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Abstract

In this paper, we give a short proof of a theorem by Kollár on
hereditarily rational functions. This is an answer to his appeal to
find an elementary proof which does not rely so much on resolution
of singularities. Our approach does not make use of desingularization
techniques. Instead, we apply a stronger version of the  Lojasiewicz
inequality. Moreover, this allows us to sharpen Kollár’s theorem.

In his recent paper [3], Kollár introduced a class of continuous rational
functions on an algebraic, possibly singular, variety X. Those functions,
called hereditarily rational, are defined by the condition that their restrictions
to each algebraic subvariety Y of X remain rational. He proved that every
continuous rational function on a smooth algebraic variety is hereditarily
rational (Proposition 8). Continuous rational functions on smooth algebraic
varieties were investigated by Kucharz [4]. Also, Fichou–Huisman–Mangolte–
Monnier [2] examined regulous functions on singular algebraic varieties, i.e.
those functions which extend to continuous rational functions on an ambient,
smooth algebraic variety. For the rudiments of real algebraic geometry, we
refer the reader to [1].
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The significance of the class of hereditarily rational functions is visible
especially in view of a theorem by Kollár [3] which indicates that hereditarily
rational functions enjoy the good properties of continuous rational functions
on smooth algebraic varieties. Below, we state and prove a sharpening of
Kollár’s theorem to the effect that one can find an extension F of a given
hereditarily rational function f with the same indeterminacy locus.

Theorem on hereditarily rational functions. Let X be a subvariety
of a smooth algebraic variety M and f : X −→ R a continuous rational
function. Then the two conditions are equivalent:

i) f is hereditarily rational;
ii) f extends to a continuous rational function F : M −→ R.

Moreover, if f is hereditarily rational and regular off an algebraic subvariety
Z ⊂ X, then we can find its extension F which is regular on M \ Z.

Remarks. 1) The additional conclusion about the indeterminacy locus
Z is an essential sharpening of Kollár’s theorem, because he constructs an
appropriate extension F from a regular function which descends to F through
a finite sequence of blowings-up biregular over M \ X. Thus one can only
deduce that F is regular on M \X. It seems that the use of desingularization
or transformation to a normal crossing by blowing up along smooth centers
leads to non-trivial modifications both of the indeterminacy locus of a given
rational function f and the singular locus of the algebraic variety X.

2) The implication ii) ⇒ i) follows immediately from the above-mentioned
proposition. The converse implication remains valid when M is an arbitrary,
possibly singular, algebraic variety, because it can be embedded into a smooth
variety as a closed subvariety. In particular, it holds if X is an algebraic sub-
variety of a Zariski locally closed subset of Rn.

3) Kollár’s proof of the implication i) ⇒ ii) depends heavily on desin-
gularization. He writes that it would be desirable to find an elementary
proof, one that does not rely so much on resolution of singularities. This
article provides a proof which satisfies, we think, the above demands. We
do not make use of resolution of singularities at all. Instead, we apply a
version of the  Lojasiewicz inequality from [1], Theorem 2.6.6, recalled below.
It also holds for continuous definable functions in an arbitrary polynomially
bounded, o-minimal structure. Such a version was formulated and applied
in our paper [5], which is devoted to carrying over the composite function
theorem to the quasianalytic settings.
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 Lojasiewicz Inequality. Let f, g : A −→ R be two continuous semi-
algebraic functions on a locally closed, semi-algebraic subset A of Rn such
that

{x ∈ A : f(x) = 0} ⊂ {x ∈ A : g(x) = 0}.
Then there exist a positive integer k and a continuous semi-algebraic function
h : A −→ R such that gk = fh.

Now, we can readily prove the theorem. Clearly, f is hereditarily rational
iff there exists a filtration

∅ = X0 ⊂ X1 . . . Xm−1 ⊂ Xm = X,

where Xi are algebraic subvarieties of X such that Xi is nowhere dense in
Xi+1 and the restriction of f to Xi+1 \ Xi is a regular function for each
i = 0, 1, . . . ,m− 1. The proof is by induction with respect to the dimension
of the variety X. It is evident if X is of dimension 0. The induction step
comes down to the following

Lemma. Consider two algebraic subvarieties A ⊂ X of M and a
continuous rational function f : X −→ R regular on X \A and vanishing on
A. Then f extends to a continuous rational function F : M −→ R regular
on M \ A.

