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I Introduction

By a result of Łojasiewicz any two complex, locally analytic sets
X, Y ⊂ Cm are regularly separated at any point a ∈ X ∩ Y , i.e.
there is a neighbourhood U 3 a and constants α, c > 0 such that

dist(z,X) + dist(z, Y ) ­ c · dist(z,X ∩ Y )α, z ∈ U.
In subanalytic geometry there is also the following theorem of
Łojasiewicz and Wachta (1982):

Theorem. (Regular separation with parameter)

If X, Y ⊂ Rmz ×Rnw are subanalytic bounded sets, then there is an
exponent α > 0 such that for any z ∈ πm(X ∩ Y ),

dist(w, Y z) ­ c(z) · dist(w,Xz ∩ Y z)α for w ∈ Xz,
with some c(z) > 0 depending in general on z.
It obviously implies a complex counterpart. One would like, however,
to prove it using only complex analytic geometry tools and obtain
also some bound on the uniform exponent.
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II Main theorem

Let X, Y ⊂ Cmz ×Cnw be locally analytic sets such that 0 ∈ X∩Y .
Put as earlier Xz := {w ∈ Cn | (z, w) ∈ X}. Suppose that X ∩Y
has pure dimension k ­ 1 and let π(z, w) = z be proper on it, with
multiplicity µ := lim supz→0#(π|X∩Y )−1(z) at zero.
(1) Under these assumptions there is a neighbourhood U × V of
zero and an exponent s ­ 1 such that for all z ∈ π(X ∩ Y ) ∩ U

dist(w, Y z) ­ c(z)dist(w,Xz ∩ Y z)s, w ∈ Xz ∩ V,
with some c(z) > 0, which may be chosen independent of z,
whenever 0 ∈ Regπ(X ∩ Y ).
(2) Moreover, s ¬ µ · deg0π(X ∩ Y ) · L0(X, Y ), where L0(X, Y )
is the Łojasiewicz separation exponent of X, Y at zero.

By a result of Cygan we know that L0(X, Y ) ¬ deg0(X • Y ),
where X • Y denotes the cycle of intersection of X, Y in the sense
of Tworzewski.
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III C-holomorphic functions

Let A ⊂ Cm be a locally analytic set. The following definition is
due to Remmert:

Definition. A mapping f : A → Cn is called c-holomorphic if it is
continuous and its restriction to RegA is holomorphic.
The most important feature of c-holomorphic mappings, basic for
all geometric considerations involving them, is given in the following
theorem:

Theorem. A mapping f : A → Cn is c-holomorphic iff it is
continuous and its graph Γf := {(x, f (x)) | x ∈ A} is a locally
analytic subset of Cm ×Cn.
Moreover, each c-holomorphic mapping satisfies the Łojasiewicz
inequality: for any a ∈ f−1(0) there is a neighbourhood U 3 a
and constants α, c > 0 such that |f (x)| ­ c · dist(x, f−1(0))α,
when x ∈ A ∩ U .
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IV Nullstellensatz for c-holomorphic functions

Also an effective Nullstellensatz of the Płoski-Tworzewski type is
valid in the c-holomorphic setting:
Nullstellensatz. Suppose A has pure dimension k ­ 1, f =
(f1, . . . , fn) : A → Cn and g : A → C are c-holomorphic, and
g−1(0) ⊃ f−1(0) 3 0.
If either n ­ k and f−1(0) = {0}, or n ¬ k and f−1(0) has pure
dimension k − n, then in a neighbourhood of zero in A there is

gdeg0Zf =
n∑
j=1
hjfj

with some c-holomorphic functions hj : A→ C, j = 1, . . . , n.
Here Zf := Γf • (Cm × {0}n) is the cycle of zeroes of f .
A more general but ineffective (i.e. we have some exponent to do
with) c-holomorphic Nullstellensatz is valid on locally irreducible
sets (with no assumption on their dimension).
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V Łojasiewicz inequality with parameter

Let A be a pure k-dimensional analytic subset of some open set
U × V ⊂ Cmz × Cnw (k ­ 1). Let f : A → Cp be c-holomorphic
non-constant and such that f−1(0) has pure dimension r ¬ m and
π(z, w) = z is proper on it. We denote by µa its multiplicity at a
point a ∈ f−1(0).
(1) Under these assumptions, for all a ∈ f−1(0) there is a
neighbourhood G × H 3 a and an exponent α ­ 1 such that
for any z ∈ G,

|f (z, w)| ­ c(z) · dist(w, (f−1(0))z)α, w ∈ H ∩ Az,
with some c(z) > 0, which may be chosen independent of z,
whenever π(a) ∈ Regπ(f−1(0)).
(2) There is α ¬ µa · degπ(a)π(f−1(0)) · La(Γf , A× {0}n).
If k = m+n, then La(Γf , A×{0}n) is just the Łojasiewicz exponent
of f at a.
(3) If, moreover, m = r = k − p, then α ¬ µa · degaZf .


