Q-analytic near Q which vanishes nowhere
on Q. The proposition stated below is a quasianalytic counterpart of op.cit.,
Theorem 1.

Proposition 2. (Simultaneous Rectilinearization of L-terms) If

f1, . . . , fs : Rm −→ R

are functions given piecewise by a finite number of L-terms, and K is a
compact subset of Rm, then there exists a finite collection of modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,

such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the

cube [−1, 1]m, which is a composite of finitely many local blowings-up with
smooth centers and power substitutions;
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2) the union of the images ϕi((−1, 1)m), i = 1, . . . , p, is a neighbourhood
of K.

3) for every bounded quadrant Qj, j = 1, . . . , 3m, the restriction to Qj

of each function fk ◦ ϕi, k = 1, . . . , s, i = 1, . . . , p, either vanishes or is a
normal crossing or a reciprocal normal crossing on Qj.

Remark 5. Observe that, if the functions f1, . . . , fs are given piecewise
by terms in the language of restricted Q-analytic functions augmented by
the reciprocal function 1/x, then one can require that the modifications ϕi,
i = 1, . . . , p, be composite of finitely many blowings-up with smooth centers.
The same refers to the results stated below.

Now let us recall some consequences of Proposition 2. Let U be a definable
bounded open subset in Rm, ∂U its frontier, ρ1, ρ2 be the distance functions
from the sets U , ∂U , respectively, and f : U −→ R a definable function.
Since definable functions are piecewise given by a finite number of L-terms
(Theorem 3 from Section 3), Proposition 2, applied to the functions f, ρ1, ρ2,
yields the following (op.cit., Theorem 2):

Proposition 3. (Rectilinearization of a Definable Function) Let U ⊂ Rm

be a bounded open subset and f : U −→ R be a definable function. Then there
exists a finite collection of modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,

such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the

cube [−1, 1]m, which is a composite of finitely many local blowings-up with
smooth centers and power substitutions;

2) each set ϕ−1
i (U) is a finite union of bounded quadrants in Rm;

3) each set ϕ−1
i (∂U) is a finite union of bounded closed quadrants in Rm

of dimension m− 1;
4) U is the union of the images ϕi(Int (Q)) with Q ranging over the

bounded quadrants contained in ϕ−1
i (U), i = 1, . . . , p;

5) for every bounded quadrant Q, the restriction to Q of each function
f ◦ϕi either vanishes or is a normal crossing or a reciprocal normal crossing
on Q, unless ϕ−1

i (U) ∩Q = ∅.

Remark 6. One can formulate Proposition 3, similarly to Proposition 2,
for several definable functions f1, . . . , fs.
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It follows from points 1) and 2) that every bounded quadrant of dimension
< m contained in ϕ−1

i (U) is adjacent to a bounded quadrant of dimension m
(a bounded orthant) contained in ϕ−1

i (U). Hence

ϕ−1
i (U) = ϕ−1

i (U),

and therefore point 4) implies that U is the union of the images ϕi(Q) of the
closures of those bounded quadrants of dimension m (bounded orthants) Q
for which ϕi(Q) ⊂ U , i = 1, . . . , p.

For a bounded orthant Q contained in ϕ−1
i (U), denote by domi (Q) the

union of Q and all those bounded quadrants that are adjacent to Q and
disjoint with ϕ−1

i (∂U); it is, of course, an open subset of the closure Q.
Moreover, the open subset ϕ−1

i (U) of the cube [−1, 1]m coincides with the
union of domi (Q), where Q range over the bounded orthants that are con-
tained in ϕ−1

i (U), and with the union of those bounded quadrants that are
contained in ϕ−1

i (U). Consequently, the union of the images ϕi(Int (Q)),
where Q range over the bounded quadrants that are contained in ϕ−1

i (U),
coincides with the union of the images

ϕi(domi (Q) ∩ (−1, 1)m),

where Q range over the bounded orthants Q that are contained in ϕ−1
i (U).

Corollary 5. (Rectilinearization of a Continuous Definable Function)
Let U be a bounded open subset in Rm and f : U −→ R be a continuous
definable function. Then there exists a finite collection of modifications

ϕi : [−1, 1]m −→ Rm, i = 1, . . . , p,

such that
1) each ϕi extends to a Q-analytic mapping in a neighbourhood of the

cube [−1, 1]m, which is a composite of finitely many local blowings-up with
smooth centers and power substitutions;

2) each set ϕ−1
i (U) is a finite union of bounded quadrants in Rm;

3) each set ϕ−1
i (∂U) is a finite union of bounded closed quadrants in Rm

of dimension m− 1;
4) U is the union of the images ϕi(domi (Q) ∩ (−1, 1)m) with Q ranging

over the bounded orthants Q contained in ϕ−1
i (U), i = 1, . . . , p;
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5) for every bounded orthant Q, the restriction to domi (Q) of each func-
tion f ◦ ϕi either vanishes or is a normal crossing or a reciprocal normal
crossing on Q, unless ϕ−1

i (U) ∩Q = ∅.

Remark 7. In the classical case, the structure Ran admits, as proven
by Denef–van den Dries [4], quantifier elimination in the language of re-
stricted analytic functions augmented by the reciprocal function 1/x. In our
next article [12], we demonstrate that this is no longer true for quasianalytic
structures.
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