Theorem 1. (Abhyankar-Moh)If $l=d_{i}$ for some $1 \leqslant i \leqslant h+1$ and $d_{1} \neq d_{2}$ then:

1. $\sqrt[d_{i}]{f}$ is irreducible in $\mathbb{K}((X))[Y]$,
2. if $2 \leqslant i \leqslant h+1$ then for every Puiseux root $z(t) \in$ $\mathbb{K}\left(\left(t^{1 / M}\right)\right), M=k$!, of $\sqrt[d_{i}]{f}(t, Y)$ there exists $\varepsilon \in U_{k}(\mathbb{K})$ such that

$$
\operatorname{ord}_{t}\left(y(\varepsilon t)-z\left(t^{k}\right)\right)=m_{i},
$$

3.

$$
\begin{aligned}
& \text { if } 2 \leqslant i \leqslant h+1 \\
& \qquad \operatorname{ord}_{t}\left(\sqrt[d_{i}]{f}\left(t^{k}, y(t)\right)\right)=r_{i} .
\end{aligned}
$$

1. Results

Our results can be summarized as follows.
Theorem 2. Let l be integer such that $l \mid k, l \notin\left\{d_{1}, \ldots, d_{h+1}\right\}$, $i:=\max \left\{1 \leqslant j \leqslant h+1: l \mid d_{j}\right\}$. Then:

1. point 1. of Theorem 1 is not true (see example below)
2. for every Puiseux root $z(t) \in \mathbb{K}\left(\left(t^{1 / M}\right)\right), M=k$!, of $\sqrt[l]{f}(t, Y)$ there exists $\varepsilon \in U_{k}(\mathbb{K})$ such that

$$
\operatorname{ord}_{t}\left(y(\varepsilon t)-z\left(t^{k}\right)\right) \geqslant m_{i} ;
$$

3.

$$
\operatorname{ord}_{t}\left(\sqrt[l]{f}\left(t^{k}, y(t)\right)\right) \geqslant r_{i} \frac{d_{i}}{l}
$$

If, in addition, $l>d_{i+1}$ then the above inequalities are in fact equalities.

Example 1. Take the parametrization $X=t^{48}, Y=1 /\left(t^{36}\right)+$ $1 /\left(t^{6}\right)+1 /\left(t^{5}\right)$ and let f be the minimal monic polynomial for it. Then $f=Y^{48}+\ldots$. It can be verified that for $l=2 \sqrt[l]{f}=$ $Y^{24}+\ldots$ splits into three irreducible factors in $\mathbb{C}((X))[Y]$ each of them having partial Puiseux root of the form $t^{-3 / 4}+t^{-1 / 8}+$ $\theta t^{1 / 8}+$ h.o.t. It's worth noticing that the divisor $l=2$ here is very regular - we have $d_{4}=1|2| d_{3}=6$ and despite of that irreducibility does not follow.

It is also easy to give examples in the other direction. Let $X=t^{18}, Y=t^{-12}+t^{-2}+t^{-1}, l=3$ and let f be the minimal monic polynomial for it. Then $f=Y^{18}+\ldots$. It can be verfied that $\sqrt[l]{f}$ is irreducible.

Example 2. Let $X=t^{18}, Y=t^{-12}+a t^{-3}+b t^{-1}$, where a, b are indeterminates over $\mathbb{C}, l=2$. Then $l=2<d_{i+1}=3$, so the assumption made in Theorem 2 is not fulfilled. In spite of that we have inco $_{t} \sqrt[l]{f}\left(t^{6}, 1 / t^{4}+Z / t\right)=-27 / 2 \cdot Z\left(-2 Z^{2}+3 a^{2}\right)$. We conclude, that $\sqrt[l]{f}$ has two non-conjugate Puiseux roots. One of them is of the form $z_{1}(t)=t^{-2 / 3}+\sqrt{6} / 2 \cdot a \cdot t^{-1 / 6}+$ h.o.t. whereas $y(t)=t^{-12}+a t^{-3}+b t^{-18}$ so still $\operatorname{ord}_{t}\left(y(t)-z_{1}\left(t^{18}\right)\right)=-3=$ m_{2}. Also $\operatorname{ord}_{t}\left(\sqrt[l]{f}\left(t^{18}, y(t)\right)\right)=r_{2} \frac{d_{2}}{l}=-81$.)

Problem 1. Can we drop the assumption $l>d_{i+1}$?
Problem 2. If $\sqrt[\downarrow]{f}$ is reducible in $\mathbb{K}((X))[Y]$, do the degrees of the factors divide k ?