Obviously, f can be presented as a fraction g/h, where g, h are regular
functions on X, h ≥ 0 and

{x ∈ X : h(x) = 0} ⊂ A.

One can find, of course, their regular extensions G, H : M −→ R such that
H ≥ 0 and

{x ∈ M : H(x) = 0} = {x ∈ A : h(x) = 0} ⊂ A.

The rational function G/H is no longer continuous in general.

Consider the blowing-up σ : M̃ −→ M with respect to the ideal (G, H).
Then the pull-back

F1 :=
Gσ

Hσ
: M̃ −→ P1 with Gσ := G ◦ σ, Hσ := H ◦ σ,

is a regular mapping into the projective line. Let Y be the birational trans-
form of X, B := σ−1(A) and C be the Euclidean closure of Y \ B; C is, of

3



course, a closed semialgebraic subset of M̃ . Clearly, σ is a biregular mapping
of M̃ \B onto M \ A.

Observe further that, in the vicinity of C, F1 is a regular function leading
into R. Indeed, for a point b ∈ C \ B, the denominator Hσ(b) 6= 0 whence
F1(b) < ∞. On the other hand, if b ∈ C∩B, a sequence of points bν ∈ Y \B,
ν ∈ N, tends to b. But then the sequence aν := σ(bν) ∈ X \ A, ν ∈ N, tends
to a := σ(b) ∈ A. Consequently,

F1(b) = lim
ν→∞

F1(bν) = lim
ν→∞

Gσ(bν)

Hσ(bν)
= lim

ν→∞

G(aν)

H(aν)
=

= lim
ν→∞

g(aν)

h(aν)
= lim

ν→∞
f(aν) = f(a) = 0 < ∞.

Hence the pole set F−1
1 (∞) of the mapping F1 is disjoint with C, as asserted.

Now, take regular functions P, Q : M̃ −→ R such that P, Q ≥ 0 and

B = {x ∈ M̃ : P (x) = 0} and Y = {x ∈ M̃ : Q(x) = 0}.

Since

{x ∈ M̃ : Hσ(x)} ⊂ B and Y ∩ (M̃ \ C) ⊂ B ∩ (M̃ \ C),

it follows from the above version of the  Lojasiewicz inequality that there
exists a positive integer k ∈ N such that

P k ≤ Hσ · constant and P k ≤ Q · constant

locally on M̃ \C; it means that the constants in the above inequalities depend

on a neighbourhood of a given point from M̃ \ C. Put

F2 :=
P 2k

P 2k + Q
· F1.

Observe that the first factor takes on value 1 on Y \B, whence

F2(y) = (f ◦ σ)(y) for all y ∈ Y \B.

On M̃ \ C, we get

F2 =
P k

P 2k + Q
· P k

Hσ
·Gσ,
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with the first two factors locally bounded on M̃ \C and regular off B. There-

fore, the restriction of F2 to M̃ \C extends continuously through B by taking
on zero value, because the third factor Gσ vanishes on B. On the other hand,
in the vicinity of C, F2 is the product of the regular function F1 vanishing
on B and a bounded (by 1) rational function which is regular off B. Conse-
quently, in the vicinity of C, F2 extends continuously through B by taking
on zero value.

Summing up, we see that F2 : M̃ −→ R is a continuous rational function
regular off B and vanishing on B. Consequently, F2 is constant on the
fibres of the proper mapping σ. Hence it descends to a continuous function
F : Rn −→ R which vanishes on A and is regular off A, F2 = F σ. The last
assertion holds since σ is biregular over Rn \ A. We have already seen that
the functions F2 and f ◦ σ coincide on Y \ B. Therefore the functions F
and f coincide on X \A, and thus F is an extension of f we are looking for.
Hence the lemma follows and the proof is complete.
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