Theorem 1. (Abhyankar-Moh)If $l = d_i$ for some $1 \le i \le h+1$ and $d_1 \ne d_2$ then:

1. $\sqrt[4]{f}$ is irreducible in $\mathbb{K}((X))[Y]$, 2. if $2 \leq i \leq h+1$ then for every Puiseux root $z(t) \in \mathbb{K}((t^{1/M}))$, M = k!, of $\sqrt[4]{f}(t, Y)$ there exists $\varepsilon \in U_k(\mathbb{K})$ such that

$$\operatorname{ord}_{t}\left(y\left(\varepsilon t\right)-z\left(t^{k}\right)\right)=m_{i},$$

3. *if*
$$2 \leq i \leq h+1$$

ord_t $\left(\sqrt[d_i]{f}(t^k, y(t))\right) = r_i$

1. Results

Our results can be summarized as follows.

Theorem 2. Let l be integer such that $l|k, l \notin \{d_1, ..., d_{h+1}\}$, $i := max\{1 \leq j \leq h+1 : l|d_j\}$. Then: 1. point 1. of Theorem 1 is not true (see example below) 2. for every Puiseux root $z(t) \in \mathbb{K}((t^{1/M}))$, M = k!, of $\sqrt[n]{f(t,Y)}$ there exists $\varepsilon \in U_k(\mathbb{K})$ such that

$$\operatorname{ord}_{t}\left(y\left(\varepsilon t\right)-z\left(t^{k}\right)\right)\geqslant m_{i};$$

3.

$$\operatorname{ord}_{t}\left(\sqrt[l]{f}\left(t^{k}, y\left(t\right)\right)\right) \geqslant r_{i}\frac{d_{i}}{l}$$

If, in addition, $l > d_{i+1}$ then the above inequalities are in fact equalities.

Example 1. Take the parametrization $X = t^{48}$, $Y = 1/(t^{36}) + 1/(t^6) + 1/(t^5)$ and let f be the minimal monic polynomial for it. Then $f = Y^{48} + \ldots$. It can be verified that for $l = 2\sqrt[4]{f} = Y^{24} + \ldots$ splits into three irreducible factors in $\mathbb{C}((X))[Y]$ each of them having partial Puiseux root of the form $t^{-3/4} + t^{-1/8} + ot^{1/8} + h.o.t$. It's worth noticing that the divisor l = 2 here is very regular - we have $d_4 = 1|2|d_3 = 6$ and despite of that irreducibility does not follow.

It is also easy to give examples in the other direction. Let $X = t^{18}, Y = t^{-12} + t^{-2} + t^{-1}, l = 3$ and let f be the minimal monic polynomial for it. Then $f = Y^{18} + \dots$. It can be verified that $\sqrt[l]{f}$ is irreducible.

Example 2. Let $X = t^{18}$, $Y = t^{-12} + at^{-3} + bt^{-1}$, where a, b are indeterminates over \mathbb{C} , l = 2. Then $l = 2 < d_{i+1} = 3$, so the assumption made in Theorem 2 is not fulfilled. In spite of that we have $\operatorname{incot} \sqrt[4]{f}(t^6, 1/t^4 + Z/t) = -27/2 \cdot Z(-2Z^2 + 3a^2)$. We conclude, that $\sqrt[4]{f}$ has two non-conjugate Puiseux roots. One of them is of the form $z_1(t) = t^{-2/3} + \sqrt{6}/2 \cdot a \cdot t^{-1/6} + h.o.t.$ whereas $y(t) = t^{-12} + at^{-3} + bt^{-18}$ so still $\operatorname{ord}_t(y(t) - z_1(t^{18})) = -3 = m_2$. Also $\operatorname{ord}_t(\sqrt[4]{f}(t^{18}, y(t))) = r_2 \frac{d_2}{l} = -81.)$

Problem 1. Can we drop the assumption $l > d_{i+1}$? **Problem 2.** If $\sqrt[l]{f}$ is reducible in $\mathbb{K}((X))[Y]$, do the degrees of the factors divide k?